Publication:
Structure and rheology of colloid-in-liquid crystal composites with novel anisotropic and hierarchical microstructures

dc.contributor.advisor Acevedo-Rullán, Aldo
dc.contributor.author Diestra-Cruz, Herberth A.
dc.contributor.college College of Engineering en_US
dc.contributor.committee Briano, Julio G.
dc.contributor.committee Córdova Figueroa, Ubaldo M.
dc.contributor.committee Almódovar Montañez, Jorge L.
dc.contributor.department Department of Chemical Engineering en_US
dc.contributor.representative Calcagno, Bárbara O.
dc.date.accessioned 2018-05-16T15:20:48Z
dc.date.available 2018-05-16T15:20:48Z
dc.date.issued 2015
dc.description.abstract The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet’s condition) and the thermal conductivity is constant. The method of images is used to find the Green’s function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
dc.description.abstract En el presente trabajo se utiliza la técnica integral de las funciones de Green para determinar el campo de temperaturas debido a la transferencia de calor por conducción en placas planas, placas circulares y esferas sólidas cuando la fuente de generación de calor tiene la forma de diente de sierra. En todos los casos la temperatura es especificada en la frontera (condición de Dirichlet) y la conductividad térmica es constante. Se ha utilizado método de las imágenes para hallar la función de Green en sólidos infinitos, sólidos semi-infinitos, cuadrantes infinitos, placas circulares y esferas sólidas. La generación de calor en forma de diente de sierra ha sido modelada utilizando la función delta de Dirac y la función paso de Heaviside. El uso de las funciones de Green permite obtener la distribución de temperaturas en la forma de una integral que evita los problemas de convergencia de las series infinitas. Para el sólido infinito y la esfera, la distribución de temperaturas es tri-dimensional y en los casos de sólido semiinfinito, cuadrante infinito y placa circular la distribución es bi-dimensional. El método utilizado en este trabajo es superior a otros métodos porque permite obtener elegantes soluciones analíticas o casi-analíticas a complejos problemas de conducción de calor con menos esfuerzo computacional y más precisión que los métodos completamente numéricos.
dc.description.graduationSemester Summer en_US
dc.description.graduationYear 2015 en_US
dc.description.sponsorship National Science Foundation, Wisconsin - Puerto Rico Partnership for Research and Education in Materials en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/492
dc.language.iso en en_US
dc.rights.holder (C) 2015 Heberth A. Diestra Cruz en_US
dc.rights.license All rights reserved en_US
dc.subject Colloid-in-liquid crystal composites en_US
dc.subject Magnetic particles en_US
dc.subject Morphology of MCLCs en_US
dc.subject.lcsh Anisotropy en_US
dc.subject.lcsh Nematic liquid crystals en_US
dc.subject.lcsh Colloids en_US
dc.subject.lcsh Magnetic suspension en_US
dc.subject.lcsh Suspensions (Chemistry) en_US
dc.title Structure and rheology of colloid-in-liquid crystal composites with novel anisotropic and hierarchical microstructures en_US
dc.type Dissertation en_US
dspace.entity.type Publication
thesis.degree.discipline Chemical Engineering en_US
thesis.degree.level Ph.D. en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
INQU_DiestraCruzHA_2015.pdf
Size:
12.61 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: