Publication:
R-torsion on (2,n)-torus knots.
R-torsion on (2,n)-torus knots.
dc.contributor.advisor | Ortiz-Navarro, Juan A. | |
dc.contributor.author | Cárdenas-Pérez, Victor A. | |
dc.contributor.college | College of Arts and Sciences - Art | en_US |
dc.contributor.committee | Ortiz-Albino, Reyes M. | |
dc.contributor.committee | Romero-Oliveras, Juan A. | |
dc.contributor.department | Department of Mathematics | en_US |
dc.contributor.representative | Cabrera-Rios, Mauricio | |
dc.date.accessioned | 2018-12-13T11:28:58Z | |
dc.date.available | 2018-12-13T11:28:58Z | |
dc.date.issued | 2018-11-02 | |
dc.description.abstract | This thesis study the (2,n)-torus knots, uses the Khovanov Homology and Reidemeister Torsion. We show the study made to the Khovanov Homology Groups H^r, for r = -n, -n+1, -1; 0. These are isomorphics to either Z, Z_2 or some direct sum of copies of them. Finally, we applied the Redeimeister Torsion to the chain subcomplexes with polynomial degree of -3n, -3n + 2 and 2 - n using the same class of knots. | en_US |
dc.description.graduationSemester | Fall | en_US |
dc.description.graduationYear | 2019 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/1608 | |
dc.language.iso | en | en_US |
dc.rights.holder | (c) 2018 Víctor Adolfo Cárdenas-Pérez | en_US |
dc.rights.license | All rights reserved | en_US |
dc.subject | R-torsion | en_US |
dc.subject | Khovanov homology | en_US |
dc.subject | Torus knots | en_US |
dc.subject | Invariants | en_US |
dc.subject.lcsh | Knot theory | en_US |
dc.subject.lcsh | Reidemeister torsion | en_US |
dc.subject.lcsh | Torsion theory (Algebra) | en_US |
dc.subject.lcsh | Polynomials | en_US |
dc.subject.lcsh | Homology theory | en_US |
dc.subject.lcsh | Isomorphisms (Mathematics) | en_US |
dc.title | R-torsion on (2,n)-torus knots. | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Pure Mathematics | en_US |
thesis.degree.level | M.S. | en_US |