Flores-Escribano, Juan C.
Loading...
1 results
Publication Search Results
Now showing 1 - 1 of 1
Publication Sonolysis of pharmaceutical and personal care products as an advanced oxidation process for the remediation treatment of wastewater effluents(2007) Flores-Escribano, Juan C.; Colucci-Ríos, José; College of Engineering; Briano, Julio; Vega, Carmen A.; Department of Chemical Engineering; Castro, MiguelPharmaceutical and Personal Care Products (PPCPs) are a diverse group of chemicals, also known as xenobiotics, treated like potential environmental pollutants. Recently, PPCPs have been detected in trace amounts in surface and ground water resources especially those receiving wastewater effluents. Sonolytic irradiation, an Advanced Oxidation Process (AOP), had received increased attention lately as a possible remediation treatment for these pollutants. This research intends to study the sonolytic degradation of selected PPCPs model compounds, at an ultrasonic frequency of 20 kHz. At this frequency, water molecules generate OH·, whose formation was monitored by measuring the formation of H2O2 during the reaction. These radicals along with the cavitation phenomena are believed to be the main basis for the sonolytic degradation of these chemicals. For caffeine, up to 34% was degraded resulting in a pseudo first order degradation rate constant of 1.68 x 10-3 min-1 after 4 hours of irradiation at 35°C. Comparable results were obtained for acetaminophen under the same reactive conditions (23% and 1.09 x 10-3 min-1). Also, the addition of H2O2 into the reaction increased the degradation rate for both compounds resulting in higher decomposition percents. These results suggest combining sonochemistry with other existing AOP for larger scale applications. In addition, we captured water sonoluminescence and studied some particular higher frequencies, which increased acoustic pressures. This last finding could lead to an optimized frequency selection to achieve complete and more cost effective removal of these emerging and/or other existing pollutants.