Publication:
Mechanical, durability and financial analysis of concrete mixtures with nanosilica, silica fume and fly ash

dc.contributor.advisor Molina-Bas, Omar I.
dc.contributor.author González Solá, Luis
dc.contributor.college College of Engineering en_US
dc.contributor.committee Cáceres, Arsenio
dc.contributor.committee Acosta-Costa, Felipe J.
dc.contributor.committee Portela-Gauthier, Genock
dc.contributor.committee Vidot-Vega, Aidcer L.
dc.contributor.department Department of Civil Engineering en_US
dc.contributor.representative Jiménez-Cabán, Esbal
dc.date.accessioned 2020-08-19T14:20:29Z
dc.date.available 2020-08-19T14:20:29Z
dc.date.issued 2020-05-14
dc.description.abstract This study encompasses the analysis of mechanical properties, durability and cost-effectiveness of concrete mixtures with nanosilica particles, silica fume and fly ash utilized as admixtures. The cost of materials for the all mixture designs will be considered along with the data from the mechanical and durability tests in order to determine the most cost-effective admixture proportions. Previous studies have proven the increased performance of concrete, especially in compressive strength, when nanosilica is utilized as an admixture in concrete, however, due to the high cost of manufacturing the use of nanosilica is in some cases prohibitive. To reduce costs, nanosilica is often combined with less expensive admixtures such as silica fume and fly ash. Twelve different concrete mixture designs were considered. These mixtures were divided into four groups: mixtures with nanosilica as the only admixture, mixtures combining nanosilica and fly ash, mixtures combining nanosilica and silica fume, and mixtures that utilized all three. For the first three groups the values of the percentage of cementitious material consisting of nanosilica were 0%, 1.5% and 3%. For the second and third groups, the dosage of nanosilica remains unchanged and the percentages consisting of silica fume and fly ash were constant at 20% respectively. For the last group, which combined the three admixtures, the values of nanosilica were fixed at 1.5% and the dosage combinations of fly ash and silica fume were varied, but always totaled 20% of cementitious material in the mixture. The mechanical properties being studied are the compressive strength and tensile strength by means of the split log test. The durability properties analyzed are permeability measured in the rapid chloride ion penetration test, pore structure and composition utilizing mercury intrusion porosimetry analysis and chemical composition by means of differential thermal analysis and x-ray fluorescence analysis. The cost-benefit analysis will be performed in order to determine if the increase in mechanical properties and an improvement in durability properties can justify the increased costs of a mixture design containing high cost additives such as nanosilica particles. For each of the mixture sub-groups the best performing mixture will be determined taking into consideration all of the studied parameters: mechanical performance, durability properties and material costs. These results could serve as a guide for the construction industry. For example, it was shown that at an age of 180 days a concrete mixture design using silica fume and fly ash improves compressive strength and reduce permeability in a cost effective manner. For this mixture the compressive strength is 1.39 times higher than the control mixture and cost is 1.46 times that of the control. The increase of cost was directly proportional with the increase in compressive strength with the added benefit that permeability is reduced by a factor of 0.11 relative to the control mixture. en_US
dc.description.abstract El presente proyecto investigativo acapara el análisis de propiedades mecánicas, durabilidad y costo-efectividad de diseños de mezclas de hormigón utilizando las adiciones minerals nanosílice, humo de sílice y cenizas volantes. El costo de materiales de los diseños de mezcla asi como los resultados obtenidos de los análisis de caracterización mecánica y durabilidad serán considerados para determinar un diseño de óptima costo-efectividad en función de la proporción de adiciones minerales. Estudios anteriores han demostrado la mejoría en el desempeño de mezclas de hormigón, especialmente en resistencia a compresión, cuando se emplea el nanosilice. Sin embargo, debido a su alto costo, su uso es limitado. Para reducir costos, nanosilice puede ser combinado con adiciones minerales menos costosas como el humo de sílice o cenizas volantes. Doce diseños de mezcla fueron analizados divididos en cuatro sub grupos. El primer grupo mezclas contiene nanosílice como única adición mineral. Dos grupos combinan nanosílice con humo de sílice y nanosílice con cenizas volantes. Finalmente un grupo que combina las tres adiciones minerales estudiadas simultaneamente. El rango de valores del porcenteaje de material cementicio utilizado fue de 0% hasta 3% para nanosílice y de 0% hasta 20% para humo de sílice y cenizas volantes. Se llevan a cabo estudios de resistencia a compresión y tension. Adicionalmente se analiza la prueba de penetración del ion cloruro, porosimetría por intrusión de mercurio, análisis diferencial térmico y análisis espectroscópico por rayos x. Se lleva a cabo un análisis de costo-efectividad para determinar si los cambios en propiedades como resistencia a compresión y permeabilidad son proporcionales al cambio en costo de la mezcla con adiciones minerales. Se determina que proporción de adiciones minerales produce el diseño de mezcla de más alta costo-efectividad considerando desempeoño mecánico, propiedades relacionadas a durabilidad y costo de materiales. Estos resultados pueden servir como guía para la industria de la construcción. Por ejemplo, se pudo demostrar que a una edad de 180 dias, un diseño de mezcla con humo de sílice y cenizas volantes mejora resistencia a compresión y reduce permeabilidad de manera costo-efectiva. Para esta mezcla la resistencia en compresión es 1.39 veces mayor a la mezcla de control y su costo es 1.46 veces mayor al control. El aumento en costo es directamente proporcional al aumento en Resistencia a compresión, con el beneficio añadido que la permeabilidad se reduce por un factor de 0.11 relativo a la mezcla de control. en_US
dc.description.graduationSemester Spring en_US
dc.description.graduationYear 2020 en_US
dc.description.sponsorship Argos San Juan Corp. (San Juan Cement); Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos – Universidad Politécnica de Madrid (UPM) en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2636
dc.language.iso en en_US
dc.rights.holder (c) 2020 Luis González-Solá en_US
dc.subject Concrete - Mixing en_US
dc.subject Concrete - Additives en_US
dc.subject Concrete--Permeability en_US
dc.subject Silica fume en_US
dc.subject Concrete - Service life en_US
dc.subject Nanosilicon en_US
dc.subject.lcsh Concrete -- Mechanical properties en_US
dc.subject.lcsh Nanosilicon en_US
dc.subject.lcsh Nanostructured materials en_US
dc.subject.lcsh Silica fume en_US
dc.subject.lcsh Fly ash en_US
dc.title Mechanical, durability and financial analysis of concrete mixtures with nanosilica, silica fume and fly ash en_US
dc.type Dissertation en_US
dspace.entity.type Publication
thesis.degree.discipline Civil Engineering en_US
thesis.degree.level Ph.D. en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
INCI_GonzalezSolaL_2020.pdf
Size:
10.04 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: