Publication:
Regularidad global para un problema quasi-lineal sobre regiones irregulares
Regularidad global para un problema quasi-lineal sobre regiones irregulares
No Thumbnail Available
Authors
Gonzalez Pugliese, Rafael Eduardo
Embargoed Until
Advisor
Rios Soto, Karen
College
College of Arts and Sciences - Sciences
Department
Department of Mathematics
Degree Level
M.S.
Publisher
Date
2024-05-14
Abstract
En este trabajo investigamos la existencia, unicidad, estimaciones a priori
y continuidad global para un problema eliptico generalizado con condiciones de
frontera tipo Neumann o Robin. Ademas, los coeficientes de orden inferior en general
no estan acotados. En condiciones minimas, mostramos que el problema admite una
solucion debil Holder continua globalmente
Let Ω ⊆ RN a W1,P - extension bounded domain and ∂Ω a d-set. In this work, we investigate the existence, uniqueness, a priori estimates, and global regularity of a generalized elliptic problem with boundary conditions of Neumann or Robin type, Furthermore, the lower-order measurable coefficients are in general unbounded. Under minimal conditions, we show that problem admits a globally H¨older continuous weak solution.
Let Ω ⊆ RN a W1,P - extension bounded domain and ∂Ω a d-set. In this work, we investigate the existence, uniqueness, a priori estimates, and global regularity of a generalized elliptic problem with boundary conditions of Neumann or Robin type, Furthermore, the lower-order measurable coefficients are in general unbounded. Under minimal conditions, we show that problem admits a globally H¨older continuous weak solution.
Keywords
d-conjunto,
dominio de extension,
Regularidad global,
problema eliptico,
coeficientes no acotados
dominio de extension,
Regularidad global,
problema eliptico,
coeficientes no acotados
Usage Rights
Persistent URL
Cite
Gonzalez Pugliese, R. E. (2024). Regularidad global para un problema quasi-lineal sobre regiones irregulares [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/3719