Publication:
Método conservativo de diferencias finitas para sistemas de ecuaciones de Schrödinger no lineales

dc.contributor.advisor Castillo, Paul
dc.contributor.author Aguilera Martinez, Axi Fabricio
dc.contributor.college College of Arts and Sciences - Sciences en_US
dc.contributor.committee Cruz, Angel
dc.contributor.committee Ramos, Rafael
dc.contributor.department Department of Mathematics en_US
dc.contributor.representative Irizarry, Zollianne
dc.date.accessioned 2022-07-05T13:39:18Z
dc.date.available 2022-07-05T13:39:18Z
dc.date.issued 2022-06-28
dc.description.abstract We present a high-order finite difference method to approximate the solution of a strongly coupled general system of nonlinear Schrödinger equations. From the symmetry of the discrete Laplacian and a special discretization of the nonlinear potential, exact conservation of two important physical quantities, power of each component and system's Hamiltonian, is proved for the fully discrete problem. The time-advance technique is based on a modification of the conservative Crank-Nicolson scheme by decomposing the original system into a sequence of smaller nonlinear problems, associated to each component of the complex field. For a quadratic potential birefringent system, a method, based on approximations for the second derivative by a class of symmetric finite difference formulas, is formally proven to converge with order $\tau + h^{2p}$, with $p = 1, ..., 4$. Using the composition theory of numerical methods for differential equations, schemes of order $\tau^{2q} + h^{2p}$, with $q = 1, ..., 4$, are derived. The conservation of discrete invariants; accuracy of the proposed method, and various composite methods, is validated by a series of numerical experiments for systems with different nonlinearities. en_US
dc.description.abstract Presentamos un método de diferencias nitas de alto orden para aproximar la solución de un sistema general de ecuaciones no lineales de Schrödinger fuertemente acoplado. Conservación exacta de dos importantes cantidades físicas, potencia de cada componente y Hamiltoniano del sistema, es demostrada para el problema completamente discreto a partir de la simetría del Laplaciano discreto y de una discretizaci ón especial del potencial no lineal. La técnica de avance en tiempo se basa en una modi cación del esquema conservativo de Crank-Nicolson, descomponiendo el sistema original en una secuencia de problemas no lineales de menor tamaño, asociados a cada componente del campo complejo. Para un sistema birrefrigente de potencial cuadrático, se prueba formalmente que un método, basado en aproximaciones para la segunda derivada mediante una clase de fórmulas simétricas de diferencias nitas, converge con orden τ + h2p, con p = 1, ..., 4. Utilizando la teor ía de composición de métodos numéricos para ecuaciones diferenciales, se derivan esquemas de orden τ 2q + h2p, con q = 1, ..., 4. La conservación de invariantes discretos; la precisión del método propuesto, y de distintos métodos compuestos, se valida mediante una serie de experimentos numéricos para sistemas con diferentes no linealidades. en_US
dc.description.graduationSemester Spring en_US
dc.description.graduationYear 2023 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2919
dc.language.iso es en_US
dc.rights.holder (c) 2022 Axi Fabricio Aguilera Martinez en_US
dc.subject Coupled nonlinear Schrödinger systems en_US
dc.subject Coupled Gross-Pitaevskii equations en_US
dc.subject Conservative methods en_US
dc.subject High order finite differences en_US
dc.subject Power (mass) and Hamiltonian (energy) conservation en_US
dc.subject Splitting and composition methods en_US
dc.subject.lcsh Schrödinger equation en_US
dc.subject.lcsh Gross-Pitaevskii equations en_US
dc.subject.lcsh Hamilton-Jacobi equations en_US
dc.subject.lcsh Differential equations, Nonlinear--Numerical solutions en_US
dc.subject.lcsh Partial differential equations (second and higher orders) en_US
dc.title Método conservativo de diferencias finitas para sistemas de ecuaciones de Schrödinger no lineales en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Applied Mathematics en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MATM_AguileraMartinezAF_2022.pdf
Size:
6.17 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.26 KB
Format:
Item-specific license agreed upon to submission
Description: