Publication:
Influencia del comportamiento inelástico de pórticos especiales de hormigón armado en la respuesta sísmica de componentes no estructurales
Influencia del comportamiento inelástico de pórticos especiales de hormigón armado en la respuesta sísmica de componentes no estructurales
Authors
Villalobos-Soto, Christian
Embargoed Until
Advisor
Suárez, Luis E.
College
College of Engineering
Department
Department of Civil Engineering
Degree Level
M.S.
Publisher
Date
2016
Abstract
Se ha demostrado que considerar la respuesta sísmica de los componentes no estructurales de un edificio es de vital importancia, ya que en muchas ocasiones edificios bien diseñados sobreviven el sismo pero su funcionamiento se ve impedido por la falla de estos componentes. También en instalaciones especiales como hospitales y plantas nucleares, estos constituyen un gran porcentaje del costo total de la edificación, la cual es de gran importancia que continúe en funcionamiento luego de una catástrofe. Es por esto que el enfoque principal de esta investigación fue contribuir al mejor entendimiento de la demanda debido a sismos fuertes en elementos no estructurales. En especial se consideró la aceleración absoluta producida en equipos sensitivos a la aceleración, como por ejemplo equipos en cuartos de máquinas. La forma cómo se calcula la respuesta sísmica de equipos y componentes no estructurales varía, dependiendo si estos sistemas pueden considerarse como rígidos o flexibles. Para llevar a cabo este estudio, se modelaron cinco edificios como pórticos en dos dimensiones y se analizaron y diseñaron con el programa SAP2000, los cuales varían en sus dimensiones, tanto de altura como en los tamaños de sus tramos. A cada uno de los edificios se le realizó un análisis de historial en el tiempo (“time history analysis”) tanto lineal como no lineal, con el objetivo de poder observar el efecto que tiene el considerar la no linealidad de un edificio cuando se generan los espectros de piso. También se quiso ver cómo es la distribución de las aceleraciones absolutas por pisos. En este proyecto no se sometieron las estructuras a diferentes terremotos sino que se generó un terremoto artificial compatible con el espectro de diseño del código IBC-09 de la ciudad donde se localiza la estructura. Se supuso que la estructura está localizada en San Juan, Puerto Rico. El método utilizado para generar el terremoto artificial se basa en la Transformada Wavelet Continua que ha sido implementado en un código de Matlab llamado ArtifQuakeLetII. Para el análisis no lineal con el programa SAP2000, a cada pórtico se le instalaron resortes dentro del largo plástico del elemento estructural (vigas y columnas) a los cuales se le asignaron las propiedades no lineales de cada grado de libertad. En este caso se le asignaron a los resortes las propiedades de momento-rotación del elemento estructural generados con el código de Matlab llamado CUMBIA (Montejo y Kowalsky, 2007). También se utilizaron los parámetros del Análisis Histerético de Pivote para considerar el efecto que tiene una carga cíclica en la disipación de energía de la sección. Al realizar este estudio se comprobó que la distribución de las aceleraciones absolutas máximas de piso varía para cada edificio, ya que los cinco edificios mostraron comportamientos distintos. Por otro lado, los resultados demostraron que no es posible encontrar un patrón entre las respuestas lineales y no lineales con sólo variar el amortiguamiento. Por ende, estimar las aceleraciones absolutas de piso no lineales aproximándolas con un análisis lineal dado un valor de amortiguamiento no es viable. Se encontró que las recomendaciones del ASCE 7-05 para el cómputo de las aceleraciones absolutas máximas sobreestiman de gran manera sus valores. Relacionado a los espectros de piso, se encontró que los picos se generan en los periodos naturales de los modos principales de la estructura. Este comportamiento se observó para el caso lineal y el no lineal. También el comportamiento de estos picos es distinto para cada uno de los pisos de un edificio, ya que depende de los modos del edificio y, por ende, de la magnitud de la aceleración absoluta máxima en ese piso a causa del sismo. Por último, las funciones de transferencia obtenidas mediante un análisis no lineal muestran que los modos superiores influyen más en la respuesta de aceleraciones del edificio, comparado con el caso lineal.
It has been demonstrated that it is important to consider the seismic response of nonstructural components because in numerous occasions well-designed buildings survive earthquake events, but its functionality is hampered by the failure of these components. In special facilities such as hospitals and nuclear power plants, these components represent a large percentage of the total cost of the building, which is essential that be able to continue its operations after a disaster. For this reason, the main focus of this research was to contribute to a better understanding of the demand imposed by strong earthquakes in nonstructural elements. The absolute acceleration produced in equipment sensitive to accelerations, e.g. machine room equipment, was studied. The method to compute the seismic response of nonstructural components varies depending on whether the element can be considered as rigid or flexible. To carry out this study, five buildings modeled as two-dimensional frames were analyzed and designed with the program SAP2000, varying their sizes, heights and number of bays. Linear and nonlinear time history analyses were performed on each building to observe the effect of considering the structural nonlinearity on the floor response spectra. Other objective of this study was to examine the distribution of absolute floor accelerations and compare the results with the provisions of the ASCE 7-05 Standard. The structures were not subjected to different earthquake ground motions, but rather to an artificial earthquake compatible with the design spectrum of the IBC-09 code for San Juan, PR, where the structure is assumed to be located. The method used to generate the artificial earthquake is based on the Continuous Wavelet Transform implemented in a Matlab code called ArtifQuakeLetII. For the nonlinear analysis of each building, springs were used located inside the plastic length of the structural elements (beams and columns), where all nonlinear properties of each degree of freedom were assigned. In this case the nonlinear properties assigned to the springs were the moment-rotation curve of the structural elements generated with a Matlab code called CUMBIA (Montejo & Kowalsky, 2007). In addition, the Pivot Hysteretic Analysis parameters were selected to consider the effects of the cyclic loading on the energy dissipation. It was found that the distribution of the maximum absolute floor accelerations varied for each building since the five structures showed different behaviors. The results showed that it is not possible to find a match between the linear and nonlinear responses by only varying the damping ratio. Thus, estimating the absolute floor acceleration of a nonlinear building with a linear analysis and modifying the damping value is not feasible. It was found that when the guidelines of the ASCE 7-05 Standard are used to calculate the maximum absolute floor accelerations, they overestimate their values. With regard to the floor response spectra, it was observed that both for the linear and nonlinear cases, the peaks are associated to the natural periods of the principal modes of the structure. Furthermore, the behavior of these peaks is different for each of the floors, since it depends on the modes of the building, and therefore, on the magnitude of the maximum floor accelerations due to the earthquake. Finally the transfer functions obtained from a nonlinear analysis showed that, unlike in the linear case, the higher modes have a greater influence on the building’s acceleration response.
It has been demonstrated that it is important to consider the seismic response of nonstructural components because in numerous occasions well-designed buildings survive earthquake events, but its functionality is hampered by the failure of these components. In special facilities such as hospitals and nuclear power plants, these components represent a large percentage of the total cost of the building, which is essential that be able to continue its operations after a disaster. For this reason, the main focus of this research was to contribute to a better understanding of the demand imposed by strong earthquakes in nonstructural elements. The absolute acceleration produced in equipment sensitive to accelerations, e.g. machine room equipment, was studied. The method to compute the seismic response of nonstructural components varies depending on whether the element can be considered as rigid or flexible. To carry out this study, five buildings modeled as two-dimensional frames were analyzed and designed with the program SAP2000, varying their sizes, heights and number of bays. Linear and nonlinear time history analyses were performed on each building to observe the effect of considering the structural nonlinearity on the floor response spectra. Other objective of this study was to examine the distribution of absolute floor accelerations and compare the results with the provisions of the ASCE 7-05 Standard. The structures were not subjected to different earthquake ground motions, but rather to an artificial earthquake compatible with the design spectrum of the IBC-09 code for San Juan, PR, where the structure is assumed to be located. The method used to generate the artificial earthquake is based on the Continuous Wavelet Transform implemented in a Matlab code called ArtifQuakeLetII. For the nonlinear analysis of each building, springs were used located inside the plastic length of the structural elements (beams and columns), where all nonlinear properties of each degree of freedom were assigned. In this case the nonlinear properties assigned to the springs were the moment-rotation curve of the structural elements generated with a Matlab code called CUMBIA (Montejo & Kowalsky, 2007). In addition, the Pivot Hysteretic Analysis parameters were selected to consider the effects of the cyclic loading on the energy dissipation. It was found that the distribution of the maximum absolute floor accelerations varied for each building since the five structures showed different behaviors. The results showed that it is not possible to find a match between the linear and nonlinear responses by only varying the damping ratio. Thus, estimating the absolute floor acceleration of a nonlinear building with a linear analysis and modifying the damping value is not feasible. It was found that when the guidelines of the ASCE 7-05 Standard are used to calculate the maximum absolute floor accelerations, they overestimate their values. With regard to the floor response spectra, it was observed that both for the linear and nonlinear cases, the peaks are associated to the natural periods of the principal modes of the structure. Furthermore, the behavior of these peaks is different for each of the floors, since it depends on the modes of the building, and therefore, on the magnitude of the maximum floor accelerations due to the earthquake. Finally the transfer functions obtained from a nonlinear analysis showed that, unlike in the linear case, the higher modes have a greater influence on the building’s acceleration response.
Keywords
Hormigón armado
Usage Rights
Persistent URL
Cite
Villalobos-Soto, C. (2016). Influencia del comportamiento inelástico de pórticos especiales de hormigón armado en la respuesta sísmica de componentes no estructurales [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/839