Show simple item record

dc.contributor.advisorVelázquez-Figueroa, Carlos
dc.contributor.authorAymat, Efrain
dc.description.abstractContinuous manufacturing processes are complex systems composed of multiple unit operations where process variables and material properties interaction allow the development of soft PAT sensors. Hence, this study was focused on identifying the key feeding system variables (upstream) able to predict changes in particles size (D50). Monitoring changes in particle size through a soft PAT sensor within the feeding system allows the development of preventive measures in the tablet press to ensure product quality. By analyzing three distinctive granulations, in terms of D50, this study was able to identify the feeder variables that distinguish the three granulations: Average Feed Factor and Drive Command. However, on AFF vs PSD linear regression shows that the Average Feed Factor was enough to detect particle size changes with a R2 equivalent to 97%. This linear behaviour allowed the development of a decision tree algorithm to determine changes in particle size with potential impact in the tablet properties through the press stage. Additionally, the development of a decision tree to establish the preventive measures to ensure product quality within the tablet press were also provided as part of this study.en_US
dc.description.abstractLos procesos de fabricación continua son sistemas complejos compuestos de múltiples unidades operacionales en el cual las interacciones de las variables de proceso con las propiedades de los materiales permiten el desarrollo de tecnologías de proceso analítica mediante sensores virtuales. Por lo tanto, este estudio se centró en identificar las variables clave del sistema de alimentación (inicio del proceso) capaces de predecir cambios en el tamaño de las partículas (D50). El monitoreo de los cambios en el tamaño de las partículas a través de un sensor virtual dentro del sistema de alimentación permite el desarrollo de medidas preventivas en la tabletera para garantizar la calidad del producto. Al analizar tres granulaciones distintivas, en términos de D50, este estudio pudo identificar las variables de alimentación que distinguen las tres granulaciones: Factor de alimentación promedio y Comando de unidad. Sin embargo, una regresión lineal AFF frente a PSD muestra que el AFF fue suficiente para distinguir los cambios en el tamaño de partícula con un R2 equivalente al 97%. Este comportamiento lineal permitió el desarrollo de un modelo mediante un árbol de decisión que fuese capaz de identificar cambios en el tamaño de partícula con potencial impacto en las propiedades de las tabletas durante el proceso de compresión. Además, como parte de este estudio también se proporcionó el desarrollo de un árbol de decisiones para establecer las medidas preventivas para garantizar la calidad del producto (tabletas) dentro de la etapa de compresión.en_US
dc.description.sponsorshipJanssen Pharmaceuticalsen_US
dc.subjectContinuous manufacturingen_US
dc.subject.lcshPharmaceutical technologyen_US
dc.subject.lcshProduction engineeringen_US
dc.subject.lcshReliability (Engineering)en_US
dc.subject.lcshParticles size determinationen_US
dc.titleImproving continuous manufacturing process reliability through feeding control systemen_US
dc.typeProject Reporten_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(c) 2018 Efrain Aymat Lianoen_US
dc.contributor.committeeCordova-Figueroa, Ubaldo M.
dc.contributor.committeeAcevedo Rullan, Aldo
dc.contributor.representativeJuan Garcia, Eduardo Engineeringen_US
dc.contributor.collegeCollege of Engineeringen_US
dc.contributor.departmentDepartment of Chemical Engineeringen_US

Files in this item


This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a graduate degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved