Publication:
Unsupervised unmixing of hyperspectral imagery using the constrained positive matrix factorization
Unsupervised unmixing of hyperspectral imagery using the constrained positive matrix factorization
dc.contributor.advisor | Vélez-Reyes, Miguel | |
dc.contributor.author | Masalmah, Yahya M. | |
dc.contributor.college | College of Engineering | en_US |
dc.contributor.committee | Hunt, Shawn | |
dc.contributor.committee | Santiago, Nayda | |
dc.contributor.committee | Rivera, Wilson | |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.contributor.representative | Gilbes, Fernando | |
dc.date.accessioned | 2019-02-12T15:30:47Z | |
dc.date.available | 2019-02-12T15:30:47Z | |
dc.date.issued | 2007 | |
dc.description.abstract | In hyperspectral imaging, hundreds of images are taken at narrow and contiguous spectral bands providing us with high spectral resolution spectral signatures that can be used to discriminate between objects. In many applications, the measured spectral signature is a mixture of the object of interest, and other objects within the field of view of the sensor. To determine which objects are in the field of view of the sensor, we need to decompose the measured spectral signature in its constituents and their contribution to the measured signal. This research dealt with the unsupervised determination of the constituents and their fractional abundance in each pixel in a hyperspectral image using a constrained positive matrix factorization (cPMF). Different algorithms are presented to compute the cPMF. Tests and validation with real and simulated data show the effectiveness of the method. Application of the approach to environmental remote sensing and microscopic imaging is shown. | en_US |
dc.description.graduationSemester | Summer | en_US |
dc.description.graduationYear | 2007 | en_US |
dc.description.sponsorship | This work was partially supported by NSF Engineering Research Centers Program under grant EEC-9986821 and a Fellowship from the PR NASA Space Grant Program, Gordon Center for Subsurface Sensing and Imaging Systems (CenSSIS), and the Puerto Rico NASA Space Grant. | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/1801 | |
dc.language.iso | English | en_US |
dc.rights.holder | (c) 2007 Yahya M. Masalmah | en_US |
dc.rights.license | All rights reserved | en_US |
dc.subject | Hyperspectral imagery | en_US |
dc.subject | Matrix factorization | en_US |
dc.title | Unsupervised unmixing of hyperspectral imagery using the constrained positive matrix factorization | en_US |
dc.type | Dissertation | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Computing and Information Sciences and Engineering | en_US |
thesis.degree.level | Ph.D. | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- CIIC_MasalmahY_2007.pdf
- Size:
- 2.65 MB
- Format:
- Adobe Portable Document Format
- Description: