Publication:
Cold gas spraying copper metal on AlN ceramic as an alternative to thick DBC substrates
Cold gas spraying copper metal on AlN ceramic as an alternative to thick DBC substrates
dc.contributor.advisor | Quintero, Pedro | |
dc.contributor.author | Guerrero Fernández, Margie R. | |
dc.contributor.college | College of Engineering | |
dc.contributor.committee | Suárez, Oscar M. | |
dc.contributor.committee | Resto, Pedro | |
dc.contributor.committee | Colón, Brandon | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.representative | Isaza, Clara | |
dc.date.accessioned | 2024-12-18T18:13:15Z | |
dc.date.available | 2024-12-18T18:13:15Z | |
dc.date.issued | 2024-12-16 | |
dc.description.abstract | This dissertation investigates the use of Cold Gas Spraying (CGS) to deposit copper onto aluminum nitride (AlN) substrates as a viable alternative to thick Direct Bond Copper (DBC) substrates in power electronics packaging. The research begins by functionalizing the AlN surface through potassium hydroxide (KOH) etching, significantly increasing surface roughness and area, which enhanced the adhesion properties critical for effective CGS copper deposition. Key CGS parameters such as temperature, pressure, nozzle standoff distance, travel speed, substrate roughness, and deposition angle were systematically studied to optimize the copper coating quality. The deposition angle, in particular, emerged as a critical factor, with a 60-degree angle yielding the smoothest coating. A uniform 300 µm thick copper layer, comparable to that of commercial DBC substrates, was successfully achieved. The bonding mechanisms between copper and AlN were found to involve mechanical interlocking, plastic deformation, dynamic recrystallization, and grain refinement driven by temperature increases during particle impact, with the copper particle temperature reaching up to 693 K. These mechanisms contributed to strong interfacial bonding and minimal coating defects. Overall, this study demonstrates that CGS offers a promising alternative to conventional DBC substrates, providing high bond strength, excellent thermal stability, and defect-free coatings. The findings provide valuable insights into metal-ceramic bonding in CGS and establish a foundation for future research to further refine this technique for industrial applications in high-voltage and power electronics | |
dc.description.abstract | Esta disertación investiga el uso de la técnica de Cold Gas Spraying (CGS) para depositar cobre sobre sustratos de nitruro de aluminio (AlN) como una alternativa viable a los sustratos de Direct Bond Copper (DBC) en el embalaje de electrónica de potencia. La investigación comienza funcionalizando la superficie del AlN mediante ataque químico con hidróxido de potasio (KOH), lo que incrementa significativamente la rugosidad y el área de la superficie, mejorando las propiedades de adhesión, cruciales para una deposición efectiva de cobre mediante CGS. Se estudiaron sistemáticamente parámetros clave del CGS, como temperatura, presión, distancia de separación de la boquilla, velocidad de desplazamiento, rugosidad del sustrato y ángulo de deposición, para optimizar la calidad del recubrimiento de cobre. El ángulo de deposición, en particular, se destacó como un factor crítico, logrando un recubrimiento más uniforme a 60 grados. Se consiguió un recubrimiento uniforme de cobre de 300 µm de grosor, comparable al de los sustratos comerciales de DBC. Se encontró que los mecanismos de unión entre el cobre y el AlN incluyen el enclavamiento mecánico, la deformación plástica, la recristalización dinámica y el refinamiento de grano impulsado por el aumento de temperatura durante el impacto de las partículas, alcanzando una temperatura de hasta 693 K. Estos mecanismos contribuyeron a una fuerte unión interfacial y a la mínima presencia de defectos en el recubrimiento. En resumen, este estudio demuestra que el CGS ofrece una alternativa prometedora a los sustratos convencionales de DBC, proporcionando alta resistencia de unión, excelente estabilidad térmica y recubrimientos libres de defectos. Los hallazgos aportan conocimientos valiosos sobre la unión metalcerámica en el proceso CGS y establecen una base para futuras investigaciones orientadas a refinar esta técnica para aplicaciones industriales en electrónica de potencia y alto voltaje. | |
dc.description.graduationSemester | Fall | |
dc.description.graduationYear | 2024 | |
dc.description.sponsorship | This research was supported by a collaborative agreement between the U.S. Army Research Laboratory and the University of Puerto Rico – Mayagüez under contract W911NF-16-2-0063. | |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/3974 | |
dc.language.iso | en | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.holder | (c) 2024 Margie R. Guerrero Fernández | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | Cold gas spray | |
dc.subject | Particle impact | |
dc.subject | Deposition mechanism | |
dc.subject | Mechanical interlocking | |
dc.subject | Recrystallization | |
dc.subject.lcsh | Cold gases | |
dc.subject.lcsh | Ceramic metals | |
dc.subject.lcsh | Aluminum nitrate | |
dc.subject.lcsh | Electronic packaging | |
dc.title | Cold gas spraying copper metal on AlN ceramic as an alternative to thick DBC substrates | |
dc.type | Dissertation | |
dspace.entity.type | Publication | |
thesis.degree.discipline | Mechanical Engineering | |
thesis.degree.level | Ph.D. |