Publication:
Finding similar tweets within health related topics
Finding similar tweets within health related topics
dc.contributor.advisor | Rodríguez-Martínez, Manuel | |
dc.contributor.author | Villanueva Vega, Danny Gilberto | |
dc.contributor.college | College of Engineering | en_US |
dc.contributor.committee | Rivera-Gallego, Wilson | |
dc.contributor.committee | Rivera-Vega, Pedro I. | |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.contributor.representative | Cruzado-Vélez, Ivette | |
dc.date.accessioned | 2020-01-27T19:33:49Z | |
dc.date.available | 2020-01-27T19:33:49Z | |
dc.date.issued | 2019-07-10 | |
dc.description.abstract | Social networks have become a very important means to facilitate the creation and sharing of information, ideas, news, and opinions on many topics. They also provide real-time information on sales, marketing, politics, natural disasters, and crisis situations, among others. These networks include Facebook, Twitter, WhatsApp, and Instagram, to name a few. In this work, we shall focus our efforts on the Twitter social network. This network provides a mechanism for people to express their views using short messages (i.e., 280 characters) called tweets. In this project, we investigate and implement text similarity neural network models in such a way that we can: 1) know if they are related or not with a disease, 2) group similar tweets to those that we have already captured, analyzed or stored, and 3) find similarity index between tweets using different learning algorithms. We based our work on, semantic similarity approaches and text similarity measures using Deep Learning algorithms to deliver reliable information about health-related topics. | en_US |
dc.description.abstract | Las redes sociales se han convertido en un medio muy importante para crear y compartir información, ideas, noticias y opiniones sobre muchos temas. Estas también proporcionan información en tiempo real sobre ventas, mercadotecnia, política, desastres naturales y situaciones de crisis, entre otros. Estas redes incluyen Facebook, Twitter, WhatsApp e Instagram, por nombrar algunas. En este trabajo, centraremos nuestros esfuerzos en la red social Twitter. Esta red proporciona un mecanismo para que las personas expresen sus puntos de vista mediante mensajes cortos (no más de 280 caracteres) llamados tweets. En este proyecto, investigamos e implementamos modelos de redes neuronales de similitud de texto de manera que podamos: 1) saber si están relacionados o no con una enfermedad, 2) agrupar tweets similares a los que ya hemos capturado, analizado o almacenado y 3) encontrar el índice de similitud entre los tweets que utilizan diferentes algoritmos de aprendizaje. Basamos nuestro trabajo en los enfoques de similitud semántica y las medidas de similitud de texto utilizando algoritmos de “Deep Learning” para proporcionar información confiable sobre temas relacionados a la salud. | en_US |
dc.description.graduationSemester | Summer | en_US |
dc.description.graduationYear | 2019 | en_US |
dc.description.sponsorship | This research is supported by the United States (US) National Library of Medicine of the National Institutes of Health (NIH) under award number R15LM012275 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/2536 | |
dc.language.iso | en | en_US |
dc.rights.holder | (c) 2019 Danny Gilberto Villanueva Vega | en_US |
dc.subject | Text similarity | en_US |
dc.subject | Deep learning algorithms | en_US |
dc.subject | Health related topics | en_US |
dc.subject | Semantic similarity | en_US |
dc.subject | Social networks | en_US |
dc.subject.lcsh | Neural networks (Computer science) | en_US |
dc.subject.lcsh | Artificial intelligence | en_US |
dc.subject.lcsh | Algorithms | en_US |
dc.subject.lcsh | Machine learning | en_US |
dc.subject.lcsh | Social networks | en_US |
dc.title | Finding similar tweets within health related topics | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Computer Engineering | en_US |
thesis.degree.level | M.S. | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ICOM_VillanuevaVegaD_2019.pdf
- Size:
- 1.27 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: