Show simple item record

dc.contributor.advisorAcevedo-Rullán, Aldo
dc.contributor.authorDiestra-Cruz, Herberth A.
dc.date.accessioned2018-05-16T15:20:48Z
dc.date.available2018-05-16T15:20:48Z
dc.date.issued2015
dc.identifier.urihttps://hdl.handle.net/20.500.11801/492
dc.description.abstractThe Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet’s condition) and the thermal conductivity is constant. The method of images is used to find the Green’s function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
dc.description.abstractEn el presente trabajo se utiliza la técnica integral de las funciones de Green para determinar el campo de temperaturas debido a la transferencia de calor por conducción en placas planas, placas circulares y esferas sólidas cuando la fuente de generación de calor tiene la forma de diente de sierra. En todos los casos la temperatura es especificada en la frontera (condición de Dirichlet) y la conductividad térmica es constante. Se ha utilizado método de las imágenes para hallar la función de Green en sólidos infinitos, sólidos semi-infinitos, cuadrantes infinitos, placas circulares y esferas sólidas. La generación de calor en forma de diente de sierra ha sido modelada utilizando la función delta de Dirac y la función paso de Heaviside. El uso de las funciones de Green permite obtener la distribución de temperaturas en la forma de una integral que evita los problemas de convergencia de las series infinitas. Para el sólido infinito y la esfera, la distribución de temperaturas es tri-dimensional y en los casos de sólido semiinfinito, cuadrante infinito y placa circular la distribución es bi-dimensional. El método utilizado en este trabajo es superior a otros métodos porque permite obtener elegantes soluciones analíticas o casi-analíticas a complejos problemas de conducción de calor con menos esfuerzo computacional y más precisión que los métodos completamente numéricos.
dc.description.sponsorshipNational Science Foundation, Wisconsin - Puerto Rico Partnership for Research and Education in Materialsen_US
dc.language.isoenen_US
dc.subjectColloid-in-liquid crystal compositesen_US
dc.subjectMagnetic particlesen_US
dc.subjectMorphology of MCLCsen_US
dc.subject.lcshAnisotropyen_US
dc.subject.lcshNematic liquid crystalsen_US
dc.subject.lcshColloidsen_US
dc.subject.lcshMagnetic suspensionen_US
dc.subject.lcshSuspensions (Chemistry)en_US
dc.titleStructure and rheology of colloid-in-liquid crystal composites with novel anisotropic and hierarchical microstructuresen_US
dc.typeDissertationen_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(C) 2015 Heberth A. Diestra Cruzen_US
dc.contributor.committeeBriano, Julio G.
dc.contributor.committeeCórdova Figueroa, Ubaldo M.
dc.contributor.committeeAlmódovar Montañez, Jorge L.
dc.contributor.representativeCalcagno, Bárbara O.
thesis.degree.levelPh.D.en_US
thesis.degree.disciplineChemical Engineeringen_US
dc.contributor.collegeCollege of Engineeringen_US
dc.contributor.departmentDepartment of Chemical Engineeringen_US
dc.description.graduationSemesterSummeren_US
dc.description.graduationYear2015en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved