Publication:
A connection between algebraic structures and propositional logic
A connection between algebraic structures and propositional logic
dc.contributor.advisor | Cáceres, Luis F. | |
dc.contributor.author | Ortiz-Hernández, Wanda | |
dc.contributor.college | College of Arts and Sciences - Sciences | en_US |
dc.contributor.committee | Castellini, Gabriele | |
dc.contributor.committee | Oltikar, Balchandra | |
dc.contributor.department | Department of Mathematics | en_US |
dc.contributor.representative | Macchiavell, Raúl | |
dc.date.accessioned | 2019-04-15T15:50:42Z | |
dc.date.available | 2019-04-15T15:50:42Z | |
dc.date.issued | 2006 | |
dc.description.abstract | In this project, the relationship between propositional logic using theories and models, and algebraic structures, such as groups, rings, lattices, R-modules and algebras, including Boolean Algebras, has been studied. From Caceres [1], we have that given a ring R, a one to one correspondence exists between the ideals of R and the models associated with the sentential theory T(R). A similar approach was followed to show that given a group G, and the associated sentential theory T (G), a one to one correspondence exists between the subgroup of G and the models associated with the theory T(G). Several results were presented for lattice structures, L, and Boolean Algebras, B. Their associated sentential the- ories, T(L) and T(B), were also established. Concrete examples to support these results were presented and explained. For some structures, the cardinality of its corresponding propositional theory was studied and a formula for its calculation was established. | en_US |
dc.description.abstract | En este proyecto se estudió la relación entre la lógica proposicional utilizando teorías y modelos, y estructuras algebraicas como: grupos, anillos, retículos, R-módulos y álgebras, incluyendo álgebras de Boole. De Cáceres [1] tenemos que dado un anillo R, existe una correspondencia uno a uno entre los ideales de R y los modelos asociados a la teoría sentencial T(R). Utilizando un procedimiento similar se demostró que dado un grupo G y la teoría sentencial asociada, T(G), existe una correspondencia uno a uno entre los subgrupos de G y los modelos asociados con la teoría, T(G). Para los retículos, L, y las álgebras de Boole, B, se presentaron varios resultados y propiedades. Además, se establecieron sus teorías sentenciales, T(L) y T(B), respectivamente. Varios ejemplos y contra ejemplos concretos se presentaron para reforzar los resultados establecidos. Para algunas estructuras se estudió la cardinalidad de sus teorías proposicionales correspondientes y se estableció una fórmula para su computación. | en_US |
dc.description.graduationYear | 2006 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/1989 | |
dc.language.iso | English | en_US |
dc.rights.holder | (c) 2006 Wanda Ortiz-Hernández | en_US |
dc.rights.license | All rights reserved | en_US |
dc.subject | Algebraic structures | en_US |
dc.subject | Propositional logic | en_US |
dc.title | A connection between algebraic structures and propositional logic | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Pure Mathematics | en_US |
thesis.degree.level | M.S. | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- MATE_OrtizHernandezW_2006.pdf
- Size:
- 340.56 KB
- Format:
- Adobe Portable Document Format
- Description: