Show simple item record

dc.contributor.advisorCáceres, Luis F.
dc.contributor.authorOrtiz-Hernández, Wanda
dc.date.accessioned2019-04-15T15:50:42Z
dc.date.available2019-04-15T15:50:42Z
dc.date.issued2006
dc.identifier.urihttps://hdl.handle.net/20.500.11801/1989
dc.description.abstractIn this project, the relationship between propositional logic using theories and models, and algebraic structures, such as groups, rings, lattices, R-modules and algebras, including Boolean Algebras, has been studied. From Caceres [1], we have that given a ring R, a one to one correspondence exists between the ideals of R and the models associated with the sentential theory T(R). A similar approach was followed to show that given a group G, and the associated sentential theory T (G), a one to one correspondence exists between the subgroup of G and the models associated with the theory T(G). Several results were presented for lattice structures, L, and Boolean Algebras, B. Their associated sentential the- ories, T(L) and T(B), were also established. Concrete examples to support these results were presented and explained. For some structures, the cardinality of its corresponding propositional theory was studied and a formula for its calculation was established.en_US
dc.description.abstractEn este proyecto se estudió la relación entre la lógica proposicional utilizando teorías y modelos, y estructuras algebraicas como: grupos, anillos, retículos, R-módulos y álgebras, incluyendo álgebras de Boole. De Cáceres [1] tenemos que dado un anillo R, existe una correspondencia uno a uno entre los ideales de R y los modelos asociados a la teoría sentencial T(R). Utilizando un procedimiento similar se demostró que dado un grupo G y la teoría sentencial asociada, T(G), existe una correspondencia uno a uno entre los subgrupos de G y los modelos asociados con la teoría, T(G). Para los retículos, L, y las álgebras de Boole, B, se presentaron varios resultados y propiedades. Además, se establecieron sus teorías sentenciales, T(L) y T(B), respectivamente. Varios ejemplos y contra ejemplos concretos se presentaron para reforzar los resultados establecidos. Para algunas estructuras se estudió la cardinalidad de sus teorías proposicionales correspondientes y se estableció una fórmula para su computación.en_US
dc.language.isoEnglishen_US
dc.subjectAlgebraic structuresen_US
dc.subjectPropositional logicen_US
dc.titleA connection between algebraic structures and propositional logicen_US
dc.typeThesisen_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(c) 2006 Wanda Ortiz-Hernándezen_US
dc.contributor.committeeCastellini, Gabriele
dc.contributor.committeeOltikar, Balchandra
dc.contributor.representativeMacchiavell, Raúl
thesis.degree.levelM.S.en_US
thesis.degree.disciplinePure Mathematicsen_US
dc.contributor.collegeCollege of Arts and Sciences - Sciencesen_US
dc.contributor.departmentDepartment of Mathematicsen_US
dc.description.graduationYear2006en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a graduate degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved