Show simple item record

dc.contributor.advisorCáceres, Luis F.
dc.contributor.authorVélez, José A.
dc.description.abstractUsing polynomial evaluation, we give some useful criteria to answer questions about divisibility of polynomials. This allows us to develop interesting results concerning the prime elements in the domain of coefficients of the polynomial. In particular, it is possible to prove that under certain conditions, the domain of coefficients must have infinitely many prime elements. We give alternative characterizations for D−rings and present various examples.en_US
dc.description.abstractUsando evaluación en polinomios, damos algunos criterios útiles para responder preguntas sobre divisibilidad de polinomios. Esto también permite desarrollar algunos resultados interesantes acerca de los elementos primos del dominio de coeficientes. En particular, es posible demostrar (bajo ciertas condiciones) que el dominio de coeficientes debe tener infinitos elementos primos. Damos también caracterizaciones alternativas de D-anillos y presentamos varios ejemplos.en_US
dc.subjectDivisibility properties in ring of polynomialsen_US
dc.subjectUnique factorization domainen_US
dc.subjectInfinite primes propertyen_US
dc.titleSome divisibility properties in rings of polynomials over a unique factorization domainen_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(c) 2005 José A. Vélezen_US
dc.contributor.committeeCastellini, Gabriele
dc.contributor.committeeWalker-Ramos, Uroyoán
dc.contributor.representativeRivera, Wilson Mathematicsen_US
dc.contributor.collegeCollege of Arts and Sciences - Sciencesen_US
dc.contributor.departmentDepartment of Mathematicsen_US

Files in this item


This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a graduate degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved