Show simple item record

dc.contributor.advisorShramchenko, Alexander
dc.contributor.authorRodríguez Molina, Marcos Javier
dc.date.accessioned2020-01-31T19:08:06Z
dc.date.available2020-01-31T19:08:06Z
dc.date.issued2019-12-09
dc.identifier.urihttps://hdl.handle.net/20.500.11801/2544
dc.description.abstractThis research studies the behavior of a numerical technique, known as Continuous Orthonormalization (CO), when computing the eigenfunction for the Orr-Sommerfeld equation (OSE). The hydrodynamic stability region of moving fluids, which are constrained to parallel flows, is of relevance and the OSE allows its understanding. CO pursues the generation of an orthogonal vector space constituted by the individual solutions of OSE. By doing this, major numerical errors influencing the computed solution are avoided. Noteworthy is the intrinsic flexibility of CO which allows its use in computing the solution of ordinary linear differential equations of diverse complexity. An important characteristic of CO is the use of numerical strategies of great reliability which are not normally applied to problems.such as OSE.en_US
dc.description.abstractEsta investigación estudia el comportamiento de una técnica numérica, conocida como Ortonormalización Continua (OC), al computar la autofunción para la ecuación de Orr-Sommerfeld (EOS). La región de estabilidad hidrodinámica de fluidos en movimiento, restringido a flujo paralelo, es de relevancia y la EOS permite su entendimiento. OC persigue generar un espacio vectorial ortogonal constituido por las soluciones individuales de EOS. Al hacer esto, se evitan los grandes errores numéricos que influyen al cómputo de la solución. Notable es la flexibilidad intrínseca de OC que permite su uso al evaluar la solución de ecuaciones diferenciales ordinarias de variada complejidad. Una importante característica de OC es el uso de estrategias numéricas de gran confiabilidad que normalmente no son aplicadas a problemas como EOS.en_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjectRunge-Kuttaen_US
dc.subjectStiffnessen_US
dc.subjectOrthogonal vector spaceen_US
dc.subjectWolfram languageen_US
dc.subjectMoore-Penrose pseudoinverseen_US
dc.subject.lcshBoundary value problemsen_US
dc.subject.lcshEigenvaluesen_US
dc.subject.lcshDifferential equations, Partialen_US
dc.subject.lcshDifferential equations, Linearen_US
dc.subject.lcshLinear systemsen_US
dc.subject.lcshEquation -- Numerical solutionsen_US
dc.titleSolving linear boundary value problems for linear systems of ordinary differential equationsen_US
dc.typeThesisen_US
dc.rights.holder(c) 2019 Marcos Javier Rodríguez Molinaen_US
dc.contributor.committeeYong, Xuerong
dc.contributor.committeeSalas Olaguer, Héctor N.
dc.contributor.representativeHuerta López, Carlos I.
thesis.degree.levelM.S.en_US
thesis.degree.disciplineScience in Scientific Computingen_US
dc.contributor.collegeCollege of Arts and Sciences - Arten_US
dc.contributor.departmentDepartment of Mathematicsen_US
dc.description.graduationSemesterFallen_US
dc.description.graduationYear2019en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a graduate degree at UPR-Mayagüez.

Show simple item record

Attribution-NonCommercial 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 3.0 United States