Show simple item record

dc.contributor.advisorRivera Gallego, Wilson
dc.contributor.authorRosa de Jesús., Dan A.
dc.date.accessioned2019-04-23T19:57:56Z
dc.date.available2019-04-23T19:57:56Z
dc.date.issued2018-05
dc.identifier.urihttps://hdl.handle.net/20.500.11801/2105
dc.description.abstractElectric grids are an important aspect of the civil infrastructure of our society. Traditional energy grids are being modernized with the introduction of smart grids and transactive energy concepts. In a smart grid sensors, computers and communication networks are integrated into the power generation, transmission, distribution, and load elements. Transactive energy is a novel conceptual model in which distributed generators are coordinated through software, creating a type of "software-de ned" electric grid and featuring a market-based mechanism to establish prices. The main research question in this work is which methodologies and tools allow the modeling and simulation of electric grids including both physical components and energy consumption and market elements. This work then focuses on developing an optimization and simulation framework to facilitate the analysis of energy grids. The contributions of this thesis are fourfold. First, a framework to evaluate the performance of evolutionary algorithms in the context of solving smart grid related problems. It includes a set of procedures that carry out multi-objective optimization through evolutionary algorithms and a set of metrics to measure their performance. Second, demonstrate how multiple evolutionary algorithms can be applied to a demand response case study for day-ahead load forecasting. Third, a framework to evaluate how smart grid entities behave when market prices are established under transactive energy strategies. Finally, a demonstration of how multiple multi-agent systems can be applied to simulate these strategies under high-demand smart grid scenarios.en_US
dc.description.abstractLas redes el ectricas son un aspecto importante de la infraestructura civil de nuestra sociedad. Con el paso del tiempo, las mismas han sido modernizadas con la introducci on de redes inteligentes y energ a transactiva. En una red inteligente sensores, computadoras y redes de comunicaci on se integran en los elementos de generaci on, transmisi on, distribuci on y carga de energ a. La energ a transactiva es un modelo conceptual novedoso en el que los generadores distribuidos se coordinan mediante software, creando un tipo de red el ectrica "de nida por software" y presentando un mecanismo basado en el mercado para establecer precios. La pregunta de investigaci on principal en este trabajo es cu ales metodolog as y herramientas permiten modelar y simular redes de energ a que incluyan tanto componentes f sicos como elementos de consumo y mercado. Este trabajo se centra en el desarrollo de un marco de optimizaci on y simulaci on para facilitar el an alisis de las redes de energ a. Esta tesis provee cuatro contribuciones. Primero, un marco para evaluar el rendimiento de algoritmos evolutivos en el contexto de problemas relacionados a redes inteligentes. El mismo incluye un conjunto de algoritmos evolutivos y m etricas para medir su rendimiento. En segundo lugar, demostrar c omo se pueden aplicar m ultiples algoritmos evolutivos a un estudio de caso de respuesta a la demanda para predecir cargas. En tercer lugar, un marco para evaluar el comportamiento de entidades conectadas a redes inteligentes cuando los precios del mercado se establecen bajo estrategias de energ a transactiva. Finalmente, una demostraci on de c omo se pueden aplicar m ultiples agentes para simular estas estrategias bajo escenarios de alta demanda.en_US
dc.description.sponsorshipOASIS project team; National Science Foundation (NFS), under grant #ACI-1541106; Chameleon Cloud teamen_US
dc.language.isoenen_US
dc.subjectSmart power grids - Simulationen_US
dc.subjectSmart power grids - Effect of market prices onen_US
dc.subject.lcshSmart power gridsen_US
dc.titleModeling and simulation of energy grids under transactive energy marketsen_US
dc.typeThesisen_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(c) 2018 Dan Alberto Rosa de Jesúsen_US
dc.contributor.committeeRodríguez Martínez, Manuel
dc.contributor.committeeArzuaga, Emmanuel
dc.contributor.committeeColom Ustariz, José
dc.contributor.representativeAlers Valentín, Hilton
thesis.degree.levelM.S.en_US
thesis.degree.disciplineComputer Engineeringen_US
dc.contributor.collegeCollege of Engineeringen_US
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.description.graduationSemesterSpringen_US
dc.description.graduationYear2018en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a graduate degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved