Publication:
The elliptic anisotropic problem with Wentzell boundary conditions and variable exponents

dc.contributor.advisor Vélez-Santiago, Alejandro
dc.contributor.author Díaz Martínez, Víctor Manuel
dc.contributor.college College of Arts and Sciences - Sciences en_US
dc.contributor.committee Rozga, Krzysztof
dc.contributor.committee Vásquez Urbano, Pedro
dc.contributor.department Department of Mathematics en_US
dc.contributor.representative Amador-Dumois, María
dc.date.accessioned 2020-03-05T12:33:20Z
dc.date.available 2020-03-05T12:33:20Z
dc.date.issued 2019-12-10
dc.description.abstract Let $\Omega\subseteq\mathbb{R\!}^N$ be a bounded Lipschitz domain, for $N\geq3$. We investigate the solvability and regularity of a class of quasi-linear elliptic equations involving the anisotropic $\overset{\rightarrow}p(\cdot)$-Laplace operator $\Delta_{\overset{\rightarrow}p(\cdot)}$ with nonhomogeneous anisotropic Wentzell boundary conditions $$ \displaystyle\sum^N_{i=1} \left|\frac{\partial u}{\partial x_i}\right|^{p_i(\cdot)-2}\displaystyle\frac{\partial u}{\partial x_i}\nu_i- \Delta_{_{\overset{\rightarrow}q(\cdot),\Gamma}}u+ \beta|u|^{q_M(\cdot)-2}u\,=\,g\,\,\,\,\,\textrm{on}\,\,\,\Gamma:=\partial\Omega, $$ for $\beta\in L^{\infty}(\Gamma)^+$ with a positive essential lower bound, where $\Delta_{_{\overset{\rightarrow}q(\cdot),\Gamma}}$ denotes the anisotropic $\overset{\rightarrow}q(\cdot)$-Laplace-Beltrami operator, and $q_M(x)=\max\{q_1(x), \ldots,q_{N-1}(x)\}$. Under minimal conditions, we establish existence and uniqueness of weak solutions for the elliptic problem, and moreover, we prove that such solutions are globally bounded over $\overline{\Omega}$. Inverse positivity and comparison results are also obtained. At the end, we establish a nonlinear Fredholm alternative for the anisotropic Wentzell problem. en_US
dc.description.graduationSemester Spring en_US
dc.description.graduationYear 2020 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2576
dc.language.iso en en_US
dc.rights.holder (c) 2019 Víctor Manuel Díaz Martínez en_US
dc.subject Anisotropic problems with variable exponents en_US
dc.subject Wentzell boundary conditions en_US
dc.subject Weak solutions en_US
dc.subject A priori estimates en_US
dc.subject.lcsh Differential equations, Elliptic en_US
dc.subject.lcsh Differential operators en_US
dc.subject.lcsh Boundary value problems en_US
dc.subject.lcsh Laplace operator en_US
dc.subject.lcsh Fredholm operator en_US
dc.subject.lcsh Variables (Mathematics) en_US
dc.title The elliptic anisotropic problem with Wentzell boundary conditions and variable exponents en_US
dc.title.alternative El problema elíptico anisotrópico con exponentes variable con condiciones de frontera de Wentzell en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Applied Mathematics en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MATE_MartinezDiazV_2019.pdf
Size:
756.83 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: