Publication:
Regiones en el plano complejo tipo Gershgorin
Regiones en el plano complejo tipo Gershgorin
Authors
Fuentes-Castilla, Luis R.
Embargoed Until
Advisor
Salas-Olaguer, Héctor N.
College
College of Arts and Sciences - Sciences
Department
Department of Mathematics
Degree Level
M.S.
Publisher
Date
2008
Abstract
En 1931 Semion A. Gershgorin publicó un importante resultado en el algebra lineal que ahora es llamado “El Teorema de los Círculos de Gershgorin”. Este teorema establece que dada una matriz A = [ai,j ] ∈ Cn×n, sus autovalores se encuentran dentro de algún círculo centrado en un elemento ai,i de la diagonal de A y con radio la suma de los módulos de las restantes entradas de la fila i de A. En las décadas siguientes se dió una explosión de resultados relativos a regiones donde se encuentran los autovalores de una matriz A = [ai,j ] ∈ Cn×n , muchos de ellos debido a Richard S. Varga quien en el 2004 recopiló estos resultados y los publicó en su libro “Gershgorin and his Circles”. En esta disertación recopilaremos y extenderemos estos resultados a matrices particionadas por bloques. Así como también mostraremos algunos ejemplos de resultados que no se cumplen para matrices particionadas por bloques.
In 1931 Semion A. Gershgorin published an important result in linear algebra which was later called “Gershgorin’s Circles Theorem ”. This theorem establishes that if A is a Cn×n matrix, then its eigenvalues are in some circle with center on an element ai,i of the diagonal and with radius the sum of the absolute values of the remaining entries in the row i. In the following decades there occurred an explosion of results about eigenvalue inclusion regions of a matrix A = [ai,j ] ∈ Cn×n ; many of these results are due to Richard S. Varga who in 2004 compiled and published them in his book “Gershgorin and his Circles.” In this presentation we collect and extend some of these results to partitioned matrices.We also show examples of results that are not true for partitioned matrices.
In 1931 Semion A. Gershgorin published an important result in linear algebra which was later called “Gershgorin’s Circles Theorem ”. This theorem establishes that if A is a Cn×n matrix, then its eigenvalues are in some circle with center on an element ai,i of the diagonal and with radius the sum of the absolute values of the remaining entries in the row i. In the following decades there occurred an explosion of results about eigenvalue inclusion regions of a matrix A = [ai,j ] ∈ Cn×n ; many of these results are due to Richard S. Varga who in 2004 compiled and published them in his book “Gershgorin and his Circles.” In this presentation we collect and extend some of these results to partitioned matrices.We also show examples of results that are not true for partitioned matrices.
Keywords
Teorema de los círculos de Gershgorin
Usage Rights
Persistent URL
Cite
Fuentes-Castilla, L. R. (2008). Regiones en el plano complejo tipo Gershgorin [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/1969