Closure operators, torsion theories, and radicals in a non-abelian environment

dc.contributor.advisor Castellini, Gabriele López-Gerena, Juan O. College of Arts and Sciences - Sciences en_US
dc.contributor.committee Walker Ramos, Uroyoán
dc.contributor.committee Dziobiak, Wieslaw
dc.contributor.department Department of Mathematics en_US
dc.contributor.representative Castellanos, Dorial 2018-04-09T15:21:34Z 2018-04-09T15:21:34Z 2009-05
dc.description.abstract In the category of abelian groups, there exists a relationship between torsion theories and idempotent radicals where we can use one to find the other. In the process we can learn of different properties that apply to the associated subclasses. We can also use a pre-radical to obtain a closure operator and a closure operator to obtain a pre-radical. The properties of the pre-radical (whether it’s idempotent or a radical) indicate corresponding properties of the closure operator and vice-versa. In this thesis, we determine how much of the relationship that exists between closure operators, torsion theories and radicals in the category of abelian groups (Ab) can be extended to the category of all groups (Grp). Once it’s clear which properties do not apply, our goal is to find, for each property, which modifications can be made so that the property still holds.
dc.description.abstract En la categoría de grupos abelianos, existe una relación entre las teorías de torsión y los radicales idempotentes donde podemos usar uno para encontrar el otro. En el proceso podemos aprender sobre diferentes propiedades que aplican a las subclases implicadas. Además, podemos usar un pre-radical para obtener un operador de clausura y un operador de clausura para obtener un pre-radical. Las propiedades del pre-radical (si es idempotente o un radical) nos indican propiedades correspondientes en el operador de clausura y vice-versa. En esta tesis determinamos qué aspectos de la relación que existe entre los operadores de clausura, teorías de torsión y radicales en la categoría de grupos abelianos (Ab) se pueden extender a la categoría de todos los grupos (Grp). Una vez tengamos claro cuales propiedades no aplican, nuestra meta es investigar, para cada propiedad, qué modificaciones se les puede hacer para que la propiedad todavía aplique.
dc.description.graduationSemester Spring en_US
dc.description.graduationYear 2009 en_US
dc.language.iso en en_US
dc.rights.holder (c)2009 Juan O López Gerena en_US
dc.rights.license All rights reserved en_US
dc.subject Abelian groups en_US
dc.subject Torsion theories en_US
dc.subject Radicals en_US
dc.subject Closure operators en_US
dc.subject.lcsh Closure operators en_US
dc.subject.lcsh Torsion theory (Algebra) en_US
dc.subject.lcsh Non-Abelian groups en_US
dc.title Closure operators, torsion theories, and radicals in a non-abelian environment en_US
dc.type Thesis en_US
dspace.entity.type Publication Pure Mathematics en_US M.S. en_US
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
263.91 KB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
1.64 KB
Item-specific license agreed upon to submission