Publication:
Stochastic simulation of tropical cyclones for quantification of uncertainty associated with storm recurrence and intensity

dc.contributor.advisor Pagán-Trinidad, Ismael
dc.contributor.author Ramos-Santiago, Efrain
dc.contributor.college College of Engineering en_US
dc.contributor.committee Nadal-Caraballo, Norberto C.
dc.contributor.committee Zapata-López, Raúl E.
dc.contributor.department Department of Civil Engineering en_US
dc.contributor.representative Ramírez-Durand, Lillian
dc.date.accessioned 2019-08-12T15:56:28Z
dc.date.available 2019-08-12T15:56:28Z
dc.date.issued 2019-07-10
dc.description.abstract Current practice for the design and assessment of coastal infrastructure requires the use of stochastic methods for the evaluation of the risk associated with coastal hazards such as storm surge and flooding induced by tropical cyclones (TCs). The joint probability method (JPM) has become the standard probabilistic model used to quantify coastal storm hazard in hurricane-prone areas. The storm recurrence rate (SRR) is an integral component of the JPM. Estimation of SRR is necessary at multiple locations throughout a study area. A TC stochastic track model (STM) was developed for the North Atlantic basin capable of generating a large number of synthetic TCs that complement the historical record and improve the reliability of TC frequency and intensity statistics. Each synthetic TC is initiated by a non-homogeneous Poisson point process and propagated through a Markov process at 6-hour intervals. Characteristic TC parameters are populated along the track by sampling from spatially-varying probability distributions and statistical regression models derived from the historical record. Results from a 10,000-year run under stationary climate conditions demonstrate the capability of the STM to replicate the general trends of historical SRR and minimum central pressure statistics along the U.S. coastlines, including the Virgin Islands and Puerto Rico. en_US
dc.description.abstract En la actualidad, el diseño y la evaluación de la infraestructura costera requiere el uso de métodos estocásticos para la evaluación del riesgo asociado a peligros costeros, como la marejada ciclónica e inundaciones inducidas por los ciclones tropicales. El método de probabilidad conjunta (JPM, por sus siglas en inglés) se ha convertido en el modelo probabilístico estándar utilizado para cuantificar el riesgo costero en zonas propensas a huracanes. La razón de recurrencia de ciclones tropicales (SRR, por sus siglas en inglés) es un componente integral del JPM. La estimación de la SRR es necesaria en múltiples ubicaciones de una zona de estudio. El presente estudio se enfocó en desarrollar un modelo estocástico de trayectoria (STM, por sus siglas en inglés) de ciclones tropicales para la cuenca del Atlántico norte. El STM tiene la capacidad de generar un gran número de ciclones tropicales artificiales que complementan el registro histórico y mejoran la confiabilidad de las estadísticas de frecuencia e intensidad de los mismos. Cada ciclón tropical artificial se inicia mediante un proceso heterogéneo de puntos de Poisson y se propaga a través de un proceso Markoviano a intervalos de 6 horas. Los parámetros que caracterizan a un ciclón tropical se asignan a lo largo de la trayectoria mediante muestreo de distribuciones probabilísticas espacialmente variables y modelos de regresión, ambos derivados del registro histórico. Los resultados de una simulación de 10,000 años, presumiendo condiciones climáticas estacionarias, demuestran la capacidad del STM para replicar las tendencias generales históricas de la SRR y las estadísticas de presión central mínima a lo largo de las costas de los Estados Unidos de América, incluyendo las Islas Vírgenes y Puerto Rico. en_US
dc.description.graduationSemester Summer en_US
dc.description.graduationYear 2019 en_US
dc.description.sponsorship Investigation subsidized with funds from the U.S. Army Engineer Research and Development Center's Coastal and Hydraulics Laboratory en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2506
dc.language.iso en en_US
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.holder (c) 2019 Efrain Ramos-Santiago en_US
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Stochastic track model en_US
dc.subject Tropical cyclone en_US
dc.subject North Atlantic basin en_US
dc.subject Markov chain monte carlo simulation en_US
dc.subject Nonparametric density estimation en_US
dc.subject.lcsh Coastal zone management en_US
dc.subject.lcsh Cyclones --Tropics en_US
dc.subject.lcsh Hazard mitigation en_US
dc.subject.lcsh Shore protection en_US
dc.subject.lcsh Stochastic analysis en_US
dc.subject.lcsh Markov processes en_US
dc.title Stochastic simulation of tropical cyclones for quantification of uncertainty associated with storm recurrence and intensity en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Civil Engineering en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
INCI_RamosSantiagoE_2019.pdf
Size:
5.4 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: