Publication:
Automatic target detection in hyperspectral images using level sets
Automatic target detection in hyperspectral images using level sets
dc.contributor.advisor | Manian, Vidya | |
dc.contributor.author | Alarcon-Ramirez, Andres | |
dc.contributor.college | College of Engineering | en_US |
dc.contributor.committee | Vélez-Reyes, Miguel | |
dc.contributor.committee | Rodríguez, Domingo | |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.contributor.representative | Bollman, Dorothy | |
dc.date.accessioned | 2019-05-14T18:22:48Z | |
dc.date.available | 2019-05-14T18:22:48Z | |
dc.date.issued | 2009 | |
dc.description.abstract | A novel variational method using level sets that incorporate spectral angle distance in the model for automatic target detection is presented. Algorithms are presented for detecting both spatial and pixel targets. The new method is tested in tasks of unsupervised target detection in hyperspectral images with more than 100 bands, and the results are compared with a widely used region-based level sets algorithm. In addition Texture and spectral information are incorporated into level set equation for extracting large targets placed on images The proposed method is also adapted for supervised target detection and its performance is compared with traditional orthogonal subspace projection and constrained signal detector for the detection of pixel targets. The method is evaluated with different complexity such as noise levels and target sizes. | en_US |
dc.description.abstract | Un novedoso método que utiliza Level set y que incorpora distancia espectral angular en la detección automática de objetivos es presentado. Distintos algoritmos fueron desarrollados para la detección de objetivos que tienen tamaño de pocos pixeles y otros de mayor tamaño. El nuevo método es probado en tareas de detección de objetivos no-supervisados en imágenes hiperespectrales con más de 100 bandas, y los resultados son comparados con otras técnicas de level set basadas en regiones que han sido ampliamente utilizadas. Adicionalmente información espectral y de textura es incorporada en la ecuación de level set para la extracción de objetos grandes situados en una imagen. El método propuesto es también adaptado para la detección supervisada de objetivos, y su rendimiento es comparado con algoritmos de proyección del sub-espacio ortogonal y detección de señales restringidas para la detección de objetivos de pocos pixeles. El método es evaluado con diferentes niveles de ruido y tamaño de objetos. | en_US |
dc.description.graduationYear | 2009 | en_US |
dc.description.sponsorship | Funded primarily by the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number EEC-9986821). | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/2215 | |
dc.language.iso | English | en_US |
dc.rights.holder | (c) 2009 Andres Alarcon-Ramirez | en_US |
dc.rights.license | All rights reserved | en_US |
dc.title | Automatic target detection in hyperspectral images using level sets | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Computer Engineering | en_US |
thesis.degree.level | M.S. | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- ICOM_AlarconRamirezA_2009.pdf
- Size:
- 3.06 MB
- Format:
- Adobe Portable Document Format
- Description: