Publication:
Autonomous control for interconnected DC microgrids

dc.contributor.advisor Aponte, Erick E.
dc.contributor.author Gonzalez-Candelario, Carlos O.
dc.contributor.college College of Engineering en_US
dc.contributor.committee Andrade-Rengifo, Fabio
dc.contributor.committee Darbali, Rachid
dc.contributor.department Department of Electrical and Computer Engineering en_US
dc.contributor.representative Rios, Karen
dc.date.accessioned 2021-12-17T18:39:55Z
dc.date.available 2021-12-17T18:39:55Z
dc.date.issued 2021-12-09
dc.description.abstract The energy industry is experiencing a radical change, as customers are demanding for a more reliable service at the lowest possible cost. Distributed Energy Resources and Microgrids are one of the alternatives being used to achieve such goal. Commonly, DC Microgrids are controlled with high bandwidth communications, but an autonomous strategy can serve as its contingency plan. Frequently, these DC Microgrids are controlled using the droop control method, seeking low voltage regulation and proportional load sharing. Its control becomes more complex when having interconnected DC Microgrids as multiple energy resources are coordinated as well as the power exchange among the participating assets. In this thesis, simulation, mathematical, and experimental models were developed to examine an autonomous control strategy between two interconnected DC Microgrids, based on matching the interconnecting and internal bus voltages. The system under study is examined on three scenarios: standalone operation of each DC Microgrid, excess generation, and generation deficit in one DC Microgrid. Results were obtained and compared using the Sandia National Laboratories Secure Scalable Microgrid Simulink library, MATLAB models, and the Power Hardware-in-the-Loop experimental configuration developed at the UPRM Sustainability Energy Center Laboratory. en_US
dc.description.abstract El sector de la industria energética está experimentando un cambio significativo, dado la alta demanda por un servicio más confiable y a menor costo. Recursos de Energía Distribuida y Microrredes son una de las alternativas que se están utilizando para alcanzar dicho objetivo. Comúnmente, microrredes DC son controladas con comunicación de gran ancho de banda, pero una estrategia autónoma pudiera servir como contingencia. Por otro lado, el método de control más común para estas microrredes es el “droop control”, el cual persigue tener buena regulación de voltaje y una repartición de carga proporcional. Su control se vuelve más complejo cuando se tienen microrredes interconectadas, dado que múltiples recursos de energía y las transferencias de potencias deben ser coordinadas. En esta tesis se desarrollaron modelos matemáticos, de simulación y experimentales para examinar una estrategia de control autónoma entre las microrredes DC interconectadas, basado en el principio de igualar los voltajes de barras. El sistema de estudio se examinó en tres escenarios principales: operación independiente de las microrredes DC, exceso de generación, y déficit de generación. Los resultados fueron obtenidos y comparados utilizando la librería en Simulink llamada “Sandia National Laboratories Secure Scalable Microgrid”; modelos en MATLAB; y la configuración experimental “Power Hardware-in-the-Loop” desarrollado en el laboratorio “UPRM Sustainability Energy Center Laboratory”. en_US
dc.description.graduationSemester Fall en_US
dc.description.graduationYear 2021 en_US
dc.description.sponsorship Investigation subsidized with funds from SANDIA National Laboratories (PO 2005885). en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2845
dc.language.iso en en_US
dc.rights CC0 1.0 Universal *
dc.rights.holder (c) 2021 Carlos O. Gonzalez-Candelario en_US
dc.rights.uri http://creativecommons.org/publicdomain/zero/1.0/ *
dc.subject Microgrids en_US
dc.subject Electrical engineering en_US
dc.subject Control systems en_US
dc.subject Energy en_US
dc.subject Power Hardware in the Loop en_US
dc.subject.lcsh Microgrids (Smart power grids) -- Mathematical models en_US
dc.subject.lcsh Microgrids (Smart power grids) -- Simulation methods en_US
dc.subject.lcsh Microgrids (Smart power grids) -- Automatic control en_US
dc.subject.lcsh Energy industries en_US
dc.subject.lcsh Electric power production en_US
dc.title Autonomous control for interconnected DC microgrids en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Electrical Engineering en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
INEL_GonzalezCandelarioC_2021.pdf
Size:
10.42 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.26 KB
Format:
Item-specific license agreed upon to submission
Description: