Selective hydrodeoxygenation of biomass-derived oxygenates over heterogeneous Mo-based catalysts
- Global styles
- IEEE
- MLA
- CSE
- Chicago (author-date)
- APA (6th edition)
- ACS
- Help
Abstract
The development of catalytic pathways to produce commodity chemicals from lignocellulosic biomass is promising for substituting non-renewable fossil feedstock use. This dissertation studied the catalytic performance of molybdenum-based materials for the selective cleavage of C-O bonds in biomass-derived compounds (1,4-anhydroerythritol, tartaric acid, and glycerol) to produce value-added chemicals. The reactions studied include the transformation of (i) 1,4-anhydroerythritol to tetrahydrofuran, (ii) tartaric acid to succinic acid, and (iii) glycerol to 1,2-propanediol and 1,3-propanediol.
Hydrodeoxygenation reactions represent a transformation by which C-O bonds can be selectively cleaved. A heterogeneous MoOx-Pd/TiO2 catalyst was active, selective, and stable in the hydrodeoxygenation of 1,4-anhydroerythritol to tetrahydrofuran. Results obtained from catalyst characterization studies (Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Diffuse Reflectance Infrared Fourier Transform Spectroscopy) and reaction kinetics indicate that hydrogen atoms dissociated over Pd nanoparticles promote the reduction of supported MoOx species from a Mo6+ to Mo5+/Mo4+ oxidation state. The reduced Mo5+ and Mo4+ centers facilitate the cleavage of vicinal hydroxyls in 1,4-anhydroerythritol to produce the intermediate 2,5-dihydrofuran, which undergoes subsequent hydrogenation to tetrahydrofuran.
The hydrodeoxygenation of tartaric acid to succinic acid over MoOx-Pd/TiO2 was also examined. The MoOx-Pd/TiO2 catalyst exhibited the highest succinic acid production rates among supported oxophilic metal (MoOx, ReOx, WOx) and noble metal (Pd, Pt, Rh) combinations studied. Insights from catalyst characterization and kinetics indicate that an active Mo5+ center is formed, cleaving internal C-O bonds from tartaric acid while leaving carboxylic acid end-groups intact.
Another catalytic reaction reported in this dissertation is the hydrodeoxygenation of glycerol over Mo2C, and Cu promoted Mo2C. These catalysts were studied under continuous flow reaction conditions to determine reaction orders, apparent activation energy barrier, product selectivity, and catalyst stability. Reaction kinetic studies show selectivity trends for Mo2C and Cu-Mo2C powders that agree with the literature reported surface science and computational studies. Mechanistic insights suggest that the reaction proceeds through a concerted bond cleavage and formation pathway. The modification of the catalyst with Cu modifies the oxophilicity of the Mo site, and can be tailored to control the number of glycerol C-O bonds which are cleaved. El desarrollo de vías catalíticas para producir productos químicos básicos a partir de biomasa lignocelulósica es prometedor para sustituir el uso de materias primas fósiles no renovables. Esta disertación estudió el desempeño catalítico de materiales a base de molibdeno para el rompimiento selectivo de enlaces C-O en compuestos derivados de la biomasa (1,4-anhidroeritritol, ácido tartárico y glicerol) para producir productos químicos de valor agregado. Las reacciones estudiadas incluyen la transformación de (i) 1,4-anhidroeritritol en tetrahidrofurano, (ii) ácido tartárico en ácido succínico y (iii) glicerol en 1,2-propanodiol y 1,3-propanodiol. Un catalizador heterogéneo de MoOx-Pd/TiO2 fue activo, selectivo y estable en la hidrodesoxigenación de 1,4-anhidroeritritol a tetrahidrofurano. Los resultados de los estudios cinéticos y de caracterización de los catalizadores indican que los átomos de hidrógeno disociados sobre nanopartículas de Pd promueven la reducción de especies de MoOx soportadas de un estado de oxidación de Mo6+ a oxidación Mo5+/Mo4+. Los centros de Mo5+ y Mo4+ facilitan el rompimiento de hidroxilos vecinales en 1,4-anhidroeritritol para producir tetrahidrofurano.
La hidrodesoxigenación de ácido tartárico a ácido succínico sobre MoOx-Pd/TiO2 se estudió en reactores en tanda. El catalizador MoOx-Pd/TiO2 exhibió la rapidez de producción de ácido succínico más alta entre las combinaciones de metal oxofílico (MoOx, ReOx, WOx) y metal noble (Pd, Pt, Rh) estudiadas. Los conocimientos de la cinética y la caracterización del catalizador indican que se forma un centro Mo5+ que activa los enlaces C-O internos del ácido tartárico.
Otra reacción catalítica reportada en esta disertación es la hidrodesoxigenación de glicerol sobre Mo2C, y Mo2C promovido por Cu. Estos catalizadores se estudiaron para determinar los órdenes de reacción, la barrera de energía de activación, selectividades de productos y estabilidad del catalizador. Los estudios cinéticos muestran que las tendencias de selectividad para Mo2C y Cu-Mo2C son consistentes con la literatura reportada en experimentos a vacío usando espectroscopia electrónica de pérdida de energía de alta resolución y estudios computacionales como la teoría de funciones de la densidad. Los resultados mecanísticos sugieren que la reacción procede a través de la formación y rompimiento de enlaces concertados. La modificación del catalizador con Cu altera la oxofilicidad del sitio Mo y se puede adaptar para controlar el número de enlaces C-O de glicerol que se rompen.
Hydrodeoxygenation reactions represent a transformation by which C-O bonds can be selectively cleaved. A heterogeneous MoOx-Pd/TiO2 catalyst was active, selective, and stable in the hydrodeoxygenation of 1,4-anhydroerythritol to tetrahydrofuran. Results obtained from catalyst characterization studies (Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Diffuse Reflectance Infrared Fourier Transform Spectroscopy) and reaction kinetics indicate that hydrogen atoms dissociated over Pd nanoparticles promote the reduction of supported MoOx species from a Mo6+ to Mo5+/Mo4+ oxidation state. The reduced Mo5+ and Mo4+ centers facilitate the cleavage of vicinal hydroxyls in 1,4-anhydroerythritol to produce the intermediate 2,5-dihydrofuran, which undergoes subsequent hydrogenation to tetrahydrofuran.
The hydrodeoxygenation of tartaric acid to succinic acid over MoOx-Pd/TiO2 was also examined. The MoOx-Pd/TiO2 catalyst exhibited the highest succinic acid production rates among supported oxophilic metal (MoOx, ReOx, WOx) and noble metal (Pd, Pt, Rh) combinations studied. Insights from catalyst characterization and kinetics indicate that an active Mo5+ center is formed, cleaving internal C-O bonds from tartaric acid while leaving carboxylic acid end-groups intact.
Another catalytic reaction reported in this dissertation is the hydrodeoxygenation of glycerol over Mo2C, and Cu promoted Mo2C. These catalysts were studied under continuous flow reaction conditions to determine reaction orders, apparent activation energy barrier, product selectivity, and catalyst stability. Reaction kinetic studies show selectivity trends for Mo2C and Cu-Mo2C powders that agree with the literature reported surface science and computational studies. Mechanistic insights suggest that the reaction proceeds through a concerted bond cleavage and formation pathway. The modification of the catalyst with Cu modifies the oxophilicity of the Mo site, and can be tailored to control the number of glycerol C-O bonds which are cleaved.
Collections