Publication:
Finding similar tweets within health related topics

dc.contributor.advisor Rodríguez-Martínez, Manuel
dc.contributor.author Villanueva Vega, Danny Gilberto
dc.contributor.college College of Engineering en_US
dc.contributor.committee Rivera-Gallego, Wilson
dc.contributor.committee Rivera-Vega, Pedro I.
dc.contributor.department Department of Electrical and Computer Engineering en_US
dc.contributor.representative Cruzado-Vélez, Ivette
dc.date.accessioned 2020-01-27T19:33:49Z
dc.date.available 2020-01-27T19:33:49Z
dc.date.issued 2019-07-10
dc.description.abstract Social networks have become a very important means to facilitate the creation and sharing of information, ideas, news, and opinions on many topics. They also provide real-time information on sales, marketing, politics, natural disasters, and crisis situations, among others. These networks include Facebook, Twitter, WhatsApp, and Instagram, to name a few. In this work, we shall focus our efforts on the Twitter social network. This network provides a mechanism for people to express their views using short messages (i.e., 280 characters) called tweets. In this project, we investigate and implement text similarity neural network models in such a way that we can: 1) know if they are related or not with a disease, 2) group similar tweets to those that we have already captured, analyzed or stored, and 3) find similarity index between tweets using different learning algorithms. We based our work on, semantic similarity approaches and text similarity measures using Deep Learning algorithms to deliver reliable information about health-related topics. en_US
dc.description.abstract Las redes sociales se han convertido en un medio muy importante para crear y compartir información, ideas, noticias y opiniones sobre muchos temas. Estas también proporcionan información en tiempo real sobre ventas, mercadotecnia, política, desastres naturales y situaciones de crisis, entre otros. Estas redes incluyen Facebook, Twitter, WhatsApp e Instagram, por nombrar algunas. En este trabajo, centraremos nuestros esfuerzos en la red social Twitter. Esta red proporciona un mecanismo para que las personas expresen sus puntos de vista mediante mensajes cortos (no más de 280 caracteres) llamados tweets. En este proyecto, investigamos e implementamos modelos de redes neuronales de similitud de texto de manera que podamos: 1) saber si están relacionados o no con una enfermedad, 2) agrupar tweets similares a los que ya hemos capturado, analizado o almacenado y 3) encontrar el índice de similitud entre los tweets que utilizan diferentes algoritmos de aprendizaje. Basamos nuestro trabajo en los enfoques de similitud semántica y las medidas de similitud de texto utilizando algoritmos de “Deep Learning” para proporcionar información confiable sobre temas relacionados a la salud. en_US
dc.description.graduationSemester Summer en_US
dc.description.graduationYear 2019 en_US
dc.description.sponsorship This research is supported by the United States (US) National Library of Medicine of the National Institutes of Health (NIH) under award number R15LM012275 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2536
dc.language.iso en en_US
dc.rights.holder (c) 2019 Danny Gilberto Villanueva Vega en_US
dc.subject Text similarity en_US
dc.subject Deep learning algorithms en_US
dc.subject Health related topics en_US
dc.subject Semantic similarity en_US
dc.subject Social networks en_US
dc.subject.lcsh Neural networks (Computer science) en_US
dc.subject.lcsh Artificial intelligence en_US
dc.subject.lcsh Algorithms en_US
dc.subject.lcsh Machine learning en_US
dc.subject.lcsh Social networks en_US
dc.title Finding similar tweets within health related topics en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Computer Engineering en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ICOM_VillanuevaVegaD_2019.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: