Show simple item record

dc.contributor.advisorSuárez, Luis E.
dc.contributor.authorPacheco-Crosetti, Gustavo E.
dc.date.accessioned2019-02-11T18:58:48Z
dc.date.available2019-02-11T18:58:48Z
dc.date.issued2007-05
dc.identifier.urihttps://hdl.handle.net/20.500.11801/1772
dc.description.abstractThe most widely used model to perform the analysis of piles under lateral loads consists in modeling the pile as a series of beam elements and representing the soil as a group of unconnected, concentrated springs perpendicular to the pile (Discrete Winkler Model). The literature review shows that the soil stiffness and damping properties are included in a dynamic analysis through lumped springs and dashpots, but a lumped mass to represent soil inertia is not included. The objective of this investigation is to perform an analytical and numerical study of the dynamic response of the pile-soil system under lateral loads (considering the soil as a semi-infinite half space), in order to develop a rational method that includes the soil contribution to the system inertial properties through a series of lumped masses, consistent with the Discrete Winkler Model, and to evaluate the importance of such lumped mass in the system response. A simplified lumped model, consistent with the Winkler hypothesis, was obtained by performing an approximation of the continuous (plane strain) model developed by Novak. In the proposed approach, the pile-soil interaction is taken into account through three frequency independent elements: a spring with stiffness ka, a mass with value ma, and a dashpot with coefficient ca. The spring-mass-dashpot coefficients ka, ma, and ca that represent the soil can be obtained by means of simple equations. The proposed lumped model was used to demonstrate that a lumped soil mass is not required for small soil Poisson’s ratios. However, the soil mass is important for high soil Poisson’s ratios, as may be the case of saturated soils (for ν = 0.5 the required soil lumped mass is in the same order of the pile mass contribution).en_US
dc.description.abstractEl modelo más usado para efectuar el análisis de pilotes bajo carga lateral consiste en modelar el pilote como una serie elementos de viga (flexionales), y representar al suelo como un grupo de resortes concentrados, desconectados, perpendiculares al pilote (Modelo Discreto de Winkler). La revisión bibliográfica muestra que las propiedades de rigidez y amortiguamiento del suelo son incluidas en un análisis dinámico por medio de resortes y amortiguadores concentrados, pero las propiedades de inercia del suelo no son consideradas por medio de una masa concentrada. El objetivo de esta investigación es desarrollar un estudio analítico y numérico de la respuesta dinámica del sistema suelo-pilote bajo cargas laterales (considerando el suelo como un espacio semi-infinito), para desarrollar un método racional que incluya la contribución del suelo a las propiedades de inercia del sistema, a través de una serie de masas concentradas, consistentes con el Modelo Discreto de Winkler, y evaluar la importancia de esta masa concentrada en la respuesta del sistema. Se realizó una aproximación al modelo continuo (de estado plano de deformaciones) desarrollado por Novak, para obtener un modelo simplificado consistente con las hipótesis de Winkler. La interacción suelo-pilote se tiene en cuenta a través de tres elementos independientes de la frecuencia: un resorte de rigidez ka, una masa de valor ma, y un amortiguador de constante ca. Estos tres coeficientes se obtienen por medio de expresiones sencillas. Este modelo se usó para demostrar que para razones de Poisson bajas no se requiere una masa concentrada de suelo. Sin embargo, para razones de Poisson altas, como es el caso de suelos saturados, la masa de suelo es importante (para ν = 0.5 la masa concentrada de suelo es del mismo orden que la contribución de masa del pilote).en_US
dc.language.isoenen_US
dc.subjectPile-soil systemen_US
dc.subject.lcshLateral loadsen_US
dc.subject.lcshPiling (Civil engineering)en_US
dc.titleDynamic lateral response of single piles considering soil inertia contributionen_US
dc.typeThesisen_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(c) 2007 Gustavo E. Pacheco-Crosettien_US
dc.contributor.committeePando-López, Miguel A.
dc.contributor.committeeMartínez-Cruzado, José A.
dc.contributor.committeeLópez-Rodríguez, Ricardo
dc.contributor.representativeSnyder-Sevits, Victor
thesis.degree.levelPh.D.en_US
thesis.degree.disciplineCivil Engineeringen_US
dc.contributor.collegeCollege of Engineeringen_US
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.description.graduationYear2007en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved