Publication:
Optimized control of distribution switches using deep neural networks to balance a low cost dynamic photovoltaic microgrid in the DQ frame

dc.contributor.advisor Aponte, Erick E.
dc.contributor.author Calloquispe Huallpa, Ricardo
dc.contributor.college College of Engineering en_US
dc.contributor.committee Darbali Zamora, Rachid
dc.contributor.committee Arzuaga, Emmanuel
dc.contributor.department Department of Electrical and Computer Engineering en_US
dc.contributor.representative Ortiz Albino, Reyes M.
dc.date.accessioned 2022-12-19T18:27:39Z
dc.date.available 2022-12-19T18:27:39Z
dc.date.issued 2022-12-12
dc.description.abstract This thesis presents an energy management strategy by opening and closing switches in a dynamic microgrid. This microgrid consists of several groups containing photovoltaic generation and load that can be connected and disconnected from the main microgrid. The optimization for power management seeks to minimize the power consumed by the grid with the constraint of continuously supplying power to a critical load. The algorithm in charge of energy management is deep neural network. The deep neural network receives as input data the parameters of the microgrid and, as a result, deliver the states of the switches of all the groups. For the deep neural network training process, a third algorithm was used to optimize the parameters of the microgrid. In this way, specific outputs are obtained for each type of input. In this implementation, the DNNs do not perform the optimization process, which takes a long time, what they do is learn a task that is already optimized, substantially reducing the time required to obtain results. Finally, to observe the dynamic behavior of the microgrid states caused by the opening and closing of switches, the microgrid was modeled in the direct-quadrature frame. For this, the average models of the inverters with voltage control for the grid forming group and with current control for the grid following groups were used. Simulation results showed that energy management can be performed in a microgrid through the opening and closing of its switches without losing system stability. en_US
dc.description.abstract Esta tesis presenta una estrategia de gestión de la energía mediante la apertura y cierre de interruptores en una microrred dinámica. Esta microrred está formada por varios grupos que contienen generación fotovoltaica y carga que pueden conectarse y desconectarse de la microrred principal. La optimización para la gestión de la energía busca minimizar la energía consumida por la red con la restricción de suministrar continuamente energía a una carga crítica. El algoritmo encargado de la gestión de la energía son las redes neuronales profundas. La red neuronal profunda recibe como datos de entrada los parámetros de la microrred y, como resultado, entrega los estados de los interruptores de todos los grupos. Para el proceso de entrenamiento de la red neuronal profunda se utilizó un tercer algoritmo que optimice los parámetros de la microrred. De este modo, se obtienen salidas específicas para cada tipo de entrada. En esta implementacion, la red neuronal profunda no realiza el proceso de optimización, el cual toma mucho tiempo, lo que hacen es aprender una tarea que ya está optimizada, reduciendo sustancialmente el tiempo requerido para obtener resultados. Por último, para observar el comportamiento dinámico de los estados de la microrred causados por la apertura y el cierre de los interruptores, la microrred se modeló en el marco de referencia directo-cuadratura. Para ello, se utilizaron los modelos promediados de los inversores con control de voltaje para el grupo con unidad formadora y con control de corriente para los grupos con unidades seguidoras. Los resultados de la simulacion mostraron que se puede realizar la gestion de energia en una microred a traves de la apertura y cierre de sus interruptores sin perder la estabilidad del sistema. en_US
dc.description.graduationSemester Fall en_US
dc.description.graduationYear 2022 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2991
dc.language.iso en en_US
dc.rights Attribution-NonCommercial-ShareAlike 4.0 International *
dc.rights.holder (c) 2022 Ricardo Calloquispe Huallpa en_US
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/ *
dc.subject Microgrids en_US
dc.subject Energy management en_US
dc.subject Machine learning en_US
dc.subject Deep neural network en_US
dc.subject DQ frame en_US
dc.subject.lcsh Microgrids (Smart power grids)
dc.subject.lcsh Neural networks (Computer science)
dc.subject.lcsh Photovoltaic power generation
dc.subject.lcsh Electric inverters
dc.subject.lcsh Voltage regulators
dc.title Optimized control of distribution switches using deep neural networks to balance a low cost dynamic photovoltaic microgrid in the DQ frame en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Electrical Engineering en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
IELM_CalloquispeHuallpaR_2022.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.26 KB
Format:
Item-specific license agreed upon to submission
Description: