Loading...
An integrative data-driven approach to identify molecular patterns in breast cancer patients
Narváez Bandera, Isis Y.
Narváez Bandera, Isis Y.
Citations
Altmetric:
Abstract
El cáncer de mama es una enfermedad heterogénea del genoma que necesita mejores diagnósticos y tratamientos a través de la caracterización de patrones genómicos e interacciones. Actualmente, su comprensión molecular es aún insuficiente incluso con los avances en las tecnologÃas genómicas. Por lo tanto, esta tesis presenta un enfoque de minerÃa de datos en varias etapas para discriminar los subtipos de cáncer de mama a través de la integración de datos altamente dimensionales de diferentes plataformas genómicas utilizando técnicas de selección y clasificación de caracterÃsticas. Esta metodologÃa nos permitió extraer patrones que desempeñan un papel crÃtico en la clasificación de los subtipos de cáncer de mama (es decir, la subexpresión de FOXA1 para basal). Además, esta tesis proporciona una nueva métrica capaz de evaluar y clasificar las interacciones entre las caracterÃsticas pertinentes utilizando un criterio de prevalencia y el clasificador Random Forest. Esta métrica identificó una lista de interacciones de variables importantes para discriminar subtipos. Entre las principales interacciones, encontramos un conjunto de genes correlacionados interactuando frecuentemente con FOXA1 o MLPH tales como CEP55 y UBET2.
El cáncer de mama es una enfermedad heterogénea del genoma que necesita mejores diagnósticos y tratamientos a través de la caracterización de patrones genómicos e interacciones. Actualmente, su comprensión molecular es aún insuficiente incluso con los avances en las tecnologÃas genómicas. Por lo tanto, esta tesis presenta un enfoque de minerÃa de datos en varias etapas para discriminar los subtipos de cáncer de mama a través de la integración de datos altamente dimensionales de diferentes plataformas genómicas utilizando técnicas de selección y clasificación de caracterÃsticas. Esta metodologÃa nos permitió extraer patrones que desempeñan un papel crÃtico en la clasificación de los subtipos de cáncer de mama (es decir, la subexpresión de FOXA1 para basal). Además, esta tesis proporciona una nueva métrica capaz de evaluar y clasificar las interacciones entre las caracterÃsticas pertinentes utilizando un criterio de prevalencia y el clasificador Random Forest. Esta métrica identificó una lista de interacciones de variables importantes para discriminar subtipos. Entre las principales interacciones, encontramos un conjunto de genes correlacionados interactuando frecuentemente con FOXA1 o MLPH tales como CEP55 y UBET2.
El cáncer de mama es una enfermedad heterogénea del genoma que necesita mejores diagnósticos y tratamientos a través de la caracterización de patrones genómicos e interacciones. Actualmente, su comprensión molecular es aún insuficiente incluso con los avances en las tecnologÃas genómicas. Por lo tanto, esta tesis presenta un enfoque de minerÃa de datos en varias etapas para discriminar los subtipos de cáncer de mama a través de la integración de datos altamente dimensionales de diferentes plataformas genómicas utilizando técnicas de selección y clasificación de caracterÃsticas. Esta metodologÃa nos permitió extraer patrones que desempeñan un papel crÃtico en la clasificación de los subtipos de cáncer de mama (es decir, la subexpresión de FOXA1 para basal). Además, esta tesis proporciona una nueva métrica capaz de evaluar y clasificar las interacciones entre las caracterÃsticas pertinentes utilizando un criterio de prevalencia y el clasificador Random Forest. Esta métrica identificó una lista de interacciones de variables importantes para discriminar subtipos. Entre las principales interacciones, encontramos un conjunto de genes correlacionados interactuando frecuentemente con FOXA1 o MLPH tales como CEP55 y UBET2.
Description
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Random Forest, Breast cancer, Genomic patterns