Publication:
Domains with ramified fractal boundaries and their effects on difussion in bronchial trees
Domains with ramified fractal boundaries and their effects on difussion in bronchial trees
dc.contributor.advisor | Vélez-Santiago, Alejandro | |
dc.contributor.author | Silva Perez, Kevin | |
dc.contributor.college | College of Arts and Sciences - Sciences | |
dc.contributor.committee | Ríos Soto, Karen R. | |
dc.contributor.committee | Vásquez Urbano, Pedro | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.representative | Harmsen, Eric W. | |
dc.date.accessioned | 2023-07-07T14:43:41Z | |
dc.date.available | 2023-07-07T14:43:41Z | |
dc.date.issued | 2023-07-04 | |
dc.description.abstract | We investigate a class of domains with ramified fractal boundaries, which are an idealization of the bronchial trees in R2. Following the [53] approach, we provide a construction for these domains (Ω) with Γ∞ fractal boundary, for a parameter a with 1/2 ≤ a ≤ a∗ ≃ 0.593465. In turn, we establish several properties for the sets Ω and Γ∞, and prove in particular that Ω is a 2-set, and that Γ∞ is a d-set for d := − log (2)/ log (a). Also, motivated by some method employed by Jia [4, 5], we construct approximating sequences {an} and {bn} for the Hausdorff measure H d(Γ∞) of the fractal boundary Γ∞, in the sense that a_n ≤ H^d(Γ∞) ≤ b_n and a_n ↗ H d(Γ∞) ↙ b_n. In this regard, a way to approximate the length of bronchial trees in the pulmonary system. Next, we examine the diffusion of oxygen through the bronchial trees by considering the realization of a generalized diffusion equation ∂u/∂t − A u + Bu = f (t, x) in (0, ∞) × Ω with mixed Dirichlet-Robin boundary conditions ∂u/∂νA+ βu = g(t, x) on (0, ∞) × Γ∞; u = 0 on (0, ∞) × (Γ \ Γ∞); u(0, x) = u_0 ∈ L2(Ω), where A is an uniformly elliptic second-order (non-symmetric) differential operator with bounded measurable coefficients, B is a lower-order differential operator with unbounded measurable coefficients, and μ := ∂u/∂νA stands as a generalized notion of a normal derivative on irregular surfaces. Furthermore, β ∈ L^s_μ(Γ∞)^+ with ess inf|β(x)| ≥ β0, for some β0 > 0, x ∈ Ω and s > 1. Thus, following [37], a description of the variational formulation is presented, which is used for the qualitative study of the diffusion equation: Existence and uniqueness of the solution in the weak sense. For the adaptations of the problem: elliptic (9.2) and parabolic (10.3), the obtained results are largely related to the Lax-Milgram theorem (5.1.4) and semigroup theory (section 5.3), respectively. | |
dc.description.abstract | En este trabajo estudiamos una clase de dominios con frontera fractal ramificada, que son una idealización de los árboles bronquiales en R2. Siguiendo el enfoque de [53], proporcionamos una construcción para estos dominios (Ω) con frontera fractal Γ∞, para un parámetro a con 1/2 ≤ a ≤ a∗ ≃ 0.593465. A su vez, establecemos varias propiedades para los conjuntos Ω y Γ∞, y probamos en particular que Ω es un 2-set, y que Γ∞ es d-set para d := − log (2)/ log (a). Además, motivados por un método empleado por Jia [4, 5], construimos un par de sucesiones {an} y {bn} para aproximar la medida de Hausdorff H d(Γ∞) de la frontera fractal Γ∞, tales que b_n ≤ H d(Γ∞) ≤ a_n y b_n ↗ H d(Γ∞) ↙ a_n. En este sentido, se establece una forma de aproximar la longitud de los árboles bronquiales en el sistema pulmonar. En segundo lugar, investigamos la difusión de oxígeno a través de los árboles bronquiales considerando la realización de una ecuación de difusión generalizada ∂u/∂t − A u + Bu = f (t, x) in (0, ∞) × Ω con condiciones de contorno mixtas de Dirichlet-Robin ∂u/∂ν_A+ βu = g(t, x) on (0, ∞) × Γ∞; u = 0 over (0, ∞) × (Γ \ Γ∞); u(0, x) = u_0 ∈ L2(Ω), donde A es un operador diferencial de segundo orden uniformemente elíptico (no-simétrico) con coeficientes medibles y acotados, B es un operador diferencial de orden inferior con coeficientes medibles no-acotados, y μ := ∂u/∂νA es una noción generalizada de derivada normal sobre superficies irregulares, además β ∈ L^{s}_μ(Γ∞)^+ con ess inf|β(x)| ≥ β0 para algún β0 > 0, x ∈ Ω y s > 1. De este modo, siguiendonos de [37], se presenta una descripción de la formulación variacional, la cual se utiliza para el estudio cualitativo de la ecuación de difusión: existencia y unicidad de la solución en el sentido débil. Para las adaptaciones del problema: elíptico (9.2) y parabólico (10.3), los resultados que se obtuvieron estan relacionados en gran medida por el teorema de Lax-Milgram (5.1.4) y la teoría de semigrupos (sección 5.3), respectivamente. | |
dc.description.graduationSemester | Summer | |
dc.description.graduationYear | 2023 | |
dc.description.sponsorship | Investigation subsidized with funds from Puerto Rico Science, Technology & Research Trust (agreement #: 2022-00014). | |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/3547 | |
dc.language.iso | en | |
dc.rights | Attribution-NonCommercial 4.0 International | * |
dc.rights.holder | (c) 2023 Kevin D. Silva Perez | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | W 1,p-extension domains | |
dc.subject | Upper d-Ahlfors measure | |
dc.subject | Diffusion equation | |
dc.subject | Ramified domains | |
dc.subject | Robin boundary conditions | |
dc.subject.lcsh | Fractal analysis | |
dc.subject.lcsh | Hausdorff measures | |
dc.subject.lcsh | Bronchi | |
dc.subject.lcsh | Reaction-diffusion equations - Numerical solutions | |
dc.title | Domains with ramified fractal boundaries and their effects on difussion in bronchial trees | |
dc.type | Thesis | |
dspace.entity.type | Publication | |
thesis.degree.discipline | Applied Mathematics | |
thesis.degree.level | M.S. |