Publication:
R-torsion on (2,n)-torus knots.

dc.contributor.advisor Ortiz-Navarro, Juan A.
dc.contributor.author Cárdenas-Pérez, Victor A.
dc.contributor.college College of Arts and Sciences - Art en_US
dc.contributor.committee Ortiz-Albino, Reyes M.
dc.contributor.committee Romero-Oliveras, Juan A.
dc.contributor.department Department of Mathematics en_US
dc.contributor.representative Cabrera-Rios, Mauricio
dc.date.accessioned 2018-12-13T11:28:58Z
dc.date.available 2018-12-13T11:28:58Z
dc.date.issued 2018-11-02
dc.description.abstract This thesis study the (2,n)-torus knots, uses the Khovanov Homology and Reidemeister Torsion. We show the study made to the Khovanov Homology Groups H^r, for r = -n, -n+1, -1; 0. These are isomorphics to either Z, Z_2 or some direct sum of copies of them. Finally, we applied the Redeimeister Torsion to the chain subcomplexes with polynomial degree of -3n, -3n + 2 and 2 - n using the same class of knots. en_US
dc.description.graduationSemester Fall en_US
dc.description.graduationYear 2019 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/1608
dc.language.iso en en_US
dc.rights.holder (c) 2018 Víctor Adolfo Cárdenas-Pérez en_US
dc.rights.license All rights reserved en_US
dc.subject R-torsion en_US
dc.subject Khovanov homology en_US
dc.subject Torus knots en_US
dc.subject Invariants en_US
dc.subject.lcsh Knot theory en_US
dc.subject.lcsh Reidemeister torsion en_US
dc.subject.lcsh Torsion theory (Algebra) en_US
dc.subject.lcsh Polynomials en_US
dc.subject.lcsh Homology theory en_US
dc.subject.lcsh Isomorphisms (Mathematics) en_US
dc.title R-torsion on (2,n)-torus knots. en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Pure Mathematics en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
MATE_CardenasPerezV_2018.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: