Show simple item record

dc.contributor.advisorCabrera-Ríos, Mauricio
dc.contributor.authorOrtiz-Rodriguez, Nicole J.
dc.date.accessioned2018-09-19T19:34:13Z
dc.date.available2018-09-19T19:34:13Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/20.500.11801/931
dc.description.abstractMathematical optimization is used to detect potential genetic differentially expressed genes and propose probable signaling structures common to Alzheimer (AD), Parkinson (PD) and Huntington’s Disease (HD). The characterizations of these three affections have been elusive in the literature, although their impact in society is projected to increase in the next decades worldwide. There are studies in the literature for each individual illness, but this work novelty is the study and comparison of all three disorders together. The search for the most correlated path among differentially expressed genes is carried out using network optimization formulations: Travelling Salesman Problem (TSP) and Minimum Spanning Tree (MST). For both, a set of differentially expressed genes is identified previously through multiple criteria optimization; a correlation coefficient is used to link every pair of genes.A cost model was developed with the information of the high yearly cost of the neurological diseases discussed in this work.en_US
dc.description.abstractUtilización de optimización matemática para detectar genes potenciales con diferenciación genética de expresión y proponer estructuras probables de señalización comunes en la enfermedad de Alzheimer (AD), Parkinson (PD) y Huntington (HD). Las caracterizaciones de estas afecciones son escasas en la literatura, su impacto en la sociedad proyecta aumentar en las próximas décadas mundialmente. Hay estudios para cada enfermedad individual, sin embargo la novedad es el estudio y la comparación de los tres trastornos juntos. La búsqueda de la vía más correlacionada entre los genes expresados diferencialmente se realiza utilizando formulaciones de optimización de redes: TSP (“Traveling Salesman Problem”) y MST (“Minimum Spanning Tree”). Para ambos, un conjunto de genes expresados diferencialmente se identifica previamente mediante la optimización de criterios múltiples; un coeficiente de correlación se utiliza para vincular cada par de genes. Con la información del costo anual de las enfermedades neurológicas se desarrolló un modelo de costo.en_US
dc.description.sponsorshipNIH MARC Assisting Bioinformatics Efforts at Minority Schools projecten_US
dc.language.isoenen_US
dc.subjectNeurological disordersen_US
dc.subjectTravelling Salesman Problemen_US
dc.subjectMinimum Spanning Treeen_US
dc.subject.lcshMathematical optimizationen_US
dc.subject.lcshGene expressionen_US
dc.subject.lcshNervous system--Diseasesen_US
dc.subject.lcshDNA microarraysen_US
dc.titleCommonalities in genetic signatures and signaling pathways in neurological disordersen_US
dc.typeThesisen_US
dc.rights.licenseAll rights reserveden_US
dc.rights.holder(c) 2017 Nicole Janice Ortiz-Rodriguezen_US
dc.contributor.committeeSeguel, Jaime
dc.contributor.committeeMéndez, Mayra
dc.contributor.representativeColón-Rivera, Celia
thesis.degree.levelM.S.en_US
thesis.degree.disciplineIndustrial Engineeringen_US
dc.contributor.collegeCollege of Engineeringen_US
dc.contributor.departmentDepartment of Industrial Engineeringen_US
dc.description.graduationYear2017en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses & Dissertations
    Items included under this collection are theses, dissertations, and project reports submitted as a requirement for completing a degree at UPR-Mayagüez.

Show simple item record

All rights reserved
Except where otherwise noted, this item's license is described as All Rights Reserved