Publication:
Conversion of biomass derived feedstocks to platform molecules using bifunctional mesostructured silica based catalysts

dc.contributor.advisor Cardona Martínez, Nelson
dc.contributor.author Reyes Luyanda, Damian
dc.contributor.college College of Engineering en_US
dc.contributor.committee Hernández Maldonado, Arturo
dc.contributor.committee Martínez Iñesta, María
dc.contributor.committee López Garriga, Juan
dc.contributor.committee Acevedo Rullan, Aldo
dc.contributor.department Department of Chemical Engineering en_US
dc.contributor.representative Morell, Julio
dc.date.accessioned 2019-03-29T20:15:50Z
dc.date.available 2019-03-29T20:15:50Z
dc.date.issued 2018-05
dc.description.abstract The combination of Brønsted acidity with metallic functionality in a mesoporous catalyst offers a potential pathway for the conversion of cellulose into sugar alcohols that may be used as a sustainable source of renewable biorefinery feedstock. Supported Ru catalysts were prepared by evaporative deposition on various ordered mesoporous silicas (SBA-15) with different functionalities and characterized using multiple experimental techniques. We studied the effects of functional group loading, reaction time and temperature on the activity and products yield of the bifunctional catalysts by monitoring the cellulose conversion and the production of sugars and sugar alcohols in a high-pressure batch reactor. The activity of mesoporous silica catalysts increases with an increase in acid loading and the addition of Ru allows control of the selectivity towards sugar alcohols. Ruthenium supported on arenesulfonic acid functionalized mesoporous silica (Ru/SBA-15S) displays the best catalytic performance. Ru/SBA-15S is more hydrothermally stable than SBA-15 but loses a significant fraction of its surface area, crystallinity, acidity, and activity after prolonged exposure to water at 483 K. We further investigated whether SBA-15 can be more stable by grafting Niobia by sol-gel. Our studies showed that grafting SBA-15 using sol-gel makes SBA-15 more stable by recovering SBA-15 surface to avoid SiO2 hydrolysis at elevated temperature and pressure. At the same time, the tendency of amorphous commercial niobium oxide to crystallize in hot water was reduced. Catalytic performance was verified by the bifunctional catalyzed hydrogenation of GVL into Valeric acid using a PFR reactor system. en_US
dc.description.abstract La combinación de acidez de Brønsted con una funcionalidad metálica en un catalizador mesoporoso ofrece una vía potencial para la conversión de celulosa a polioles que pueden utilizarse como fuente sostenible de materia prima de una biorefinería renovable. Se prepararon catalizadores de Ru sobre sílice mesoporosa ordenada (SBA-15) con diferente funcionalidad y se caracterizaron usando múltiples técnicas experimentales. Estudiamos los efectos de la cantidad del grupo funcional, el tiempo de reacción y la temperatura sobre la actividad y el rendimiento de los productos utilizando catalizadores bifuncionales monitoreando la conversión de celulosa y la producción de azúcares y polioles en un reactor por tanda de alta presión. La actividad de los catalizadores a base de sílice aumenta con un aumento de la acidez, y el Ru permite el control de la selectividad hacia los polioles. El rutenio en la sílice mesoporosa funcionalizada con ácido arenosulfónico (Ru/SBA-15S) muestra el mejor rendimiento catalítico. Ru/SBA-15S es más estable hidrotérmicamente que SBA-15, pero pierde una fracción significativa de su área superficial, cristalinidad, acidez y actividad después de una exposición prolongada a agua a 483 K. Investigamos además si SBA-15 puede ser más estable al incorporar oxido de niobio por el método de sol-gel. Nuestros estudios mostraron que el recubrimiento de SBA-15 con oxido de niobio por sol-gel, causa que SBA-15 sea más estable al evitar la hidrólisis de SiO2 expuesto a alta temperatura y presión. Al mismo tiempo, se redujo la tendencia del oxido de niobio comercial amorfo a cristalizar en agua caliente. El rendimiento catalítico se verificó mediante la hidrogenación bifuncional catalizada de GVL ácido valérico usando un sistema de reactor PFR. en_US
dc.description.graduationSemester Spring en_US
dc.description.graduationYear 2018 en_US
dc.description.sponsorship National Science Foundation (NSF) Partnership for Research and Education in Materials (PREM) Award DMR-0934115 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/1906
dc.language.iso en en_US
dc.rights.holder (c) 2018 Damian Reyes Luyanda en_US
dc.rights.license All rights reserved en_US
dc.subject Biomass conversion - Silica-alumina catalysts en_US
dc.subject Cellulose conversion - Sugar alcohols en_US
dc.subject Sugar alcohols as renewable biorefinery feedstock en_US
dc.subject.lcsh Ruthenium catalysts en_US
dc.subject.lcsh Cellulose en_US
dc.subject.lcsh Hydrogenation en_US
dc.subject.lcsh Sorbitol en_US
dc.subject.lcsh Niobium en_US
dc.title Conversion of biomass derived feedstocks to platform molecules using bifunctional mesostructured silica based catalysts en_US
dc.type Dissertation en_US
dspace.entity.type Publication
thesis.degree.discipline Chemical Engineering en_US
thesis.degree.level Ph.D. en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
INQU_ReyesLuyandaD_2018.pdf
Size:
10.28 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: