Publication:
Relación amiga, grafos y generalización

dc.contributor.advisor Ortiz Albino, Reyes M.
dc.contributor.author Jiménez Franco, Julián Andrés
dc.contributor.college College of Arts and Sciences - Sciences en_US
dc.contributor.committee Cáceres Duque, Luis F.
dc.contributor.committee Colón Reyes, Omar
dc.contributor.department Department of Mathematics en_US
dc.contributor.representative Rodríguez Román, Daniel
dc.date.accessioned 2022-07-11T12:22:55Z
dc.date.available 2022-07-11T12:22:55Z
dc.date.issued 2022-07-07
dc.description.abstract Anderson y Frazier en 2006 definieron el concepto de factorizaciones generalizadas sobre dominios enteros. Para esto, los autores restringieron la operación multiplicativa de manera que solo permiten multiplicar los elementos que estén relacionados con respecto a una relación simétrica Ƭ. Esto abre puertas a estudiar la teoría de factorizaciones sobre dominios y temas similares desde muchos puntos de vista. Este trabajo considera otra relación de equivalencia sobre Z^#=Z-{0,1,-1} llamada relación amiga. La relación amiga fue definida en la XXIII Olimpiada Colombiana de Matemática y se denota por R_2= { (x,y) ∈ Z^# | √xy ∈ Z}. Es decir, (x,y) ∈ R_2, si y solo si √xy ∈ Z. Se estudian algunos conceptos de Anderson y Frazier aplicados a la relaci\'on amiga. Entre ellos Ƭ-factorización, elemento Ƭ-irreducible, Ƭ-factorizaciones en Ƭ-irreducibles y el grafo de Ƭ-factores Ƭ-irreducibles. Además, se presenta la relación R_{m/n} como una generalización de R_2. en_US
dc.description.abstract Anderson and Frazier in 2006 defined the concept of generalized factorizations on integral domains. For this, the authors restricted the multiplicative operation so that they only allow multiplying the elements that are related to a symmetric relation. This opens doors to re-study the theory of factorizations on domains and similar topics from many points of view. This paper considers another equivalence relation over Z<sup>#</sup> = Z−{0,±1} called friend relationship. The friendly relationship was defined at the XXIII Colombian Mathematical Olympiad and is denoted by R<sub>2</sub> = {(x, y) 2 Z<sup>#</sup> Å~ Z<sup>#</sup> | p xy 2 Z}. That is, (x, y) 2 R2, if and only if p xy 2 Z. Some concepts of Anderson and Frazier applied to the friendly relationship are studied. Among them -factorization, element -irreducible, -factorizations in -irreducible and the graph of -factors -irreducible. In addition, the relationship Rm n is presented as a generalization of R<sub>2</sub>. en_US
dc.description.graduationSemester Summer en_US
dc.description.graduationYear 2022 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2925
dc.language.iso es en_US
dc.rights.holder (c) 2022 Julián Andrés Jiménez Franco en_US
dc.subject Relación amiga en_US
dc.subject Grafos en_US
dc.subject Factorizaciones generalizadas en_US
dc.subject.lcsh Factorization (Mathematics) en_US
dc.subject.lcsh Anderson, Daniel D., 1948- en_US
dc.subject.lcsh Integral domains en_US
dc.subject.lcsh Algebra, Abstract en_US
dc.title Relación amiga, grafos y generalización en_US
dc.title.alternative Friend relationship, graphs and generalization en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Pure Mathematics en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MATM_JiménezFrancoJA_2022.pdf
Size:
519.73 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.26 KB
Format:
Item-specific license agreed upon to submission
Description: