Publication:
Teoria de control para sistemas dinámicos monomiales sobre cuerpos finitos
Teoria de control para sistemas dinámicos monomiales sobre cuerpos finitos
Authors
Aragones-Geney, Ernes Ch.
Embargoed Until
Advisor
Colón-Reyes, Omar
College
College of Arts and Sciences - Sciences
Department
Department of Mathematics
Degree Level
M.S.
Publisher
Date
2010-12
Abstract
Monomical dynamical systems over finite fields have been studied in several contexts, including engineering and mathematical biology. Criteria for determining when a system described by monomials over finite fields, is a fixed point have already been determined. In this paper develop criteria for stability in monomial control dynamical systems over finite fields, ƒ : F_q^n × F_q^m → F_q^n , where q is a Carmichael prime. For this we introduce the concept weakly stabilizable using the triangular systems of fixed point.
Definiremos el concepto débilmente estabilizable en los sistemas dinámico de control monomial ƒ : F_q^n × F_q^m → F_q^n . Haciendo uso de los sistemas dinámicos triángulares de punto fijo determinaremos condiciones suficientes y necesaria para que un sistema de control monomial sobre un cuerpo finito Fq, donde q es un primo de Carmichael sea estabilizable.
Definiremos el concepto débilmente estabilizable en los sistemas dinámico de control monomial ƒ : F_q^n × F_q^m → F_q^n . Haciendo uso de los sistemas dinámicos triángulares de punto fijo determinaremos condiciones suficientes y necesaria para que un sistema de control monomial sobre un cuerpo finito Fq, donde q es un primo de Carmichael sea estabilizable.
Keywords
Monomial dynamics,
Finite fields,
Triangular systems
Finite fields,
Triangular systems
Usage Rights
Persistent URL
Cite
Aragones-Geney, E. Ch. (2010). Teoria de control para sistemas dinámicos monomiales sobre cuerpos finitos [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/661