Publication:
Anaerobic bioconversion of collagen to methane
Anaerobic bioconversion of collagen to methane
dc.contributor.advisor | Ríos-Hernández, Luis A. | |
dc.contributor.author | Piñero-García, Luis A. | |
dc.contributor.college | College of Arts and Sciences - Sciences | en_US |
dc.contributor.committee | Ríos Velázquez, Carlos | |
dc.contributor.committee | Montalvo Rodríguez, Rafael | |
dc.contributor.department | Department of Biology | en_US |
dc.contributor.representative | Calcagno, Bárbara O. | |
dc.date.accessioned | 2018-02-27T19:53:57Z | |
dc.date.available | 2018-02-27T19:53:57Z | |
dc.date.issued | 2012 | |
dc.description.abstract | This thesis reports the use of two anaerobic batch reactors (ABRs) to transform a protein solid waste into a renewable energy source. The “heart” of this type of reactor depends on the microbial community within the reactor, their bioconversion potential, and the operational cost. In this research, we developed two ABRs using highly purified enrichments adapted to the anaerobic collagen digestion process. The first reactor, ABRa, was inoculated with a selected highly purified microbial enrichment with functional roles of collagen degradation, coupled with methane production. The second reactor, ABRb, was inoculated with a mixture of two methanogenic microbial communities; one with the acclimated functional role of collagen degradation, and the other with the role of syntrophic volatile fatty acids (VFAs) degradation. We tested which ABR biotransformed more efficiently the collagen based on methane and VFAs consumption, and by comparing the microbial population by Denaturing Gradient Gel Electrophoresis (DGGE). Our results showed that ABRa biotransformed approximately 12% of the collagen into 57% methane while ABRb biotransformed only 4% of the waste into 20% methane. DGGE analysis showed similarities on the diversity of the bacterial population between and inside both of the ABRs on the first 45 days. However, the bacterial population remains 100% homologous, and no differences were detected on the methanogenic population at 90 days. In conclusion, some anaerobic microbial communities have the potential to transform the collagen into biogas. However, using one adapted consortium to transform the protein into methane is more efficient than combining several trophic microbial groups that were acclimated separately from different environments. | |
dc.description.abstract | Esta tesis trata sobre el uso de dos bioreactores anaeróbicos “ABRs” (por sus siglas en inglés) para transformar desperdicios sólidos proteicos en una fuente de energía renovable. El “corazón” de este reactor depende de la comunidad microbiana, su potencial de bioconversión, y el costo operativo del mismo. En esta investigación, se utilizaron enriquecimientos altamente purificados para desarrollar dos bioreactores anaeróbicos. El primer reactor “ABRa’’ se inoculó con una comunidad proveniente de un enriquecimiento capaz de degradar el desperdicio (colágeno) y producir metano. El segundo reactor “ABRb’’ se inoculó utilizando una mezcla de dos comunidades microbianas, una comunidad especializada en la degradación de colágeno, y la otra comunidad especializada en la producción de metano e intermediarios de degradación, los ácidos grasos volátiles y se compararon las comunidades microbianas utilizando Electroforesis de Gradiente Desnaturalizante “DGGE” (por sus siglas en inglés). Nuestros resultados demuestran que ABRa biotransformó aproximadamente 12% del colágeno en 57% metano, mientras que el ABRb biotransformó solo 4% del desperdicio en 20% metano. Los análisis de DGGE indican que hubo similitud en la diversidad bacteriana de los bioreactores durante los primeros 45 días. Sin embargo, la población bacteriana y metanogénica de ambos reactores se mantuvo 100% homóloga al finalizar 90 días. En conclusión, algunas comunidades microbianas tienen el potencial de transformar el colágeno en biogás. Sin embargo, utilizar un consorcio adaptado a transformar la proteína a metano resulta más eficiente que combinar varios niveles tróficos que fueron aclimatados por separado de diferentes ambientes. | |
dc.description.graduationSemester | Spring | en_US |
dc.description.graduationYear | 2012 | en_US |
dc.description.sponsorship | Bio Science and Engineering Initiative (BioSEI) | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/272 | |
dc.language.iso | en | en_US |
dc.rights.holder | (c) 2012 Luis A. Piñero García | en_US |
dc.rights.license | All rights reserved | en_US |
dc.subject | Anaerobic batch reactors (ABRs) | en_US |
dc.subject | Renewable energy source | en_US |
dc.subject.lcsh | Bioreactors | en_US |
dc.subject.lcsh | Microbial contamination | en_US |
dc.subject.lcsh | Biotransformation (Metabolism) | en_US |
dc.subject.lcsh | Biodegradation | en_US |
dc.subject.lcsh | Methanotrophs | en_US |
dc.subject.lcsh | Renewable energy source | en_US |
dc.title | Anaerobic bioconversion of collagen to methane | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Biology | en_US |
thesis.degree.level | M.S. | en_US |