Publication:
The elliptic anisotropic problem with Wentzell boundary conditions and variable exponents
The elliptic anisotropic problem with Wentzell boundary conditions and variable exponents
dc.contributor.advisor | Vélez-Santiago, Alejandro | |
dc.contributor.author | Díaz Martínez, Víctor Manuel | |
dc.contributor.college | College of Arts and Sciences - Sciences | en_US |
dc.contributor.committee | Rozga, Krzysztof | |
dc.contributor.committee | Vásquez Urbano, Pedro | |
dc.contributor.department | Department of Mathematics | en_US |
dc.contributor.representative | Amador-Dumois, María | |
dc.date.accessioned | 2020-03-05T12:33:20Z | |
dc.date.available | 2020-03-05T12:33:20Z | |
dc.date.issued | 2019-12-10 | |
dc.description.abstract | Let $\Omega\subseteq\mathbb{R\!}^N$ be a bounded Lipschitz domain, for $N\geq3$. We investigate the solvability and regularity of a class of quasi-linear elliptic equations involving the anisotropic $\overset{\rightarrow}p(\cdot)$-Laplace operator $\Delta_{\overset{\rightarrow}p(\cdot)}$ with nonhomogeneous anisotropic Wentzell boundary conditions $$ \displaystyle\sum^N_{i=1} \left|\frac{\partial u}{\partial x_i}\right|^{p_i(\cdot)-2}\displaystyle\frac{\partial u}{\partial x_i}\nu_i- \Delta_{_{\overset{\rightarrow}q(\cdot),\Gamma}}u+ \beta|u|^{q_M(\cdot)-2}u\,=\,g\,\,\,\,\,\textrm{on}\,\,\,\Gamma:=\partial\Omega, $$ for $\beta\in L^{\infty}(\Gamma)^+$ with a positive essential lower bound, where $\Delta_{_{\overset{\rightarrow}q(\cdot),\Gamma}}$ denotes the anisotropic $\overset{\rightarrow}q(\cdot)$-Laplace-Beltrami operator, and $q_M(x)=\max\{q_1(x), \ldots,q_{N-1}(x)\}$. Under minimal conditions, we establish existence and uniqueness of weak solutions for the elliptic problem, and moreover, we prove that such solutions are globally bounded over $\overline{\Omega}$. Inverse positivity and comparison results are also obtained. At the end, we establish a nonlinear Fredholm alternative for the anisotropic Wentzell problem. | en_US |
dc.description.graduationSemester | Spring | en_US |
dc.description.graduationYear | 2020 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/2576 | |
dc.language.iso | en | en_US |
dc.rights.holder | (c) 2019 Víctor Manuel Díaz Martínez | en_US |
dc.subject | Anisotropic problems with variable exponents | en_US |
dc.subject | Wentzell boundary conditions | en_US |
dc.subject | Weak solutions | en_US |
dc.subject | A priori estimates | en_US |
dc.subject.lcsh | Differential equations, Elliptic | en_US |
dc.subject.lcsh | Differential operators | en_US |
dc.subject.lcsh | Boundary value problems | en_US |
dc.subject.lcsh | Laplace operator | en_US |
dc.subject.lcsh | Fredholm operator | en_US |
dc.subject.lcsh | Variables (Mathematics) | en_US |
dc.title | The elliptic anisotropic problem with Wentzell boundary conditions and variable exponents | en_US |
dc.title.alternative | El problema elíptico anisotrópico con exponentes variable con condiciones de frontera de Wentzell | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Applied Mathematics | en_US |
thesis.degree.level | M.S. | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- MATE_MartinezDiazV_2019.pdf
- Size:
- 756.83 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.88 KB
- Format:
- Item-specific license agreed upon to submission
- Description: