Publication:
BCS class II drug dispersions in hydroxypropyl methylcellulose solutions: The effect of polymer molecular weight and drug loading on the steady-state rheology of HPMC solutions
BCS class II drug dispersions in hydroxypropyl methylcellulose solutions: The effect of polymer molecular weight and drug loading on the steady-state rheology of HPMC solutions
dc.contributor.advisor | Acevedo-Rullán, Aldo | |
dc.contributor.author | Santiago-Vázquez, Mariel M. | |
dc.contributor.college | College of Engineering | en_US |
dc.contributor.committee | Méndez, Rafael | |
dc.contributor.committee | Almodóvar, Jorge L. | |
dc.contributor.department | Department of Chemical Engineering | en_US |
dc.contributor.representative | Zapata, Sandra | |
dc.date.accessioned | 2018-10-05T14:20:50Z | |
dc.date.available | 2018-10-05T14:20:50Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Physical biopolymer gels are ideal candidates for the drug delivery of solid pharmaceutical drugs. Nevertheless, inclusion of particles may affect the rheology and gelation of these systems. In this work, we evaluate the effects of particle loading on the steady-state viscosity of a model biopolymer-particle system. The studied system consists of hydroxypropyl methylcellulose (HPMC) of two different grades, E4M and E15LV, and two BCS Class II drugs, griseofulvin and naproxen. The effect of particle size was studied using various particle size ranges of naproxen (d < 45 µm, 45-75 µm, 75-125 µm, and > 125 µm). For HPMC E15LV a Newtonian behavior was observed, while HPMC E4M behaved as a Bingham pseudoplastic. Overall, the effect of particle inclusion into the biopolymer led to a decrease in both viscosity and yield stress for both HPMC viscosity grades. The decrease in viscosity was attributed to the adsorption of polymer to the particle surface and the decrease in yield stress was attributed to a decrease in polymer-polymer interaction. | |
dc.description.abstract | Los geles físicos de biopolímeros son candidatos ideales para la administración de fármacos sólidos. Sin embargo, la inclusión de partículas podría afectar la reología y gelación de estos sistemas. En este trabajo, estudiamos el efecto de la inclusión de partículas en la viscosidad en estado estacionario de un sistema modelo de biopolímero-droga. El sistema estudiado consistió de dos distintos grados de hidroxipropil metilcelulosa (HPMC), E15LV y E4M, y dos drogas BCS tipo II, griseofulvin y naproxen. Para ver el efecto del tamaño de partícula en la viscosidad del polímero, se utilizaron varios rangos de tamaño de naproxen (d < 45 µm, 45-75 µm, 75-125 µm, and > 125 µm). Para HPMC E15LV se observó comportamiento Newtoniano, mientras que HPMC E4M mostró un comportamiento pseudoplástico de Bingham. En general, la adición de particulado al sistema de HPMC causó una disminución en la viscosidad y el esfuerzo de rendición para las concentraciones estudiadas de HPMC. Esta disminución en viscosidad se debe a la adsorción del polímero en la superficie de la partícula y la disminución del esfuerzo de rendición se debe a una disminución de interacción polímero-polímero. | |
dc.description.graduationSemester | Fall | en_US |
dc.description.graduationYear | 2015 | en_US |
dc.description.sponsorship | Department of Chemical Engineering, NSF-sponsored ERC SOPS | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/994 | |
dc.language.iso | en | en_US |
dc.rights.holder | (c) 2015 Mariel M. Santiago-Vázquez | en_US |
dc.rights.license | All rights reserved | en_US |
dc.subject | Physical biopolymer gels | en_US |
dc.subject | Drug delivery | en_US |
dc.subject.lcsh | Polymers -- Rheology | en_US |
dc.subject.lcsh | Polymers -- Viscocity | en_US |
dc.subject.lcsh | Particle size determination | en_US |
dc.subject.lcsh | Gelation | en_US |
dc.subject.lcsh | Naproxen | en_US |
dc.subject.lcsh | Biopolymers | en_US |
dc.title | BCS class II drug dispersions in hydroxypropyl methylcellulose solutions: The effect of polymer molecular weight and drug loading on the steady-state rheology of HPMC solutions | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Chemical Engineering | en_US |
thesis.degree.level | M.S. | en_US |