Publication:
Time constant anomaly detection of thermocouples using transient data

dc.contributor.advisor Just Agosto, Frederick A.
dc.contributor.author Orengo Rodríguez, José
dc.contributor.college College of Engineering en_US
dc.contributor.committee Serrano, David
dc.contributor.committee Jia, Yi
dc.contributor.department Department of Mechanical Engineering en_US
dc.contributor.representative Resto, Pedro
dc.date.accessioned 2018-06-06T16:40:09Z
dc.date.available 2018-06-06T16:40:09Z
dc.date.issued 2006
dc.description.abstract A specific methodology to detect anomalies in temperature sensors is developed in this thesis. The strategy evaluates sensor faults or variations in the transient region only by examining the signal produced by a thermocouple. The algorithm employed used a procedure in which several time derivatives are taken and filtering techniques must be present to ensure correct anomaly detection in the presence of noise. In order to test the procedure a neural network (NN) approach that uses the data processed by the algorithm was developed. The network developed was a Radial Basis probabilistic neural network (PNN). The algorithm distinguishes anomalous sensor behavior and classifies the cause of the behavior. In almost all of the trials the estimation of the NN technique proposed was less than one percent while the greatest error was less than five percent. en_US
dc.description.abstract Una metodología especifica para detectar anomalies en sensors de temperature esta desarollada en esta tesis. La estrategia es evaluar las fallas en los sensores o variación en la region transiente examinando la señal producida por un thermocouple. El algoritmo empleado utilizado en el procedimeinto se aplican derivadas y se emplea una técnica de filtrar la señal contaminada por ruido para detectar la falla o anomalia corectamente. Una red neural (NN) esta propuesta en este trabajo, para distinguir la conducta anómala en sensores de temperatura y que pueden ayudar con la clasificación de defectos se proponen. Los datos experimentales se utilizaron para entrenar la red neural propuesta. Para este caso se utilizo la estructura probabilistica Radial Basis. La literatura ofrece la evidencia substancial de técnicas o esquemas de detección y clasificación de data. La estructura de NN propuesta como sistema de detección y clasificación de daños provee un error de estimación menos del 5% de error. en_US
dc.description.graduationYear 2006 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/732
dc.language.iso en en_US
dc.rights.holder (c) 2006 José Orengo Rodríguez en_US
dc.rights.license All rights reserved en_US
dc.subject thermocouples en_US
dc.subject.lcsh Thermocouples en_US
dc.title Time constant anomaly detection of thermocouples using transient data en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Mechanical Engineering en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
INME_OrengoRodriguezJ_2006.pdf
Size:
801.32 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: