Publication:
Distribución de voltaje en aisladores de suspensión utilizando el método de elemento finito
Distribución de voltaje en aisladores de suspensión utilizando el método de elemento finito
Authors
Bedoya-Arango, Jesús M.
Embargoed Until
Advisor
Orama-Exclusa, Lionel R.
College
College of Engineering
Department
Department of Electrical and Computer Engineering
Degree Level
M.S.
Publisher
Date
2005
Abstract
En la tesis que aquí se presenta, hemos propuesto el uso del Método de Elemento Finito (FEM, por sus siglas en inglés) como herramienta para simular la distribución de voltajes en aisladores de suspensión. El propósito principal de la investigación es el de poder proponer cambios en el diseño de dichos aisladores, una vez sean creados y validados los modelos. En esta tesis usaremos un caso fundamental de aisladores de suspensión para poder hacer la introducción al tema de FEM. Los aisladores de suspensión se utilizan en sistemas de potencia y energía para proporcionar aislamiento eléctrico y también como ayuda mecánica sosteniendo líneas de transmisión y distribución. Los aisladores de suspensión que están en servicio en líneas de potencia están expuestos a sobrevoltaje (surge), y abuso mecánico severo (tormentas), rayos y arcos eléctricos. Es conocido que la distribución de voltajes entre los aisladores de una cadena no es equitativa entre dichos aisladores. Más aún, se sabe que los aisladores más cercanos la torre (potencial de tierra) soportan menos magnitud de voltaje que aquellos que se encuentran más cerca de la línea. En esta tesis se demuestra que al realizar cambios en la geometría de una cadena de aisladores pueden variar el valor de voltaje soportado por cada unidad de la cadena.
The use of the Finite Element Method (FEM) is presented in this work as a tool to simulate the distribution of voltages in suspension insulators. The main purpose of the work is to create and validate insulator models to propose changes in the design of such suspension insulators. A fundamental case of suspension insulators will be used to make the introduction to the FEM topic. The suspension insulators are used in power and energy systems to provide electrical isolation and also as a mechanical aid to hold communication and distribution lines in place. The suspension insulators that are used in power lines are exposed to over-voltage, thermal tensions, and to their inherent natural aging. Not only an insulator must have enough mechanical resistance, but also it must be designed to withstand severe mechanical abuse like storms, rays and electric arcing. It is known that the voltage distribution within the chained elements that compose an insulator is not equitative among themselves. Even more, the insulators closer to the tower (having ground potential) can withstand less voltage magnitude than those closer to the line. It is demonstrated in this thesis that changes in the geometry of a chain of insulators can vary the voltage that every unit in the change can withstand.
The use of the Finite Element Method (FEM) is presented in this work as a tool to simulate the distribution of voltages in suspension insulators. The main purpose of the work is to create and validate insulator models to propose changes in the design of such suspension insulators. A fundamental case of suspension insulators will be used to make the introduction to the FEM topic. The suspension insulators are used in power and energy systems to provide electrical isolation and also as a mechanical aid to hold communication and distribution lines in place. The suspension insulators that are used in power lines are exposed to over-voltage, thermal tensions, and to their inherent natural aging. Not only an insulator must have enough mechanical resistance, but also it must be designed to withstand severe mechanical abuse like storms, rays and electric arcing. It is known that the voltage distribution within the chained elements that compose an insulator is not equitative among themselves. Even more, the insulators closer to the tower (having ground potential) can withstand less voltage magnitude than those closer to the line. It is demonstrated in this thesis that changes in the geometry of a chain of insulators can vary the voltage that every unit in the change can withstand.
Keywords
Usage Rights
Persistent URL
Cite
Bedoya-Arango, J. M. (2005). Distribución de voltaje en aisladores de suspensión utilizando el método de elemento finito [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/2397