Synthesis and characterization of multi-ionic polymers with sulfonated units and blends for improved protective capabilities and energy efficient devices

dc.contributor.advisor Suleiman Rosado, David Ramos Rivera, Gilberto College of Engineering
dc.contributor.committee Bogere, Moses N.
dc.contributor.committee Mina Camilde, Nairmen
dc.contributor.committee Saliceti Piazza, Lorenzo
dc.contributor.department Department of Chemical Engineering
dc.contributor.representative Valentin Rullan, Ricky 2023-05-19T18:10:06Z 2023-05-19T18:10:06Z 2023-05-11
dc.description.abstract Preparation and characterization of polymers with diverse ionic domains for use in methanol fuel cells and protective clothing against chemical agents was accomplished in this study. The techniques used to synthesize polymeric materials were condensation polymerization and radical polymerization, controlled by the transfer of atoms. The structures obtained by the methods used resulted in random polymers with ketone and sulfone units, copolymers with hydrophobic and hydrophilic blocks, and three-block copolymers combining amines, methacrylate, and polystyrene. Additionally, two chapters study the role of polymer mixtures in improving proton transport properties and water permeability across membranes. Characterizations for the materials studied included thermal stability, oxidative, proton conduction capacity, methanol permeability, breathability, and selectivity. These were carried out to understand how the structural variations caused by their ionic diversity affected the critical properties of the membranes used and how these could be optimized in future work. Among the major findings of this work was that the ion exchange capacity does not represent a crucial limitation for proton conduction if the polymer contains several ionic domains that interact effectively. Increasing the sulfonation of a polymer is not necessarily the way to improve proton conduction, but the right combination of ionic domains is. Another important contribution of this work is using the synthesis process before sulfonation. This process obtained a controlled and reproducible sulfonation in random polymer synthesis. This study showed that more conductive polymer membranes could be achieved for random sulfone polymers than for random ketone polymers. Finally, the role of polymeric mixtures was an important factor in improving the mechanical properties and transport of water through membranes because it provides more opportunities for interaction between hydrophilic groups.
dc.description.abstract Este trabajo tuvo como objetivo la preparación y caracterización de polímeros con diversidad de dominios iónicos para su empleo en celdas de combustible de metanol y ropa protectora contra agentes químicos. Las técnicas empleadas para la síntesis de los materiales poliméricos fueron la polimerización por condensación y la polimerización radicálica controlada por la transferencia de átomos. Las estructuras obtenidas por los métodos empleados resultaron en polímeros aleatorios con unidades de cetona y sulfona, copolímeros con bloques hidrofóbicos e hidrofílicos y copolímeros de tres bloques combinando aminas, metacrilatos y poliestireno. Entre los resultados destacables de este trabajo se encontró que la capacidad de intercambio iónico no representa una limitación crucial para la conducción de protones, si el polímero contiene varios dominios iónicos que interactúan eficazmente entre ellos. Aumentar la sulfonación de un polímero no es necesariamente el camino para obtener una conducción de protones mejorada, pero la combinación correcta de dominios iónicos sí lo es. Otra contribución importante de este trabajo es el empleo del proceso de síntesis previo a la sulfonación. Este proceso obtuvo una sulfonación controlada y reproducible en síntesis aleatoria de polímeros. Este estudio mostró que se podrían lograr más membranas poliméricas conductoras para los polímeros de sulfona aleatorios que para los polímeros de cetonas aleatorios. Finalmente, el rol de las mezclas poliméricas resulto ser un factor importante para mejorar las propiedades mecánicas y el transporte de agua a través de las membranas, debido a que provee más oportunidades de interacción entre grupos hidrofílicos.
dc.description.graduationSemester Spring
dc.description.graduationYear 2023
dc.description.sponsorship U.S. Army Research Laboratory and the US Army Research Office under contract/grant number W911NF1910093; Nanotechnology Center for Biomedical, Environmental, and Sustainability Applications – Phase II (CREST) and the Center for the Advancement of Wearable Technology (CAWT) for the scholarship funding
dc.language.iso en
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International *
dc.rights.holder (c) 2023 Gilberto Ramos Rivera
dc.rights.uri *
dc.subject Polymers
dc.subject Direct Methanol Fuel Cells
dc.subject Chemical Protective Clothing
dc.subject.lcsh Direct methanol fuel cells
dc.subject.lcsh Polymerization
dc.subject.lcsh Proton exchange membrane fuel cells
dc.subject.lcsh Water-soluble polymers
dc.subject.lcsh Sulfonates
dc.title Synthesis and characterization of multi-ionic polymers with sulfonated units and blends for improved protective capabilities and energy efficient devices
dc.type Dissertation
dspace.entity.type Publication Chemical Engineering Ph.D.