Teoria de control para sistemas dinámicos monomiales sobre cuerpos finitos
- Global styles
- IEEE
- MLA
- CSE
- Chicago (author-date)
- APA (6th edition)
- ACS
- Help
Abstract
Monomical dynamical systems over finite fields have been studied in several contexts, including engineering and mathematical biology. Criteria for determining when a system described by monomials over finite fields, is a fixed point have already been determined. In this paper develop criteria for stability in monomial control dynamical systems over finite fields, ƒ : F_q^n × F_q^m → F_q^n , where q is a Carmichael prime. For this we introduce the concept weakly stabilizable using the triangular systems of fixed point. Definiremos el concepto débilmente estabilizable en los sistemas dinámico de control monomial ƒ : F_q^n × F_q^m → F_q^n . Haciendo uso de los sistemas dinámicos triángulares de punto fijo determinaremos condiciones suficientes y necesaria para que un sistema de control monomial sobre un cuerpo finito Fq, donde q es un primo de Carmichael sea estabilizable.
Collections