Show simple item record

dc.contributor.advisorOrtiz-Navarro, Juan A.
dc.contributor.authorBeltrán-Hoyos, Raúl A.
dc.date.accessioned2018-10-10T19:36:20Z
dc.date.available2018-10-10T19:36:20Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/20.500.11801/1019
dc.description.abstract.en_US
dc.description.abstractThis thesis provides a characterization of the reduced Burau matrices for braids of the form (σ1σ2 · · · σn−1) d , with gcd(n, d) = 1, n, d ≥ 2, and exposes its relationship with the Alexander polynomial for (n, d)-torus knot by using Markov functions theory. In addition, a similar characterization for a particular case of periodic braids is provided, whose closures is the mirror of a (n, d)-torus knot.
dc.description.abstractEsta tesis provee una caraterizaci´on de las matrices reducidas de Burau para trenzas de la forma (σ1σ2 · · · σn−1) d , con mcd(n, d) = 1, n, d ≥ 2, y expone su relaci´on con el polinomio de Alexander para nudos toroidales, usando la teoria de funciones de Markov. En adici´on, proporcionamos una caracterizaci´on similar para un caso particular de trenzas periodicas cuya clausura es el espejo de un (n, d)-nudo toroidal.
dc.language.isoenen_US
dc.subjectBurau matricesen_US
dc.subjectAlexander polynomialen_US
dc.subject.lcshBraid theoryen_US
dc.subject.lcshKnot polynomialsen_US
dc.subject.lcshAlexander idealsen_US
dc.titleAlexander polynomial for torus knots via Burau matrices for periodic braidsen_US
dc.typeThesisen_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(c) 2017 Raú Alfonso Beltrán Hoyosen_US
dc.contributor.committeeCastellini, Gabriele
dc.contributor.committeeRomero, Juan
dc.contributor.representativeMorales Caro, Betsy
thesis.degree.levelM.S.en_US
thesis.degree.disciplinePure Mathematicsen_US
dc.contributor.collegeCollege of Arts and Sciences - Arten_US
dc.contributor.departmentDepartment of Mathematicsen_US
dc.description.graduationYear2017en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved