


Abstract

A one parameter local group of isometries of Riemannian or more gen-

erally pseudo-Riemannian manifolds is generated by a Killing vector field

which is subjected to the commonly named Killing equations. The lat-

ter constitute an over determined system of first order partial differential

equations which are even linear and homogeneous. However, in general

such a system is not completely integrable.

A brief presentation of the well-known results on the existence of non-

trivial Killing vector fields (i.e. nontrivial solutions of Killing equations) is

provided. These results also suggest a method of constructing Killing vec-

tor fields, which consists basically of studying consequences of the so called

integrability conditions. That last part requires usually quite involved sym-

bolic computations and therefore can be aided by the appropriate computer

programs.

The method is applied to a class of pseudo Riemannian structures that

depends on two arbitrary holomorphic functions of one complex variable.

Some constraints on these functions arise as a consequence of the existence

of nontrivial Killing vector fields. The nature of these constraints and an

explicit form of a Killing field are presented as the final result.
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Resumen

Un grupo de isometŕıas de un parámetro de una variedad Riemanni-

ana o más generalmente de una variedad seudo- Riemanniana es genera-

do por un campo vectorial de Killing, el cual esta sujeto a las ecuaciones

comúnmente llamadas de Killing. Estas últimas se convierten en un sistema

sobredeterminado de ecuaciones diferenciales parciales de primer orden, las

cuales, también son lineales y homogéneas. En general este sistema no es

completamente integrable.

Se provee una presentación de los bien conocidos resultados de la exis-

tencia de campos vectoriales de Killing (esto es, las soluciones de las ecua-

ciones de Killing). Estos resultados sugieren un método de construcción

de campos vectoriales de Killing, el cual básicamente consiste de estudiar

las consecuencias de las aśı llamadas condiciones de integrabilidad. Esta

última parte requiere computaciones simbólicas y por lo tanto se usa un

programa de computación simbólica apropiado.

El método es aplicado a una clase de estructura seudo-Riemanniana que

depende de dos funciones holomórficas arbitrarias de una variable compleja.

Surgen algunas restricciones sobre estas funciones como consecuencia de

la existencia de campos vectoriales de Killing. La naturaleza de las res-

tricciones y una forma explicita de los campos de Killing son presentados

como el resultado final.
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Chapter 1

Introduction

“Differential Geometry has a long history as a field of Mathematics and yet its

rigorous foundation in the realm of contemporary mathematics is relatively new.

In fact, some “old” results still require to be reformulated in terms of Modern

Mathematics”1. Given any mathematical structure a question arises about a

group of its automorphisms. And so, for a Riemannian or a more general pseudo-

Riemannian manifold one asks about a group of transformations2 which preserve

inner products of tangent vectors. Such a group is called a group of isometries

of the underlying manifold. Riemannian manifolds are natural generalizations

of Euclidean spaces and originally they emerge in studies of a geometry of two

dimensional surfaces in a three dimensional Euclidean space. Pseudo-Riemannian

manifolds are their further abstraction.

Since a discovery of The Special Relativity Theory and later on The General

Relativity Theory, pseudo-Riemannian manifolds have become a basic ingredi-

ent of physical theories of space-times, in which the presence of a nontrivial

gravitational field is attributed to a nonzero curvature of the underlying pseudo-

Riemannian metric structure. The metric structure is in turn subject to the so

1[Kobayashi, 1963] p. v
2Let M be a C∞−manifold. A transformation of M is a diffeomorphism of M onto itself.
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called Einstein equations. One of many activities in that area is devoted to the

studies of special solutions of Einstein equations and in particular their geometric

properties. One of the standard questions asked then is that about a group of

isometries and their natural generalizations: groups of homothetic transforma-

tions and groups of conformal transformations.

In [Rózga, 2001] a class of metric structures is presented, whose properties

are the subject of this work. They are a particular case of nonexplicit solutions

of Einstein equations discussed in details in [Plebański, 1978]. They generalize

a class of solutions presented in [Plebański et al., 1998]. A further discussion of

that class is provided in [Plebański and Rózga, 2002]. A problem of solutions

of Killing equations for such metric structures is treated in [Rózga, 2002]. The

method that is outlined there can be employed also to study an analogous problem

for the metric structures of [Rózga, 2001].

With these as bases, the purpose of this work is to find an explicit form of

the so called “infinitesimal isometries” or “Killing vector fields” for the class

of pseudo-Riemannian structures presented in [Rózga, 2001]. By studying and

using existing methods associated with one-parameter (local) groups of isome-

tries of pseudo-Riemannian manifolds we determine the conditions under which

the generalized pseudo-Riemannian structures presented in [Rózga, 2001] admit

nontrivial one-parameter (local) groups of isometries.

In Chapter 2 we give a brief presentation of basic concepts such as vector fields,

tensor algebra, tensor fields, affine connection, parallelism, torsion and curvature

fields, and also, pseudo-Riemannian structures and some important identities.

In Chapter 3 we present some relevant tensors such as Riemann, Ricci, Ein-

stein and Weyl tensors. In Chapter 4 we present Killing structures, which includes

one parameter groups of transformations, definitions of Killing vector fields and

Killing Equations. We close this chapter with some illustrative examples.
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Finally in Chapter 5 we present the metric which is the principal subject of

this work, some geometric properties and its consequences. Also, we present the

method that we use to find explicit expressions for Killing vector fields and for

the functions which the metric and the Killing vector fields depend on. At the

end of this chapter we can find the results and a brief discussion.
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Chapter 2

Review of Literature

2.1 Introduction

We follow the basic definitions and notation used in [Kobayashi, 1963] and [Helgason, 1962].

Many of our definitions have two approaches. The local approach which helps us

to view what happens in an open neighborhood, and the general one, used in the

modern Differential Geometry.

During all our work we are using the Einstein summation convention of sum-

ming over repeated indices.

2.2 Basic Definitions

Let M be a topological space1. We assume that M satisfies the Hausdorff sepa-

ration axiom2, in this case, M is called a Hausdorff space.

An open chart on M is a pair (U,ϕ) where U is an open subset of M and ϕ

1[Munkres, 2000] p. 76
2The Hausdorff separation axiom states that any two different points in M can be separated

by disjoint open sets
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is an homeomorphism3 of U onto an open subset of Rm.

Let O ⊂ Rn and O′ ⊂ Rm be open subsets of two Euclidean spaces Rn and

Rm where n and m are the dimensions of the spaces. The mapping

ϕ : O → O′,

is called differentiable if the coordinates yj (ϕ (p)) of ϕ (p) are (indefinitely) dif-

ferentiable functions of coordinates ui (p) , for p ∈ O.

Definition 1 Let M be a Hausdorff space. A differentiable structure on M of

dimension m is a collection of open charts (Uα, ϕα)α∈A on M where ϕα(Uα) is

an open subset of Rm such that the following conditions are satisfied:

M1. M = ∪
α∈A

Uα.

M2. For each pair α, β ∈ A the mapping ϕβ ◦ ϕ−1
α is a differentiable mapping

of ϕα(Uα ∩ Uβ) onto ϕβ(Uα ∩ Uβ).

M3. The collection (Uα, ϕα)α∈A is a maximal family of open charts for which M1

and M2 hold.

A differentiable manifold (or C∞ manifold or simply manifold) of dimension

m is a Hausdorff space with a differentiable structure of dimension m. If M is

a manifold, a local chart on M or local coordinate system on M is by definition

a pair (Uα, ϕα) where α ∈ A. If p ∈ Uα and ϕα (p) = (u1 (p) , . . . , um (p)), the set

Uα is called a coordinate neighborhood of p and the numbers ui(p) are called local

coordinates of p. The mapping

ϕα : q 7→
(
u1 (q) , . . . , um (q)

)
, q ∈ Uα,

3Let A and B be topological spaces; f : A → B is called a homeomorphism between A and
B if and only if f is a continuous bijection with a continuous inverse. Also called a continuous
transformation.
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is often denoted by {u1, . . . , um} . Let f be a real-valued function on C∞manifold

M . The function f is called differentiable at a point p ∈ M if there exists a

local chart (Uα, ϕα) with p ∈ Uα such that the composite function f◦ ϕ−1
α is a

differentiable function on ϕα(U). The function f is called differentiable if it is

differentiable at each point p ∈M. By a differentiable curve of class Ck in M , we

shall mean a differentiable mapping of class Ck of a closed interval [a, b] into M.

2.3 Vector Fields and 1-Forms

This section starts with the concept of derivation which is useful to define a vector

field, and further a tangent vector. We also provide some important notation and

local expressions.

Definition 2 Let A be an algebra over a field K. A derivation of A is a

mapping B : A → A such that:

• B is a linear mapping; that is, B (αf + βg) = αBf+βBg for α, β ∈ K,

f, g ∈ A;

• B (fg) = f (Bg) + (Bf) g for f, g ∈ A

Definition 3 A vector field X on a C∞ manifold M is a derivation of the algebra

F(M)4.

Let us denote the set of all vector fields on M by D1(or D1(M) ).

Now, we shall define a tangent vector (or simply a vector ) at a point p of M.

4F (M) ≡ C∞ (M) denotes the set of all differentiable functions on M. See [Helgason, 1962]
p.5
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Definition 4 Let γ (t) be a curve of class C1, a ≤ t ≤ b, such that γ (to) = p.

The vector tangent to the curve γ (t) at p is a mapping

X : F (p) → R

defined by

Xf =

(
df (γ (t))

dt

)
t=0

.

Given any curve γ (t) with p = γ (to) , let uj = γj (t) , j = 1, ...,m, be its

equations in terms of the local coordinate system {u1, ..., um} then(
df (γ (t))

dt

)
t=0

=
∑

j

(
∂f

∂uj

)
p

(
dγj (t)

dt

)
t0

.

In other words, Xf is the derivative of f in the direction of the curve γ (t) at

t = to.The vector X satisfies the following conditions:

1. X is a linear mapping of F (p) into R;

2. X (fg) = f (p)X (g) + g (p)X (f) , for all f, g ∈ F(p).

Definition 5 Now, let Xp denote the linear mapping

Xp : F(p) → R,

Xp : f 7→ (Xf) (p) ,

for p ∈M and X ∈ D1. Then the set

Mp =
{
Xp : X ∈ D1 (M)

}
,

is called the tangent space to M at p, and its elements are called tangent vectors

to M at p.

Definition 6 A vector field X on a manifold M is an assignment of a vector Xp

to each point p of M.

7



In terms of a local coordinate system {u1, . . . , um} , a vector field X may

be expressed by X =ξj
(

∂
∂uj

)
, where ξj are functions defined in the coordinate

neighborhood, called the components of X with respect to {u1, . . . , um} .

Now, for vector fields we can define the Lie bracket [X,Y] as the following

derivation of F(M); for X and Y in D1(M):

[X,Y] f = X(Yf)−Y(Xf).

In local coordinate system {u1, . . . , um} , we write

X =ξj

(
∂

∂uj

)
, Y =ηj

(
∂

∂uj

)
.

Then,

[X,Y] f =

[
ξk

(
∂ηj

∂uk

)
− ηk

(
∂ξj

∂uk

)](
∂f

∂uj

)
. (2.1)

Therefore, [X,Y] is a vector field whose components with respect to {u1, . . . , um}

are given by
[
ξk
(

∂ηj

∂uk

)
− ηk

(
∂ξj

∂uk

)]
, j = 1, ...,m.

As is customary we shall often write θ(X)Y = [X,Y] . The operator θ(X) is

called the Lie Derivate with respect to X.

In particular, we have the Jacobi Identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0, (2.2)

for X,Y,Z ∈D1(M) or, otherwise written

θ(X) ([Y,Z]) = [θ(X)Y,Z] + [Y,θ(X)Z] .

The tangent space Mp has its dual5 vector space M∗
p , which is called the vector

space of covectors at p.

5Let A be a commutative ring with identity element, E a module over A. Let E∗, called the
dual of E, denote the set of all A− linear mappings of E into A.
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Definition 7 An assignment of a covector to each point p ∈M is called 1-form

or differential form of degree 1. For each function f ∈ F(M), the total differential

(df)p of f at p is defined by

〈(df)p,X〉 = Xf for X ∈ Mp,

where 〈, 〉 denotes the value of the first entry on the second entry as a linear func-

tional on Mp or the value of the second entry as a linear functional on M∗
p , (since

M∗∗
p = Mp).

If {u1, . . . , um} is a local coordinate system in a neighborhood of p, then the

total differentials (du1)p, . . . , (du
m)p form a basis for M∗

p . In fact, they form a

dual basis of the basis (∂/∂u1)p, . . . , (∂/∂u
m)p for Mp.

In a coordinate neighborhood of p, every 1-form ω can be uniquely written as

ω = fjdu
j,

where fj are certain functions defined in that neighborhood and called the compo-

nents of ω with respect to {u1, . . . , um}. The 1-form ω is said to be differentiable

if fj are differentiable (this conditions is independent on the choice of a local

coordinate system).

A 1-form can be defined also as an F(M)−linear mapping of the F(M)−module

of the vector fields D1(M) into F(M). The two definitions are related by

(ω(X))p = 〈ωp,Xp〉 , X ∈D1(M), p ∈M.

2.4 Tensor Fields

Now we shall extend the notions of vector fields and 1-forms to tensor fields with

the help of the following notation. Let Ds denote the F-module of all F-multilinear

9



mappings of D1 ×D1 × . . .×D1︸ ︷︷ ︸
s times

into F , where s ≥1 is an integer. Similarly

Dr denotes the F-module of all F-multilinear mappings D1 ×D1 × . . .×D1︸ ︷︷ ︸
r times

into

F. More generally, let Dr
s denote the F-module of all F-multilinear mappings

of D1 × . . .×D1︸ ︷︷ ︸
r times

×D1 × . . .×D1︸ ︷︷ ︸
s times

into F. We often write Dr
s(M) instead of Dr

s.

We have Dr
0 = Dr, D0

s = Ds, and we put D0
0 = F.

A tensor field T on M of type (or degree) (r, s) is by definition an element

of Dr
s(M). It is said to be contravariant of degree r, and covariant of degree s.

In particular, the tensor fields of type (0, 0) are differentiable functions,a tensor

field of type (1, 0) is a vector field, and of type (0, 1) is a 1-form.

Now for p ∈M , we define Dr
s(p), a set of all R-multilinear mappings of

M∗
p ×M∗

p × . . .×M∗
p︸ ︷︷ ︸

r times

×Mp ×Mp × . . .×Mp︸ ︷︷ ︸
s times

,

into R. Dr
s(p) is a vector space over R and it is isomorphic with the tensor

product (defined in Section (2.4.1))

Mp ⊗Mp ⊗ . . .⊗Mp︸ ︷︷ ︸
r times

⊗ M∗
p ⊗M∗

p ⊗ . . .⊗M∗
p︸ ︷︷ ︸

s times

,

denoted shortly by Dr
s(p) = ⊗rMp ⊗s M∗

p . We also put D0
0(p) = R.

Now given T ∈ Dr
s(M) we can define for each p ∈M an element Tp ∈ Dr

s(p)

according to

Tp

(
(θ1)p , . . . , (θr)p , (Z1)p , . . . , (Zs)p

)
= T(θ1, . . . , θr, Z1, . . . , Zs)(p),

where θi ∈ D1(M), Zj ∈ D1(M), i = 1, . . . , r, j = 1, . . . , s.

The same equations permit us to identify Dr
s(M) with the set of corresponding

differentiable mappings, from M into ∪p∈MDr
s(p), providing us therefore with

alternative definition of a tensor field; as it was in case of vector fields and r−

forms.
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2.4.1 Algebraic Operations on Tensor Fields

There are two important algebraic operations on tensor fields, which arise from

the corresponding operations on tensors (at a point). They are the tensor product

and contractions.

Tensor product

We define the tensor product of two vector spaces U and V , denoted by U ⊗ V

and also called the tensor direct product as follows. Let M(U, V ) be the vector

space which has the set U × V as a basis, i.e., the vector space generated by the

pairs (u, v) where u ∈ U and v ∈ V. Let N be the vector subspace of M(U, V )

generated by elements of the form

(u+ u′, v)− (u, v)− (u′, v) , (u, v + v′)− (u, v)− (u, v′) ,

(ru, v)− r (u, v) , (u, rv)− r (u, v) ,

where u, u′ ∈ U, v, v′ ∈ V and r any scalar . The definition is the same no

matter which scalar field is used. We set U ⊗ V = M(U, V )/N. For every pair

(u, v) considered as an element of M(U, V ), its image by the natural projection

M(U, V ) → U⊗V will be denoted by u⊗v. Define the canonical bilinear mapping

φ of U × V into U ⊗ V by:

φ (u, v) = u⊗ v, for (u, v) ∈ U × V.

The following rules are satisfied,

(u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v,

u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2,

r (u⊗ v) = (ru)⊗ v = u⊗ (rv) .

One basic consequence is that

0⊗ v = u⊗ 0 = 0.

11



A vector basis{ui} of U and {vj} of V gives a basis for U ⊗V , namely {ui ⊗ vj},

for all pairs (i, j). An arbitrary element of U ⊗ V can be written uniquely as∑
ai,jui ⊗ vj, where ai,j are scalars. If U is a n dimensional and V is a k dimen-

sional vector space, then U ⊗ V has dimension nk.

The tensor product ⊗ of two tensor fields S ∈ Dr
s and T ∈ Dk

l is defined as

F−bilinear mapping (S, T ) → S ⊗ T of Dr
s×Dk

l into Dr+k
s+l , which sends

(X1 ⊗ · · · ⊗Xr ⊗X∗
1 ⊗ · · · ⊗X∗

s , Z1 ⊗ · · · ⊗ Zk ⊗ Z∗1 ⊗ · · · ⊗ Z∗l ) ∈ Dr
s×Dk

l ,

into

(X1 ⊗ · · · ⊗Xr ⊗ Z1 ⊗ · · · ⊗ Zk ⊗X∗
1 ⊗ · · · ⊗X∗

s ⊗ Z∗1 ⊗ · · · ⊗ Z∗l ) ∈ Dr+k
s+l ,

for Xi, Zj ∈ D1 and X∗
q , Z

∗
h ∈ D1. In terms of components, if S is given by

Si1···ir
j1···js

and T is given by Tm1···mk
n1···nl

, then

(S ⊗ T )
i1···ir+k

j1···js+l
= Si1···ir

j1···js
T

ir+1···ir+k

js+1···js+l
.

We define the tensor algebra D = D(M) over M to be the direct sum of the

F−modules Dr
s(M). D(M) =

∞
⊕

r,s=o
Dr

s(M), so that an element of D is of the form∑∞
r,s=0K

r
s , where Kr

s ∈ Dr
s(M) are zero except for a finite number of them. Then

D(M) is an algebra over F, the product ⊗ being defined pointwise, i.e., if K,

L ∈ D(M) then

(K ⊗ L)p = Kp ⊗ Lp, for all p ∈M.

Similarly, if p ∈M we consider the direct sum D(p) =
∞
⊕

r,s=o
Dr

s(p) which is an

associative algebra over the ring R. Therefore, it is a tensor algebra over Mp. The

submodules

D∗ =
∞∑

r=0

Dr, and D∗ =
∞∑

s=0

Ds,

12



are subalgebras of D and the subspaces

D∗ (p) =
∞∑

r=0

Dr (p) , and D∗ (p) =
∞∑

s=0

Ds (p) ,

are subalgebras of D (p) .

Contraction

Let p ∈ M, and r, s, i, j be integers such that r, s, i, j ≥ 1, 1 ≤ i ≤ r,

and 1 ≤ j ≤ s. Consider the R-linear mapping Ci
j : Dr

s(p) → Dr−1
s−1(p) defined by

Ci
j(e1⊗ . . .⊗er⊗f1⊗ . . .⊗fs) = 〈ei, fj〉 (e1⊗ . . . êi . . .⊗er⊗f1⊗ . . .⊗ f̂j⊗ . . .⊗fs),

where e1, . . . , er ∈ Mp, f1, . . . fs ∈ M∗
p . (The symbol̂ over a letter means that

the letter is missing). Now, there exists a unique F-linear mapping Ci
j : Dr

s(M) →

Dr−1
s−1(M) such that

(Ci
j(T ))p = Ci

j(Tp),

for all T ∈ Dr
s(M) and all p ∈M . This mapping satisfies the relation

Ci
j(X1⊗. . .⊗Xr⊗ω1⊗. . .⊗ωs) = 〈Xi, ωj〉 (X1⊗. . . X̂i . . .⊗Xr⊗ω1⊗. . . ω̂j⊗. . .⊗ωs),

for all X1, . . . , Xr ∈ D1, ω1, . . . , ωs ∈ D1. The mapping Ci
j is called the contrac-

tion of i-th contravariant index and the j-th covariant index.

2.5 The Grassmann Algebra

Let ∧sD1 (or ∧sD1 (M)) be the set of alternate F−multilinear mappings of

D1 ×D1 × . . .×D1︸ ︷︷ ︸
s times

into F, where s is an integer ≥ 1 and M denotes a C∞

manifold. We put ∧0D1 = F, ∧1D1 = D1 and let ∧D1 denote the direct

sum ∧D1 =
∑∞

s=0 ∧sD1 of the F-modules ∧sD1. The elements of ∧D1are called

13



exterior differential forms on M. The elements of ∧sD1 are called differential

s− forms, or just s− forms.

Now we will define a mapping called Alternation, denoted by A. Let Gs

denote the group of permutations of the set {1, . . . , s} . Each σ ∈ Gs induces an

F−linear mapping of D1 ×D1 × . . .×D1 onto itself, given by

σ : (X1, . . . , Xs) 7→
(
Xσ−1(1), . . . , Xσ−1(s)

)
,

(
Xi ∈ D1

)
.

Thus, for each Ω ∈ Ds, the mapping Ω ◦ σ−1 is well defined and the mapping

σ · Ω : Ω 7→ Ω ◦ σ−1

is a one-to-one F−linear mapping of Ds onto itself. Let ε (σ) = 1 or −1 depend-

ing if σ is an even or an odd permutation. Consider the linear transformation

As : Ds → Ds

As (Ωs) =
1

s!

∑
σ∈Gs

ε (σ)σ · Ωs, Ωs ∈ Ds.

If s = 0, we put As (Ωs) = Ωs. We extend As to an F−linear mapping

A : D∗ → D∗

by

A (Ω) =
∞∑

s=0

As (Ωs)

where Ω =
∑∞

s=0 Ωs, Ωs ∈ Ds. For any θ, ω ∈ ∧D1 we can now define the exterior

product

θ ∧ ω = A (θ ⊗ ω) .

this turn ∧D1 into an associative algebra. The module ∧D1 of alternate F −

multilineal functions with the exterior product is called the Grassmann algebra

of the manifold M.

14



For each p ∈ M we can also define the Grassmann algebra ∧D1 (p) of the

tangent space Mp. The elements of ∧D1 (p) are the alternate, R−multilinear,

real-valued functions on Mp and the product (also denoted by ∧) satisfies

θp ∧ ωp = (θ ∧ ω)p , θ, ω ∈ ∧D1.

This turns ∧D1 (p) in an associative algebra containing the dualM∗
p . If θ, ω ∈M∗

p ,

then

θ ∧ ω = −ω ∧ θ. (2.3)

If θ1, . . . , θl ∈M∗
p and ωi =

∑l
j=1 aijθ

j, where aij ∈ R, then, as a consequence of

(2.3)

ω1 ∧ . . . ∧ ωl = det (aij) θ
1 ∧ . . . ∧ θl.

Now we write some important relationships. Let f, g ∈ F (M) , θ ∈ ∧rD1,

ω ∈ ∧sD1, Xi ∈ D1. Then,

f ∧ g = fg,

(f ∧ θ) (X1, ..., Xr) = fθ (X1, ..., Xr) ,

(ω ∧ g) (X1, ..., Xs) = gω (X1, ..., Xs) ,

(θ ∧ ω) (X1, ..., Xr+s) =

1

(r + s)!

∑
σ∈Gr+s

ε (σ) θ
(
Xσ(1), ..., Xσ(r)

)
ω
(
Xσ(r+1), ..., Xσ(r+s)

)
,

θ ∧ ω = (−1)rs ω ∧ θ.

2.5.1 Exterior Differentiation

Let ∧D (M) be the Grassmann algebra over M . The Exterior differentiation d

can be characterized6 as follows:

1. d is a unique R−linear mapping of ∧D (M) into itself such that d (∧rD) ⊂

∧r+1D;

6[Helgason, 1962] p.20
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2. For any function f ∈ ∧0D1, df is the total differential, i.e., the 1-form given

by df (X) = Xf

3. If ω ∈ ∧rD1 and λ ∈ ∧sD1, then

d (ω ∧ λ) = dω ∧ λ+ (−1)r ω ∧ dλ;

4. d ◦ d = 0.

In terms of a local coordinate system, if

ω =
∑

i1<···<ir

fi1···irdu
i1 ∧ · · · ∧ dui1r ,

then

dω =
∑

i1<···<ir

dfi1···ir ∧ dui1 ∧ · · · ∧ dui1r .

Now, we introduce an important concept in our work, the affine connection.

2.6 Affine Connection

Definition 8 An affine connection on a manifold M is a rule ∇ which assigns

to each X ∈ D1(M) a linear mapping ∇X of vector space D1(M) into itself

satisfying the following conditions:

(∇1) ∇X(Y + Z) = ∇XY + ∇XZ;

(∇2) ∇fX+gYZ = f ·∇XZ + g ·∇YZ;

(∇3) ∇X(fY ) = f ·∇XY+(Xf)Y, for

all f, g ∈ F (M) , X, Y, Z ∈ D1(M).

The operator ∇X is called Covariant Differentiation with respect to X. ∇X

can be extended to tensor fields.
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Theorem 1 There exists a unique extension of ∇X : D1 → D1, to the tensor

algebra D(M), denoted by the same symbol ∇X , which possesses the following

properties:

(i) ∇X is a derivation of the tensor algebra D(M).

(ii) ∇X preserves types of tensors.

(iii) ∇X commutes with contractions.

Example 1 Let g ∈ D2, X, Y, Z ∈ D1, then by(iii) and (i)

∇Xg(Y, Z) = ∇XC
1
1C

2
2 [(g ⊗ Y ⊗ Z)]

= C1
1C

2
2 [∇X (g ⊗ Y ⊗ Z)]

= C1
1C

2
2 [(∇Xg)⊗ Y ⊗ Z + g ⊗∇XY ⊗ Z + g ⊗ Y ⊗∇XZ] ,

Since,∇Xg(Y, Z) = Xg (Y, Z) . Thus,

Xg (Y, Z) = (∇Xg)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ), (2.4)

where C1
1 , C

2
2 are the respective contractions.

As a simple application of Theorem 1 we obtain a relation between∇X ω and

∇X Y ,where X, Y ∈ D1 and ω ∈ D1. Indeed, by (i)

∇X (Y ⊗ ω) = (∇XY )⊗ ω + Y ⊗∇Xω,

so (iii) implies

Xω (Y ) = ω (∇XY ) + (∇Xω) (Y ) . (2.5)

Next, we discuss local representations of covariant derivatives of tensor fields.

Let (U, {u1, . . . , um})) be a local coordinate system on M , and let ∂
∂u1 , . . . ,

∂
∂um

be the natural basis of Mp, and du1, . . . , dum its dual basis with respect to these
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coordinates, where p is a point of U . Then the connection coefficients Γk
ij with

respect to {u1, . . . , um} are defined by

∇∂/∂ui

(
∂

∂uj

)
= Γk

ij

∂

∂uk
. (2.6)

Consequently, by (2.5)

∇∂/∂ui

(
duj
)

= −Γk
ijdu

k.

Let X ∈ D1 and ω ∈ D1. We can write

X = ξi ∂

∂ui
and ω = αidu

i for 1 ≤ i ≤ m.

Denoting ∇∂/∂ui by ∇i, we obtain,

∇jX = ∇j

(
ξi ∂

∂ui

)
= ξkΓi

jk

∂

∂ui
+
∂ξi

∂uj

∂

∂ui
.

A semicolon is used to denote covariant differentiation with respect to a natural

vector basis. Thus, the components of ∇jX, denoted by ξi
;j, are of the form

ξi
;j =

∂ξi

∂uj
+ ξkΓi

jk, (2.7)

and the covariant derivate of a vector field X = ξi ∂
∂ui in direction of a vector field

Y = ηj ∂
∂uj at p is given by

∇YX =
(
ηjξi

;j

)( ∂

∂ui

)
.

Similarly,

∇jω = ∇j

(
αidu

i
)

=
∂αi

∂uj
dui − αkΓ

k
jidu

i,

thus, the components of ∇jω, denoted by αi;j, are

αi;j =
∂αi

∂uj
− αkΓ

k
ji. (2.8)

The extension of the above argument to tensor field T of type (r, s) is straight-

forward. The covariant derivate of the tensor field whose local components are
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T i1...ir
j1...js

has the components denoted by T i1...ir
j1...js;k

and they are

T i1...ir
j1...js;k

=
∂T i1...ir

j1...js

∂uk
+

r∑
h=1

Γih
klT

i1...ih−1lih+1···ir
j1...js

−
s∑

g=1

Γl
kjg
T i1...ir

j1...jg−1ljg+1···js
.

(2.9)

Consequently for all T ∈ Dr
s,

(∇Y T )p =
(
ηkT i1...ir

j1...js;k

)
p
·
(

∂

∂ui1

)
p

⊗ . . .⊗
(

∂

∂uir

)
p

⊗
(
duj1

)
p
⊗ . . .⊗

(
dujs

)
p
.

For any vector field X, the tensor field ∇XT is also of degree (r, s). We have

thus a rule which associates a tensor field of degree (r, s) to each vector field −i.e.,

a tensor field of degree (r, s+ 1). We denote this tensor field by ∇T.

Indeed, let us assume that T ∈ Dr
s (M) . Then we define ∇T ∈ Dr

s+1 (M)

according to,

(∇T ) (ω1, · · · , ωr, , X, Y1, . . . , Ys) = (∇XT ) (ω1, · · · , ωr, Y1, . . . , Ys) , (2.10)

for all X, Y1, . . . , Ys ∈ D1 (M) and ω1, · · · , ωr ∈ D1 (M) , where

(∇XT ) (ω1, · · · , ωr, Y1, . . . , Ys) = XT (ω1, · · · , ωr, Y1, . . . , Ys)

−
r∑

i=1

T (ω1, · · · ,∇Xωi, · · · , Ys) +
s∑

j=1

T (ω1, · · ·∇XYj, · · · , Ys) (2.11)

2.7 Parallelism

Soon we will see that the concept of affine connection is intimately tied to the

geometric concept of parallelism. Let M be a C∞ manifold. A curve in M is a

regular7 mapping of an open interval I ⊂ R into M . The restriction of a curve to

a closed subinterval is called a curve segment. The curve segment is called finite

7Let M, N be differentiable manifolds. A mapping φ : M → N is called regular at p ∈ M if
φ is differentiable at p and φ∗p is one-to-one mapping of Mp into Nφ(p). φ∗ is defined in Section
4.1
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if the interval is finite. Let γ : t→ γ(t) (t ∈ I) be a curve in M . Differentiation

with respect to the parameter will often be denoted by a dot (·).

If the vector fields X and Y have local representations

X = X i ∂

∂ui
and Y = Y j ∂

∂uj
on U ,

then ∇XY has a local representation

∇XY =
∑

k

(∑
i

X i∂Y
k

∂ui
+
∑
i,j

Γk
ijX

iY j

)
∂

∂uk
on U. (2.12)

The vector field ∇XY is said to be the covariant derivative of Y with respect

to X. If X = ∂
∂ui , then the components of ∇X(Y ) = ∇i(Y ) are denoted by Y k

;i

and

Y k
;i =

∂Y k

∂ui
+ Γk

ijY
j.

Suppose now that to each t ∈ I it is associated a vector Y (t) ∈Mγ(t). Assume

Y (t) vary differentiably with t. Let X (t) = γ̇ (t) (t ∈ I). Then there exist vector

fields X, Y ∈ D1 such that

Xγ(t) = X (t) , and Yγ(t) = Y (t) (t ∈ J) .8

The family of tangent vectors Y (t) = Y i (t) ∂
∂ui , (t ∈ J) is said to be parallel with

respect to γJ ( or parallel along γJ ) if

(∇XY )γ(t) = 0, (2.13)

for all t ∈ J. To show that this definition is independent of the choice of X and

Y ∈ D1, we express (2.13) in coordinates {u1, . . . , um}. For simplicity we put

ui(t) = ui(γ(t)), X i(t) = X i(γ(t)), Y i(t) = Y i(γ(t)), (t ∈ J), (1 ≤ i ≤ m).

8J is a compact subinterval of I such that the finite curve segment γJ : t → γ (t) (t ∈ J)
has no double points and such that γ (J) is contained in a coordinate neigborhood U.
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Then X i(t) = u̇i(t); X and Y being as before and using the chain rule in (2.12)

we obtain
dY k

dt
+ Γk

ij

dui

dt
Y j = 0 (t ∈ J) . (2.14)

This equation involves X and Y only through their values on the curve. Then

the condition for parallelism is independent of the choice of X and Y .

Definition 9 Let γ : t → γ(t) (t ∈ I) be a curve in M . The curve γ is called

geodesic if the family of tangent vectors γ̇(t) is parallel with respect to γ. In other

words, γ is geodesic if

∇γ̇ γ̇ = 0. (geodesic equation)

A geodesic γ is called maximal if it is not a proper restriction of any geodesic.

The geodesic equation may be expressed as a system of m second order ordi-

nary differential equations. Suppose γJ is a finite geodesic segment contained in

a coordinate neighborhood U where the coordinates {u1, . . . , um} are valid. Then

the equation 2.14 implies

d2uk

dt2
+ Γk

ij

dui

dt

duj

dt
= 0 (t ∈ J) . (geodesic equation in coordinates)

Finally, a vector field X is called geodesic if

∇XX = 0.

2.8 Torsion and Curvature Fields

Let M be a manifold with an affine connection ∇. The torsion tensor T of ∇ is

the F-bilinear function T : D1×D1 → D1 given by

T (X,Y ) = ∇XY −∇YX − [X, Y ], (torsion tensor)
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for all X, Y ∈ D1(M). In particular,

T (fX, Y ) = T (X, fY ) = fT (X, Y ),

for f ∈ F (M) . Because of that the value T (X, Y )|p depends only on the values

of Xp and Yp. Consequently, T determines a bilinear mapping Mp ×Mp → Mp

at each point p ∈ M. Using the skew symmetry ([X,Y ] = −[Y,X]) of the Lie

bracket for vector fields it is easy to see that T (X, Y ) = −T (Y,X). Hence T

is skew symmetric. Let ∂
∂u1 , . . . ,

∂
∂um be the natural basis with respect the local

coordinates {u1, . . . , um}. Since
[

∂
∂ui ,

∂
∂uj

]
= 0 for all 1 ≤ i, j ≤ m, it follows that

T

(
∂

∂ui
,
∂

∂uj

)
=
(
Γk

ij − Γk
ji

) ∂

∂uk
.

Clearly, the torsion tensor provides a measure of the nonsymmetry of the con-

nection coefficients. Hence, T = 0 if and only if these coefficients are symmetric

in their subscripts. An affine connection ∇ with T = 0 is said to be torsion free

or symmetric.

The curvature R of ∇ is a function which assigns to each pair X, Y ∈ D1 the

F-linear mapping R(X, Y ) : D1→ D1 given by

R(X, Y )Z = ∇X∇YZ −∇Y ∇XZ −∇[X,Y ]Z, (curvature)

for all Z ∈ D1(M). The curvature R provides a measure of the noncommutativity

of ∇X and ∇Y . The torsion and the curvature represent tensor fields. Note that

R have the following properties: R(X, Y )Z = −R(Y,X)Z and R(fX, gY )hZ =

fghR(X, Y )Z for all f, g, h ∈ F (M) , X, Y, Z ∈ D1(M).

Indeed, the torsion tensor field is defined as an F-multilinear mapping

T : D1×D1×D1 → F (M) ,

by,

T (ω,X, Y ) = ω(T (X, Y )),
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for all X, Y ∈ D1 and ω ∈ D1,which is an element of D1
2.

T is given in local coordinates by

T = T k
ij

∂

∂uk
⊗ dui ⊗ duj,

where

T k
ij = Γk

ij − Γk
ji. (torsion components)

Similarly, the curvature tensor field is defined as an F-multilinear mapping

R : D1×D1×D1×D1 → F (M)

R : (ω, Z, X, Y ) 7→ ω(R(X, Y )Z),

according to

R(ω,Z,X, Y ) = ω (R(X, Y )Z) , (2.15)

for all X, Y, Z ∈ D1 and ω ∈ D1. Therefore R is an element of D1
3.

In local coordinates R is given by

R = Ri
jkl

∂

∂ui
⊗ duj ⊗ duk ⊗ dul,

where the curvature components Ri
jkl are of the form,

Ri
jkl =

∂Γi
lj

∂uk
−
∂Γi

kj

∂ul
+
(
Γa

ljΓ
i
ka − Γa

kjΓ
i
ma

)
. (2.16)

Thus, the tensor fields T and R are of type (1, 2) and (1, 3), respectively.

Notice that Ri
jkl = −Ri

jlk. Furthermore, if X = X i ∂
∂ui , Y = Y i ∂

∂ui , Z =

Zi ∂
∂ui and ω = ωidu

i, then

R(X,Y )Z = Ri
jklZ

jXkY l ∂

∂ui
,

and,

R(ω,Z,X, Y ) = ω (R(X, Y )Z) = Ri
jklωiZ

jXkY l.
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Consequently, one has R
(
dui, ∂

∂uj ,
∂

∂uk ,
∂

∂ul

)
= Ri

jkl.

Let p ∈ M and suppose X1, . . . , Xm is a basis for the vector fields in some

neighborhood Np of p, that is, each vector field X on Np can be written as

X =
∑

i fiXi where fi ∈ F(Np). We define the functions Γk
ij, T

k
ij, R

k
lij on Np

by the formulas

∇Xi
Xj = Γk

ijXk.

T (Xi, Xj) = T k
ijXk.

R(Xi, Xj)Xl = Rk
lijXk.

2.9 The Pseudo-Metric Structure and the Rie-

mannian Connection

A pseudo–Riemannian metric g for a manifold M is a smooth symmetric tensor

field of type (0, 2) onM which assigns to each point p ∈M a nondegenerate9 inner

product gp : Mp ×Mp → R of signature (−, . . . ,−,+, . . . ,+) . If the components

of g in local coordinates are gij, then the nondegeneracy assumption is equivalent

to the condition that the determinant of the matrix (gij) is nonzero.

Definition 10 Let M be a C∞-manifold. A pseudo-Riemannian structure on M

is a tensor field g (or pseudo–Riemannian metric g) of type (0,2) which satisfies:

(a) g(X, Y ) = g(Y,X) (symmetric)

(b) For each p ∈M , gp is a nondegenerate bilinear form on Mp ×Mp.

9Here nondegenerate means that for each nontrivial vector v ∈ Mp there is some w ∈ Mp

such that gp(v, w) 6= 0.
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A pseudo Riemannian manifold is a connected C∞-manifold with a pseudo-

Riemannian structure. If gp is positive definite for each p ∈ M , we speak of a

Riemannian structure and Riemannian manifold.

If the matrix (gij) has s negative eigenvalues and r = n− s positive eigenval-

ues, then the signature of g will be denoted (r, s). For each fixed p ∈ M , there

exist local coordinates (U, {u1, . . . , um}) such that gp = g|Mpcan be represented

as the diagonal matrix diag {−1, . . . ,−1, 1, . . . , 1} . For each pseudo-Riemannian

manifold (M, g) there is an associated pseudo-Riemannian manifold (M,−g) ob-

tained by replacing g with −g. Aside from some minus change of sign, there is

no essential difference between (M, g) and (M,−g). Thus, results for spaces of

signature (s, r) may always be translated into corresponding results for spaces of

signature (r, s) by appropriate sign changes and inequality reversals.

Theorem 2 On a pseudo-Riemannian manifold there exists one and only one

affine connection satisfying the following two conditions:

(i) The torsion tensor T is 0, i.e., ∇XY −∇YX = [X, Y ] for all X, Y ∈ D1;

(ii) The parallel displacement preserves the inner product on the tangent spaces,

i.e.,∇Xg = 0, X ∈ D1.

A proof of this theorem can be found in [Helgason, 1962] p.48

From (2.4), the local representation form of (i) and (ii) is

∇igjk = 0 =
∂gjk

∂ui
− Γl

ijglk − Γl
ikgjl,

so that,
∂gjk

∂ui
= Γl

ijglk + Γl
ikgjl.

Now due to (i) , the symmetry of the connection coefficients, we have:

∂gjk

∂ui
+
∂gki

∂uj
− ∂gij

∂uk
= 2Γl

ijglk.
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So the connection coefficients are,

Γl
ij =

1

2
gkl

(
∂gkj

∂ui
+
∂gik

∂uj
− ∂gij

∂uk

)
, (2.17)

where gij are defined by

giagaj = δi
j For 1 ≤ i, j ≤ m,

and represent local components of the (2, 0) tensor called the inverse pseudo-

metric tensor and denoted further by g−1.

2.10 Some Important Identities

2.10.1 Bianchi Identities

The curvature R and the torsion T satisfy the so called Bianchi identities. The

general form of the first Bianchi identity is

R (X, Y )Z +R (Y, Z)X +R (Z,X)Y =

T (T (X, Y ) , Z) + T (T (Y, Z) , X) + T (T (Z,X) , Y )

+ (∇XT ) (Y, Z) + (∇Y T ) (Z,X) + (∇ZT ) (X, Y ) , (2.18)

Similarly, the second Bianchi identity

(∇ZR) (X, Y ) + (∇XR) (Y, Z) + (∇YR) (Z,X) +R (T (X, Y ) , Z)

+R (T (Y, Z) , X) +R (T (Z,X) , Y ) = 0 (2.19)

A particular case occurs when the affine connection is torsion free. Then the first

and second Bianchi identities become simpler,

R (X, Y )Z +R (Y, Z)X +R (Z,X)Y = 0, (2.20)

and
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(∇ZR) (X, Y ) + (∇XR) (Y, Z) + (∇YR) (Z,X) = 0 (2.21)

respectively.

In local coordinates,

Rl
ikj +Rl

jik +Rl
kji = 0 (first Bianchi identity)

Rl
kji;h +Rl

khj;i +Rl
kih;j = 0, (second Bianchi identity)

since Γl
ji = Γl

ij. A demonstration of those identities can be found in [Okubo, 1987]

p.130

2.10.2 Ricci Identity

The second mixed covariant derivatives of tensor fields do not commute. In fact,

let ω = ωidu
i be an arbitrary 1-form, a computation shows that

ωk;ij − ωk;ji = Rl
kijωl − ωk;lT

l
ij. (2.22)

Equation (2.22) is referred to as Ricci Identity.

In the case where the affine connection is torsion free the Ricci Identity become

as follows,

ωk;ij − ωk;ji = Rl
kijωl. (2.23)

We arrive at equation (2.23) from the commutativity of partial derivatives,

the symmetry of connection coefficients, the Leibnitz rule of differentiation, and

finally, from the definition of curvature R, more specifically from the curvature

components equation (2.16). Similarly, from the definition of curvature R,we can

achieve the Ricci identity for vector fields.
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More generally, we can get the Ricci identity for a tensor S of type (r, s) .

Si1...ir
j1...js;kl − Si1...ir

j1...js;lk
=

s∑
a=1

Si1...ir
j1...ja−1mja+1···js

Rm
jakl

−
r∑

b=1

S
i1...ib−1mib+1···ir

j1...js
Rib

mkl − Si1...ir
j1...js;m

Tm
kl. (2.24)

When covariant differentiations are used in place of ordinary differentiations, the

Ricci’s identity must be used in place of the ordinary condition of commutativity

for ordinary differentiations. If covariant differentiation is applied to (2.9) we

obtain the second covariant derivative of T in components T i1...ir
j1...js;lk

. These

quantities are not symmetric in the indices k and l as in the case of ordinary

second derivatives. In torsion-free case (2.24) is reduced to:

Si1...ir
j1...js;kl − Si1...ir

j1...js;lk
=

s∑
a=1

Si1...ir
j1...ja−1mja+1···js

Rm
jakl

−
r∑

b=1

S
i1...ib−1mib+1···ir

j1...js
Rib

mkl. (2.25)

We can get a detailed explanation of (2.23) in [Detweiler, 2003] and for (2.25) in

[Goldberg, 1970]

2.11 Natural Isomorphism of Tangent and Cotan-

gent Spaces and Induced Isomorphisms

Let (M, g) be a pseudo-Riemannian m dimensional manifold. Let p be a fixed

point of M and Mp, M
∗
p the corresponding tangent and cotangent spaces.

We define the linear mapping

[ : Mp →M∗
p ,

according to

[ (X) = X[ = g(X, ·),
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for X ∈Mp.

The following proposition is just a well known fact from Linear Algebra, called

by some authors, Riesz representation theorem.

Proposition 3 [ : Mp →M∗
p is an isomorphism of vector spaces.

Proof. One-to-one. Indeed, let X1, X2 ∈Mp and X[
1 = X[

2 then

g(X1, Y ) = g(X2, Y ) for all Y ∈Mp

so g(X1, Y )− g(X2, Y ) = 0

g(X1 −X2, Y ) = 0.

Since g is nondegenerate we have thatX1 =X2. Then [ is one-to-one. Onto.

Let ω̃ ∈M∗
p . We look for a X̃ ∈Mp such that X̃[ = ω̃, in other words g(X̃, ·) = ω̃

or g(X̃, Y ) = ω̃(Y ) for all Y ∈ Mp. In fact it suffices to prove that for a basis

of Mp. So, let X1, . . . , Xm be a basis of Mp and ω1, . . . , ωm its dual basis. Now,

ω̃ = ω̃iω
i and X̃ = X̃jXj , where X̃j and ω̃i are the components of X̃ and ω̃

respectively.

g
(
X̃,Xk

)
= ω̃(Xk)

g
(
X̃jXj, Xk

)
= ω̃jω

j(Xk)

X̃jg(Xj, Xk) = ω̃iδ
j
k

X̃jgjk = ω̃k.

If (gij) denotes the inverse matrix of (gij), then X̃j = ω̃kg
kj. Therefore [ is an

isomorphism of Mp onto M∗
p .

Now, let # = [−1, be the inverse function of [. If ω̃ ∈ M∗
p then we denote

# (ω̃) by ω̃#. Another way to define ω̃# is the following.

Definition 11 Let ω̃ ∈ M∗
p then ω̃# is a unique element of Mp, such that

g(ω̃#, Y ) = 〈ω̃, Y 〉 for all Y ∈Mp
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We can check that the components of ω̃# are the same as the components of

X̃, which is defined by X̃[ = ω̃, (see Proposition 3).

ω̃# = (ω̃#)iXi.

Since ω̃ = ω̃iω
i, and using a basis {Xk} instead of Y, we obtain,

(ω̃#)ig(Xi, Xk) = ω̃k.

In as much g is nondegenerative, so

ω̃k = (ω̃#)igik,

and then

(ω̃#)j = ω̃kg
kj.

Now the mappings [, # and the identities mappings of Mp, and M∗
p can be

used to determine the induced isomorphism of the tensor spaces of types (r, s)

and (l,m) , where r + s = l +m.

We provide examples of such induced isomorphisms.

Example 2 We define:

#⊗ id⊗ id : M∗
p ⊗M∗

p ⊗M∗
p →Mp ⊗M∗

p ⊗M∗
p .

Let T ∈M∗
p ⊗M∗

p ⊗M∗
p , then

[(#⊗ id⊗ id)T ] (ω,X, Y ) = T
(
ω#, X, Y

)
,

for all X, Y ∈Mp and ω ∈M∗
p . In local components,

Tj1j2j3
→ gj1i1Tj1j2j3 = T i1

j2j3
,
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Example 3 We define:

#⊗ [⊗ id : M∗
p ⊗Mp ⊗M∗

p →Mp ⊗M∗
p ⊗M∗

p ,

by,

[(#⊗ [⊗ id)T ] (ω,X, Y ) = T
(
ω#, X[, Y

)
,

for T ∈M∗
p ⊗Mp ⊗M∗

p , all X, Y ∈Mp and ω ∈M∗
p . In local components,

T i2
j1 j3

→ gi2j2g
i1j1T i2

j1 j3
= T i1

j2j3
.

Remark 1 The isomorphisms of the tensor spaces at p determine the corre-

sponding isomorphisms of the modules of tensor fields. Those new isomorphisms

are denoted by the same symbols as the ones of respective tensor spaces.

Finally we point out a property of the inverse pseudo-metric tensor g−1 which

can be used to define g−1 as well.

Proposition 4 g−1 = (#⊗#) g

Proof. Let h : M∗
p ×M∗

p → R be a tensor of type (2, 0), determined by

h(ω, ω̃) = g(ω#, ω̃#). Then the components of h are,

hij = h(ωi, ωj)

= g
(
(ωi)#, (ωj)#

)
.

However, it can be shown that (ωi)# = gikXk. Indeed,

g
((
ωi
)#
, Xk

)
= ωi (Xk) = δi

k

and (
ωi
)#

= gikXk
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is a unique solution of that equations. So,

g
(
gikXk, g

jrXr

)
= gikgjrg(Xk,Xr)

= gikgjrgkr

= gikδj
k = gij,

and therefore hij = gij.
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Chapter 3

Some Important Tensors

3.1 Riemannian Tensor and Sectional Curvature.

Now we shall define the Riemann Tensor which is also known as the covariant

curvature tensor. It is obtained if the upper index of the curvature tensor is

lowered. In local components,

Rijkl = gaiR
a
jkl. (covariant curvature components)

Alternatively, one may define the Riemann tensor R as the (0, 4) tensor such that

R(W,Z,X, Y ) = g(W,R(X, Y )Z),

which possesses the following properties,

Antisymmetry : R(W,Z,X, Y ) = −R(Z,W,X, Y, ) = −R(W,Z, Y,X)(3.1)

Cyclicity : R(W,Z,X, Y ) +R(W,Y, Z,X) +R(W,X, Y, Z) = 0(3.2)

Symmetry : R(W,Z,X, Y ) = R(X, Y,W,Z) (3.3)
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Therefore components of so understood Riemann tensor satisfy the following

identities:

Rijkl = Rklij = −Rjikl = −Rijlk, Rijkl +Riklj +Riljk = 0. (3.4)

Let π be a plane, that is a 2-dimensional subspace, in Mp and let X1 and X2

be an orthonormal basis for π. For each plane π in the tangent space Mp, the

sectional curvature K (π) for π is defined by

K (π) = R (X1, X2, X1, X2) = g (X1, R (X1, X2)X2) .

K (π) is independent on the choice of an orthonormal basis for π. In fact, if W1

and W2 form another orthonormal basis of π, then

W1 = aX1 + bX2, W2 = bX1 − aX2,

where a and b are real numbers such that a2 + b2 = 1. Using (3.1), we have that

R (X1, X2, X1, X2) = R (W1,W2,W1,W2) .

Definition 12 If K (π) is a constant for all planes π in Mp and for all points

p ∈M, then M is called a space of constant curvature.

Proposition 5 If X1, X2 is a basis (not necessarily orthonormal) of a plane π

in Mp, then

K (π) =
R (X1, X2, X1, X2)

g (X1, X1) g (X2, X2)− (g (X1, X2))
2 .

Proof. We obtain the formula making use of the following orthonormal basis

for π :
X1

(g (X1,X1))
1
2

,
1

a
[g (X1,X1)X2 − g (X1,X2)X1] ,

where a =
{
g (X1,X1)

[
g (X1,X1) g (X2,X2)− (g (X1,X2))

2]} 1
2 .

34



Theorem 6 (F. Schur.) Let M be a connected Riemannian manifold of dimen-

sion ≥ 3. If the sectional curvature K (π) , where π is a plane in Mp, depends

only on p ∈M, then M is a space of constant curvature.

We can find a proof of this theorem in ([Kobayashi, 1963]) p.202

Remark 2 It is important to note that Definition 12, Proposition 5 and Theorem

6 are valid only for Riemannian Manifolds. To see why, let N be a 4-dimensional

pseudo-Riemannian manifold with metric tensor h and signature − + + + . Let

X1, X2, X3, X4 be a pseudo-orthonormal basis of Mp. Then

h (X1, X1) = h (X2, X2) = h (X3, X3) = −h (X4, X4) = 1

and h (Xi, Xj) = 0 for i 6= j.

Let Y1 = X1+ X3 and Y2 = X2 −X4 be spanning the plane α, but we have that

h (Y1, Y2) = 0 and h (Y2, Y2) = 0. So in this case we can not define the sectional

curvature K (α) according to Proposition 5. Consequently, we cannot define the

space of constant curvature by Definition 12. For pseudo-Riemannian manifolds

we define the spaces of constant curvature by means of the following equation

which is result of theorem of Schur for Riemannian spaces.

Corollary 7 For a Riemannian space of constant curvature k, we have

R (X, Y )Z = k [g (Z, Y )X − g (Z,X)Y ] . (3.5)

3.2 Ricci and Einstein Tensors

Definition 13 Let M be a manifold with affine connection ∇. The Ricci cur-

vature, denoted by Ric, is the symmetric tensor field of type (0, 2) defined for all

p in M as follows: For all X, Y ∈ Mp, Ric(X, Y ) is equal to the trace of the

mapping W 7→ R(W,Y )X of Mp into itself, where W ∈Mp.
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If M is a pseudo-Riemannian manifold and if {e1, . . . , em} is a basis of Mp

and {ω1, ..., ωm} its dual, then,

Ric(X, Y ) =
〈
ωi, R (ei, Y )X

〉
One may express X and Y in the natural basis, X =Xj

(
∂

∂uj

)
, Y =Y j

(
∂

∂uj

)
, and

then write

Ric(X, Y ) = RijX
iY j

where

Rij = Ra
iaj. (Ricci curvature components)

The Ricci Tensor is the (1, 1) -tensor field which corresponds to the Ricci curva-

ture. The components of the Ricci tensor may be obtained by raising one index

of the Ricci curvature. It does not matter which index is raised since the Ricci

tensor is symmetric. Thus,

Ri
j = gaiRaj = gaiRja (Ricci tensor components)

The trace of the Ricci curvature is said to be the scalar curvature τ . Traditionally,

τ has been denoted by R. That is,

τ = R = Ra
a = gijRij.

From the second Bianchi identity for the Riemann Tensor we obtain:

glj [Rlijh;k +Rlikj;h +Rlihk;j] = 0,

and consequently

Rj
ijh;k +Rj

ikj;h +Rj
ihk;j = 0,

since gik
;j = 0 and gik;j = 0 (we can take glj in and out of covariant derivative at

will). Using the antisymmetry on the indices j and k we get:

Rj
ijh;k −Rj

ijk;h +Rj
ihk;j = 0
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so

Rih;k −Rik;h +Rj
ihk;j = 0 (3.6)

These equations are called the contracted second Bianchi identity. By a similar

process applied to (3.6), it follows that.

gih
[
Rih;k −Rik;h +Rj

ihk;j

]
= 0

R;k −Rh
k;h −Rj

k;j = 0

R;k − 2Rh
k;h = 0

or 2Rh
k;h −R;k = 0

However, since R;k = δh
kR;h. [

Rh
k −

1

2
δh

kR

]
;h

= 0.

Raising the index k with gkl, we arrive at[
Rhl − 1

2
ghlR

]
;h

= 0.

We define the Einstein tensor by

Ghl = Rhl − 1

2
ghlR

and we infer that

Ghl
;l = 0.

Notice that the tensor Ghl was constructed only from the Riemann tensor and

the metric.

3.3 Weyl Tensor

The components of the Weyl’s conformal tensor Cabcd are given by

Ci
jkl = Ri

jkl +
τ

(m− 1) (m− 2)

(
gjkδ

i
l − gjlδ

i
k

)
− 1

m− 2

(
Rjlδ

i
k −Rjkδ

i
l − gjkR

i
l − gjlR

i
k

)
, (3.7)
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which has the symmetries

Cabcd = −Cbacd = −Cabdc = Ccdab, Ca[bcd] = 0

The casem = 3 is of special interest. Indeed, by choosing a pseudo-orthonormal

coordinate system, the diagonal of (gij) is ±1 at a point , and it is readily shown

that the Weyl conformal curvature tensor vanishes.

Proposition 8 The Weyl tensor satisfies that

Ci
jil = 0 (3.8)

Proof. From the equation (3.7), we have

Ci
jil = Ri

jil +
τ

(m− 1) (m− 2)

(
gjiδ

i
l − gjlδ

i
i

)
− 1

m− 2

(
Rjlδ

i
i −Rjiδ

i
l − gjiR

i
l − gjlR

i
i

)
then,

Ci
jil = Rjl +

τ

(m− 1) (m− 2)
(gjl − gjlm)

− 1

m− 2
(Rjlm− 2Rjl − gjlτ) = 0

The Weyl tensor is completely traceless, i.e., the contraction with respect to

each pair of indices vanishes.
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Chapter 4

Killing Structures and Related

Themes

4.1 Mappings of Manifolds

Let M and N be manifolds (not necessarily of the same dimension) and let

Φ : M → N

be a C∞mapping. In a natural manner, we can compose Φ with a function

f : N → R and define Φ∗f = f ◦ Φ : M → R. Similarly, in a natural way, Φ

“carries” along tangent vectors at p ∈ M to tangent vectors at Φ (p) ∈ N− i.e.,

it defines a mapping

Φ∗ : Mp → NΦ(p)

as follows: for A ∈Mp we define Φ∗A ∈ NΦ(p) by

(Φ∗A) (h) = A (h ◦ Φ)

for all smooth functions h : N → R. Note that Φ∗ is linear and may be viewed as

the “differential of Φ at p”. By the known implicit function theorem 1 Φ : M → N

1[Dieudonné, 1970] p.270
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will be one-to-one in a neighborhood of p if Φ∗ : Mp → NΦ(p) is one-to-one.

Remark 3 The matrix of Φ∗ in the coordinate basis of a coordinate system {ui}

at p and a coordinate system {vj} at Φ (p) equals the Jacobian matrix of the

mapping Φ, expressed in local coordinates i.e.,

(Φ∗)j
i =

(
∂vj

∂ui

)
. (4.1)

In the same way, we can use Φ to “pull back ” covectors at Φ (p) . We define

the mapping

Φ∗ : N∗
Φ(p) →M∗

p

by requiring that for all A ∈Mp and µ ∈ N∗
Φ(p),

(Φ∗µ) (A) = µ (Φ∗A) .

We can extend the action of Φ∗ to a mapping of tensors of type (0, s) at Φ (p) to

tensors of type (0, s) at p by:

(Φ∗T ) (A1, · · · , As) = T ((Φ∗A1) , · · · , (Φ∗As)) ,

for Ai ∈ Mp, 1 ≤ i ≤ m. Similarly, we can extend the action of Φ∗ to a mapping

of tensors of type (r, 0) at p to tensor of type (r, 0) at Φ (p) by

(Φ∗T ) (µ1, · · · , µr) = T ((Φ∗µ1) , · · · , (Φ∗µr)) ,

for µi ∈ N∗
Φ(p), 1 ≤ i ≤ n. However, in general we can not extend Φ∗ or Φ∗ to

mixed tensors since Φ∗ does not deal with lower index tensors, while Φ∗ does not

with upper index tensors.

Definition 14 A C∞−mapping Φ : M → N is called a diffeomorphism of M

onto N if Φ is a one-to-one mapping of M onto N and Φ−1 is C∞. A diffeomor-

phism of M onto itself is called a transformation of M .
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If Φ is a diffeomorphism (which necessarily implies dimM = dimN) , then

we can use Φ−1 to extend the definition of Φ∗ to tensors of all of types by using

the fact that (Φ−1)
∗

goes from NΦ(p) to Mp. If T i1···ir
j1···js

are the components of

a tensor T of type (r, s) at p, we define the components of the tensor (Φ∗T ) at

Φ (p) by,

(Φ∗T ) (µ1, · · · , µr, A1, · · · , As) = T
(
(Φ∗µ1) , · · · ,

([
Φ−1

]∗
As

))
.

In the same way we can extend the mapping Φ∗ to all of tensors. However, it is

not difficult to show that Φ∗ = (Φ−1)
∗
, so we need only Φ∗ and (Φ−1)

∗
.

A transformation Φ of M induces an automorphism Φ∗ of the algebra ∧D1

of differential forms on M and, in particular, an automorphism of the algebra

F (M) of functions on M :

(Φ∗f) (p) = f (Φ (p)) , f ∈ F (M) , and p ∈M.

It induces also an automorphism Φ∗ of D1 by

(Φ∗X)p = (Φ∗)q (Xq) ,

where Φ (q) = p, X ∈ D1. They are related by

Φ∗ ((Φ∗X) f) = X (Φ∗f) 2 for X ∈ D1 and f ∈ F (M) . (4.1)

Although any mapping Φ of M into N carries differential forms ω on N into

a differential form Φ∗ (ω) on M , in general, Φ does not send a vector field on M

2

Φ∗ [(Φ∗X) f ] = Φ∗ [Φ∗ (XΦ−1) f ]
= Φ∗ [XΦ−1 (f ◦ Φ)]
= Φ∗ (Xf)
= Xf ◦ Φ
= X (Φ∗f)
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into a vector field on N . We say that a vector field X on M is Φ -related to

vector field Y on N if

(Φ∗)pXp = YΦ(p),

for all p ∈M .

If Φ is a transformation of M, its differential Φ∗ gives us a linear isomorphism

of the tangent space MΦ−1(p) onto the tangent space Mp. This linear isomorphism

can be extended to an isomorphism of the tensor algebra D (Φ−1 (p)) onto the

tensor algebra D (p) 3, which we denote by Φ̃. Given a tensor field T we can define

a tensor field Φ̃T by (
Φ̃T
)

p
= Φ̃

(
TΦ−1(p)

)
,

for p ∈ M. In this way, every transformation Φ of M induces an algebra auto-

morphism of D (M) which preserves types and commutes with contractions.

Remark 4 If Φ is a transformation of M and T is a tensor field on M , we can

compare T with Φ̃T. If Φ̃T = T, then even though we have “moved T” via Φ,

it has “stayed the same.” In other words, Φ is a symmetry transformation for

the tensor T. In the case of the metric g, a symmetry transformation, i.e., a

diffeomorphism Φ such that (Φ∗g) = g is called an isometry.

4.2 Vector Fields and One-Parameter Groups of

Transformations

Definition 15 A global 1-parameter group of differentiable transformations of

M denoted by Φt (−∞ < t <∞) is a differentiable mapping of R×M into M ,

R×M → M

(t, p) 7−→ Φt (p) ,

3We used Proposition 2.12. of [Kobayashi, 1963].
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which satisfies the following conditions:

(i) For each t ∈ R, Φt : p 7−→ Φt (p) is a transformation of M.

(ii) For all t, s ∈ R, and p ∈M,

Φt+s (p) = Φt (Φs (p))

(iii)

Φo = idM . (4.2)

The 1-parameter group of transformations Φt induces a vector field X on M

defined by the equation

(Xf) (p) = lim
t→0

f (Φt (p))− f (p)

t
(4.3)

where f is an arbitrary differentiable function. The limit is assured by the differ-

entiability of the mapping (t, p) 7−→ Φt (p) .

On the other hand, a vector field X on M does not necessarily induce a global

1-parameter group of transformations Φt on M . However, associated with a point

p of M there is a neighborhood U of p and a constant ε > 0 such that for |t| < ε

there is a (local) 1-parameter group of transformations Φt i.e., a differentiable

mapping

(−ε, ε)× U → U

(t, p) 7−→ Φt (p) ,

satisfying the conditions:

(i)′ For each t ∈ (−ε, ε) , Φt : p 7−→ Φt (p) is a transformation of U onto Φt (U) ;

(ii)′ For all |t| , |s| , |s+ t| < ε and p ∈ U, is that if Φs (p) ∈ U then,

Φt+s (p) = Φt (Φs (p)) (4.4)
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(iii)′

Φo = idU (4.5)

Moreover, Φt induces the local vector field X, that is equation (4.3) is satisfied

for each p ∈ U and differentiable function f . Indeed, let p ∈ U. Then (−ε, ε) 3

t 7−→ Φt (p) is a curve passing through p for t = 0. From (4.3)

Xp =
d

dt
Φt (p) |t=0.

We can summarize it in the following theorem.

Theorem 9 Let X be a vector field on a manifold M. Then for each point p ∈M

there exist its open neighborhood U and exactly one local 1-parameter group of

transformations Φt in U such that the vector field induced by that group coincides

on U with X. (for a proof see [Kobayashi, 1963], p.13)

If a vector field determines a (global)1-parameter group of transformations,

then the vector field X is said to be complete.

Proposition 10 4 On a compact manifold M , every vector field X is complete.

Proposition 11 Let Φ be a transformation of M. If a vector field X generates a

local 1-parameter group of transformations Φt, then the vector field Φ∗X generates

the group Φ ◦ Φt ◦ Φ−1

Proof. It is clear that Φ ◦ Φt ◦ Φ−1 is a local 1-parameter group of trans-

formations. To show that it induces the vector field Φ∗X, let p be an arbitrary

point of M and q = Φ−1 (p) . Since Φt induces X, the vector Xq ∈Mq is tangent

to the curve x (t) = Φt (q) at q = x (0) . It follows that the vector

(Φ∗X)p = Φ∗ (Xq) ∈Mp (4.6)

4[Kobayashi, 1963] p.14
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is tangent to the curve

y (t) = Φ ◦ Φt (q) = Φ ◦ Φt ◦ Φ−1 (p) .

Corollary 12 A vector field X is invariant by Φ, that is, Φ∗X = X, if and only

if Φ commutes with Φt.

Proposition 13 5Let X and Y be vector fields on M . If X generates a local

1-parameter group of transformations Φt, then

[X, Y ] = lim
t→0

1

t
[Y − (Φt)

∗ Y ] .

More precisely,

[X, Y ]p = lim
t→0

1

t

[
Yp − ((Φt)

∗ Y )p

]
, p ∈M.

The limit on the right hand side is taken with respect to the natural topology of

the tangent vector space Mp.

Corollary 14 With same notations as in Proposition 13 we have more generally

(Φs)
∗ [X, Y ] = lim

t→0

1

t
[(Φs)

∗ Y − (Φs+t)
∗ Y ]

for any value s.

Proof. For fixed value of s, consider the vector field (Φs)
∗ Y and apply the

Proposition 13. Then we have

[X, (Φs)
∗ Y ] = lim

t→0

1

t
[(Φs)

∗ Y − (Φt)
∗ ◦ (Φs)

∗ Y ]

= lim
t→0

1

t
[(Φs)

∗ Y − (Φs+t)
∗ Y ] ,

5For a proof see [Goldberg, 1970] p. 101
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since, Φs◦Φt = Φs+t. On the other hand, (Φs)
∗X = X by the Corollary 12. Since

(Φs)
∗ preserves the bracket, we obtain

(Φs)
∗ [X, Y ] = [X, (Φs)

∗ Y ]

Remark 5 The conclusion of Corollary 14 can be written as(
(d (Φt)

∗ Y )

dt

)
t=s

= − (Φt)
∗ [X, Y ]

Corollary 15 Suppose X and Y generate 1-parameter groups of transformations

Φt and ψs, respectively. Then Φt◦ ψs = ψs ◦ Φt for every s and t if only if

[X,Y ] = 0.

Proof. If Φt◦ ψs = ψs ◦ Φt for every s and t, Y is invariant by every Φt by

Corollary 12. By Proposition 13, [X, Y ] = 0.

Conversely if [X, Y ] = 0, then (d(Φt)
∗Y )

dt
= 0 for every t by the remarks of

Corollary 14. Therefore (Φt)
∗ Y is a constant vector at each point p so that Y is

invariant by every Φt. By Corollary 12, every ψs commutes with every Φt

4.3 Lie Derivative

Let X be a vector field on M and Φt a local 1-parameter group of transformations

generated by X. We shall define the Lie derivative £XT of a tensor field T with

respect to a vector field X as follows. For simplicity, we assume that Φt is a

global 1-parameter group of transformations of M. For each t, let Φ̃t be an

automorphism of the tensor algebra D (M) . Then for any tensor field T on M,

we set

£XT = lim
t→0

1

t

[
T − Φ̃tT

]
, (4.7)
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where all tensors appearing in Equation 4.7 are evaluated at the same point p.

The mapping £X of D (M) into itself, which sends T into £XT, is called the Lie

Differentiation with respect to X.

Proposition 16 6Lie differentiation £X with respect to a vector field X satisfies

the following conditions:

(a) £X is a derivation of D (M), that is, it is R− linear and satisfies

£X (T ⊗ T ′) = (£XT )⊗ T ′ + T ⊗ (£XT
′) ,

for all T, T ′ ∈ D (M) ;

(b) £X is type-preserving: £X (Dr
s (M)) ⊂ Dr

s (M) ;

(c) £X commutes with every contraction;

(d) £Xf = Xf for every function f ;

(e) £XY = [X, Y ] for every vector field Y.

Proposition 17

(£Xω) (Y ) = X (ω (Y ))− ω ([X, Y ]) , for ω ∈ D1. (4.8)

.

Proof. Let ω ∈ D1, X, Y ∈ D1. By (a) we have that,

£X (ω ⊗ Y ) = (£Xω)⊗ Y + ω ⊗ (£XY ) .

6For a proof see [Kobayashi, 1963], p.29
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Now, we apply the respective contractions and by (b) and (c) , we get,

£X (ω (Y )) = C1
1 [(£Xω)⊗ Y ] + C1

1 [ω ⊗ (£XY )] ;

X (ω (Y )) = (£Xω) (Y ) + ω (£XY ) , (4.9)

by (e) we have,

(£Xω) (Y ) = X (ω (Y ))− ω ([X, Y ]) .

Now, we work out the components of the Lie derivatives. From (2.1), we

obtain that

£XY
i = (£XY )i = [X, Y ]i = ξkηi

,k − ηkξi
,k. (4.10)

Similarly, If ω = ωidu
i, then

£Xωj = (£Xω)j = ξkωj,k + ωkξ
k
,j. (4.11)

Finally, we obtain

£XT
i1···ir

j1···js
= ξkT i1···ir

j1···js
,k−

∑
l

T i1···k···ir
j1···js

ξil
,k +

∑
m

T i1···ir
j1···k···js

ξk
,jm

(4.12)

where l = 1, ...r and m = 1, ...s7.

The result of applying the procedure used in (4.8) gives us its generalization,

(£XT ) (Y1, ..., Yr) = [X,T (Y1, ..., Yr)]− T (Y1, ..., [X, Yi] , ..., Yr) ,

for T being a tensor field of type (1, r) , X, Y1, ..., Yr ∈ D1,

and,

(£Xω) (Y1, ..., Yr) = [X,ω (Y1, ..., Yr)]− ω (Y1, ..., [X, Yi] , ..., Yr) ,

for ω ∈ Dr.

We provide an important lemma about derivations. For a proof see [Kobayashi, 1963]

p.30.

7We can find a detailed explanation of (4.10), (4.11) and (4.12) in [Yano, 1955] Chapter I §3
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Lemma 18 Two derivations D1 and D2 of D (M) coincide if they coincide on

F (M) and D1 (M) .

This Lemma 18 permits us to infer the following propositions.

Proposition 19 For any vector fields X and Y we have that

£[X,Y ] = [£X ,£Y ] .

Proof. By virtue of Lemma 18, it is sufficient to show that [£X ,£Y ] has the

same effect as £[X,Y ] on F (M) and D1 (M) . For f ∈ F (M) , we have

[£X ,£Y ] f = XY f − Y Xf = [X, Y ] f = £[X,Y ]f.

For Z ∈ D1 (M) , we have

[£X ,£Y ]Z = [X, [Y, Z]]− [Y, [X,Z]]

= [[X,Y ] , Z] = £[X,Y ]Z

by the Jacobi identity.

Proposition 20 Let Φt be a local 1- parameter group of local transformations

generated by a vector field X. For any tensor T, we have

Φ̃s (£XT ) = −

d
(
Φ̃t (T )

)
dt


t=s

.

Proof. By definition,

£XT = lim
t→0

1

t

[
T − (Φ̃tT )

]
Replacing T by Φ̃s (T ) , we obtain

£X

(
Φ̃s (T )

)
= lim

t→0

1

t

[
Φ̃s (T )− (Φ̃t

(
Φ̃s (T )

)]
= lim

t→0

1

t

[
Φ̃s (T )− (Φ̃t+s (T )

]
= −

d
(
Φ̃t (T )

)
dt


t=s

.
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Our problem is therefore to prove that Φ̃s (£XT ) = £X

(
Φ̃s (T )

)
, i.e., £XT =

Φ̃−1
s ◦£X ◦ Φ̃s (T ) for all tensor fields T. It is a straightforward verification to see

that Φ̃−1
s ◦£X ◦ Φ̃s is a derivation of D (M) . By lemma 18, it is sufficient to prove

that £X and Φ̃−1
s ◦ £X ◦ Φ̃s coincide on F (M) and D1 (M) . We already noted

in the proof of Corollary 14 that they coincide on D1 (M) . The fact that they

coincide on F (M) follows from the following formulas

Φ∗ [(Φ∗X) f ] = X (Φ∗f)

Φ̃−1f = Φ∗f,

which hold for any transformation Φ of M and from (Φs)
∗X = X. (See(Corollary

12)).

Corollary 21 A tensor field T is invariant by Φt for every t if and only if £XT =

0.

Remark 6 To study the action of £X on an arbitrary tensor field, it is helpful

to introduce a coordinate system on M where the parameter t along the integral

curves of X is chosen as one of the coordinates. Without loss of generality we may

consider it as u1, so X = ∂
∂u1 . This always can be done locally in a neighborhood

where X 6= 0. The action of Φt corresponds then to u1 → u1 + t, with u2, . . . , um

held fixed. From Equation 4.1, we have (Φ∗)i
j = δi

j and hence, the coordinates

basis components of Φ∗
tT at the point p whose coordinate are (u1, . . . , um) are

(Φ∗
tT )i1···ir

j1···js

(
u1, . . . , um

)
= T i1···ir

j1···js

(
u1 − t, . . . , um

)
.

Consequently, the components of the Lie derivative of T in a coordinate system

adapted to X are simply

£XT
i1···ir

j1···js
=
∂T i1···ir

j1···js

∂u1
.

Thus, in particular, Φt will be a symmetry transformation of T if and only if the

components T i1···ir
j1···js

in a coordinate system adapted to X are independent of

coordinate u1.
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4.4 Killing Vector Fields and Killing Equations

Definition 16 Let g be the Riemannian or pseudo-Riemannian metric on M and

let gij be its components in a local chart {u1, ..., um} of M . A local 1-parameter

group of transformations Φs is called a local 1-parameter group of isometries if

(Φt)
∗ g = g

Definition 17 A vector field X induced by the local 1-parameter group of isome-

tries is called Killing vector field.

This obviously means that X leaves g invariant. In other words, X is a Killing

vector if and only if £Xg ≡ 0. (See Corollary 21).

Proposition 22 For any vector field X

£Xgij = Ki;j +Kj;i

where K = X[ (= g (X, ·)) is the 1-form dual to X.

Proof. Let U be a coordinate neighborhood with local coordinates {u1, . . . , um} .Then

g = gijdu
i ⊗ duj in U. Applying the derivation £X to g and (4.11) we obtain,

(
£Xdu

i
)

k
=
(
Xdui

)
k
+ ξj

,kδ
i
j = ξi

,k

and

(£Xg) = (Xgij) du
i ⊗ duj + gijξ

i
,l du

l ⊗ duj + gijξ
j
,l du

i ⊗ dul

= ξkgij,k du
i ⊗ duj + gijξ

i
,l du

l ⊗ duj + gijξ
j
,l du

i ⊗ dul

=
(
ξkgij,k + gkjξ

k
,i + gikξ

k
,j

)
dui ⊗ duj.

It follows that

£Xgij = ξkgij,k + gkjξ
k
,i + gikξ

k
,j (4.13)
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On the another hand, we have that the right hand side of (4.13) is equal to

Ki;j +Kj;i. Indeed, we can write

£Xgij = ξkgij;k + gkjξ
k
;i + gikξ

k
;j

By natural isomorphism [, we have that(
X[
)

i
= gikξ

k ≡ Ki.

So, since, gij;k = 0,

Ki;j =
(
gikξ

k
)
;j

= ξkgik;j + gikξ
k
;j = gikξ

k
;j.

Hence

£Xgij = Ki;j +Kj;i. (4.14)

In Proposition 22 we worked out an expression for £Xgij in terms of covariant

derivatives instead of partial derivatives. The advantage of (4.14) over (4.13) is

that the terms in the right hand side of (4.14) are components of tensor fields

which is not true for the corresponding terms of (4.13).

In addition, we have that

£Xgij ≡ 0, (4.15)

from (4.13)

ξkgij,k + gkjξ
k
,i + gikξ

k
,j = 0, (4.16)

if and only if

Ki;j +Kj;i = 0, (4.17)

so,

£Xgij ≡ Ki;j +Kj;i = 0, (Killing equations)

where

Ki;j = Ki,j − Γr
jiKr. (4.18)
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Thus,

Ki,j +Kj,i − 2Γr
ijKr = 0. (4.19)

(4.17) or (4.19) is a system of m(m+1)
2

scalar, linear, homogeneous differential

equations on m scalar functions K1, . . . , Km. To put it into a standard form we

introduce additional dependent variables Kij by,

Kij = Ki;j

which are subject to

Kij + Kji = 0. (4.20)

Consequently,

Kij;k = Ki;jk.

Finally, we arrive at the following system of equations

Ki;j = Kij. In other words,
∂Ki

∂uj
+ ... (4.21a)

Kij;k = −KrR
r
kij. In other words,

∂Kij

∂uk
+ ... (4.21b)

To prove (4.21b) we differentiate covariantly (4.20). We obtain

Kij;k +Kji;k = 0. (4.22)

If those equations are satisfied, so also are

Kij;k +Kji;k +Kik;j +Kki;j − (Kjk;i +Kkj;i) = 0.

From the Ricci identity it follows that

Kij;k −Kik;j = KhR
h
ijk. (4.23)

Using the preceding equations we have

2Kij;k = Kij;k −Kji;k

= (Kij;k −Kik;j) + (Kjk;i −Kji;k) + (Kkj;i −Kki;j)

= −Kh

(
Rh

ikj +Rh
jik +Rh

kij

)
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So

2Kij;k +Kh

(
Rh

ikj +Rh
jik +Rh

kij

)
= 0.

In consequence of the first Bianchi identity these equations reduce to

Kij;k = −KhR
h
kij, (4.24)

Thus (4.21b) holds.

Remark 7 8If £Xg = 0 and £Y g = 0 then £[X,Y ]g = 0. So the set of Killing

vector fields is a Lie algebra over R.

Remark 8 An important consequence of Equation (4.24) is that the Killing vec-

tor field, X, is completely determined by the values of X i (or Ki) and Kij at any

point p ∈ M ; if we are given X i (or Ki) and Kij at p, then X i and Kij at any

other point q are determined by integration of the system of ordinary differential

equations

XiKi;j = XiKij

XkKij;k = −KhR
h
kijv

k

along any curve connecting p and q, where Xi denotes the tangent vector to the

curve. Two important consequences of this result are:

• If a Killing vector field X has X i = 0 and Kij = 0 at a point p, then

X ≡ 0 everywhere.9

• On a manifold of dimension m, there can be at most m(m+1)
2

linearly inde-

pendent Killing vector fields.

8See [Kobayashi, 1963] p.238
9There is more detail in [Kramer et al., 1980] p.100
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Now, we consider under what conditions equations (4.16), or their equivalent

(4.17), admit one or more solutions. The following theorem helps us in this

direction.

Theorem 23 10When and only when M is a space of constant curvature, the

equations of Killing admit solution involving m(m+1)
2

parameters; in all other cases

there are fewer parameters.

Proof. We assume that M is a space of constant curvature. (See Definition

12 and Remark 2)

From the Ricci identity (2.23) for two times covariant tensor Kij we have

Kij;kl −Kij;lk = KhjR
h
ikl +KihR

h
jkl. (4.25)

On the other hand, differentiating (4.24) covariantly,

Kij;kl = −KhlR
h
kij −KhR

h
kij;l,

and

Kij;lk = −KhkR
h
kij −KhR

h
lij;k

so

Kij;kl −Kij;lk = −KhlR
h
kij +KhkR

h
lij +Kh

(
Rh

lij;k −Rh
kij;l

)
, (4.26)

subtracting by sides (4.25) and (4.26) we get

Kh

(
Rh

kij;l −Rh
lij;k

)
+KhjR

h
ikl +KihR

h
jkl +KhlR

h
kij −KhkR

h
lij = 0. (4.27)

Since the space has constant curvature, the equations (4.27) which are the con-

ditions of integrability of (4.21a) and (4.21b) are satisfied.

10[Eisenhart, 1933] p.215
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If we write (4.24) in the form

∂Kij

∂uk
= KhiΓ

h
ik +KihΓ

h
jk −KhR

h
kij, (4.28)

and observe that by definition

∂Ki

∂uj
= KhΓ

h
ij +Kij (4.29)

we see that a solution of (4.21a) and (4.21b) is a solution of the system of equations

(4.28) and (4.29) in the m (m+ 1) quantities Ki and Kij. Since (4.20) are holding

the general solution of above system involves m(m+1)
2

parameters.

Conversely, from (4.27) we have that

Rh
kij;l −Rh

lij;k = 0 (4.30)

and from the other terms of (4.27) we have

Khp

(
δp

jR
h
ikl − δp

iR
h
jkl + δp

lR
h
kij − δp

kR
h
lij

)
= 0,

from which, because of (4.20) it follows that

δp
lR

h
kij−δh

l R
p
kij+δ

p
jR

h
ikl−δh

jR
p
ikl−δ

p
iR

h
jkl+δ

h
iR

p
jkl−δ

p
kR

h
lij+δ

h
kR

p
lij = 0. (4.31)

Contracting the indices for l and p, we have in consequence of (3.4) and the

definition of Ricci curvature components,

mRh
kij −Rh

kij −Rh
kij − δh

jRik +Rh
jik + δh

iRjk +Rh
ikj = 0

(m− 2)Rh
kij +

(
δh

iRjk − δh
jRik

)
+Rh

jik +Rh
ikj = 0

By Bianchi identity we have that Rh
jik +Rh

ikj = Rh
kij. Then,

Rh
kij =

1

(m− 1)

(
δh

jRik − δh
iRjk

)
(4.32)

Multiplying (4.32) by ghl and summing over h we obtain

Rlkij =
1

(m− 1)
(gjlRik − gilRjk) . (4.33)
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Multiplying (4.33) by gki and summing over k and i; results in

mRjl = Rgjl,

so that from (4.33) we obtain

Rlkij =
R

m (m− 1)
(gjlgik − gilgjk) ,

where R = gijRij. Hence M is a space of constant curvature11. From (4.32) we

get

Rh
kij =

R

m (m− 1)

(
δh

j gik − δh
i gjk

)
. (4.34)

Then (4.31) is satisfied identically, as well as (4.30) a consequence of the fact

that gij and gij are behave like constants under covariant differentiations12. Then

the theorem follows.

From (4.27), using the natural isomorphisms [ and # for vectors and covectors,

we get

Kr (Rrkij;l −Rrlij;k) +Kr
;jRrikl +Kr

;iRrjkl +Kr
;lRrkij −Kr

;kRrlij = 0. (4.35)

We have that Rrkij;l − Rrlij;k = Rijrk;l − Rijrl;k and from the Bianchi identity

Rijrk;l +Rijlr;k = −Rijkl;r. Then raising the index i we obtain

KrRi
jlk;r +Kr

;jR
i
rkl +Kri

; Rrjkl +Kr
;lR

i
jrk +Kr

;kR
i
jlr = 0 (4.36)

This equation (4.36) is nothing else than (see(4.12))

£K#Ri
jlk = 0, (4.37)

where K# = X is a contravariant vector resulting from applying the isomorphism

# to K. Equation (4.37) is the first set of integrability conditions for (4.21a) and

(4.21b). The others can be obtained in a similar form.

11When Rhijk = ρ (ghkgij − ghjgik) , ρ must to be a constant and M is called a space of
constant curvature. See [Okubo, 1987] p.215

12See [Eisenhart, 1926] p.29
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Now, we consider more closely the system (4.28) and (4.29) whose integrability

conditions are equations (4.37). If these equations are satisfied identically with

respect to Ki and Kij, the system (4.29) is completely integrable (Frobenius’

theorem, see Appendix C). Otherwise, we have a sequence of equations which

must be compatible, if equations (4.24) are to have solutions. The following

theorem due to L. P. Eisenhart gives us the guide to find solution of (4.21a)

and (4.21b) providing us with the complete list of integrability conditions for the

systems (4.21a) and (4.21b).

Theorem 24 In order that a pseudo-Riemannian manifold M with metric g =

gijdu
i ⊗ duj may admit a group of isometries, it is necessary and sufficient that

there exists a positive integer N such that the first N sets of the equations

£Xgij = 0,

£XR
i
jlk = 0,

£X∇m1R
i
jlk = 0,

£X∇m2∇m1R
i
jlk = 0,

and so on are compatible in X i and Kij, and that X i and Kij satisfying these

equations satisfy the (N + 1)− equations identically. If there are m(m+1)
2

− r

linearly independent solutions in the first N set of equations except the first set of

equations, then the solution of Killing equations depends on r parameters. (The

dimension of the algebra of Killing is r.)

4.4.1 Examples

Flat Spaces

In the context of Riemannian or pseudo-Riemannian spaces, we say that the space

is flat when the curvature tensor is zero. In RN , we define an inner product by
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(x · y) = gijx
iyj. (x · y) is not necessarily positive definite, but it is nondegenerate.

In spaces of constant curvature and in particular when the curvature is zero, the

Killing equations are completely integrable and we can use a coordinate system

{xi} in which g, the metric, is constant, i.e,

g = gijdx
idxj,

where (gij) is equal to a constant. Then, it follows from (2.16) and (2.17) that

Rh
ijk = 0. So it is zero in every coordinate system13. The covariant derivative,

denoted by “;” and the partial derivative denoted by “,” have in such coordinate

system the same meaning, and the Killing equations read:

Ki,j +Kj,i = 0. (4.38)

Consequently

Ki,jk = 0.

Therefore, Ki are linear functions of xi′s. Since

Ki,j = Aij

and from (4.38) we have

Aij + Aji = 0.

Therefore,

Aij = −Aji (antisymetry). (4.39)

We obtain,

Ki = Aikx
k +Bi,

where Aik and Bi are arbitrary constants, restricted by (4.39). The vector field

X = K# is given by

X i = gilKl

X i = Ai
kx

k +Bi,

13[Eisenhart, 1933] p.188
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where Ai
k = gilAlk, and Bi = gilBl, (remember that gil are constants).

On the other hand, since Remark 7, the Killing vector fields form a Lie algebra

over R. We construct a basis for that algebra. We see that Bi and Ai
k are

independent sets of constants. If we put B1 = 1, Bi = 0 for all i 6= 1, and Ai
k = 0

we obtain X1 = ∂
∂x1 . By a similar method we obtain the other Killing vector

fields,

X2 =
∂

∂x2
, . . . , XN =

∂

∂xN
. (4.40)

Next, because of (4.39) we construct first a basis for the vector space of N × N

skew-symmetric matrices.

Since

Ajk = gjlA
l
k,

then

gjlA
l
k + gklA

l
j = 0

so, the basis can be chosen according to

A
(α,β)
jk =

(
δα

j δ
β
k − δα

kδ
β
j

)
, for 1 ≤ β < α ≤ N

that is one matrix A
(α,β)
jk for each ordered pair (α, β). Then each skew symmetric

matrix can be written in the following form

Ajk =
∑

1≤β<α≤N

Aαβ

(
δα

j δ
β
k − δα

kδ
β
j

)
.

Further,

A
i (α,β)
k = giαδβ

k − giβδα
k .

For each ordered pair (α, β) , and Bi = 0, we obtain the following Killing vector

field.

X(α,β) = xk
(
giαδβ

k − giβδα
k

) ∂

∂xi

X(α,β) =
(
xβgiα − xαgiβ

) ∂

∂xi
, where 1 ≤ β < α ≤ N. (4.41)
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Therefore, the Killing vector fields which form a basis of the Lie algebra of

Killing vector fields have the form presented in (4.40) and (4.41). There are

N(N+1)
2

of them.

Example 4 If N = 3, and g is positive definite, then g = dx2 + dy2 + dz2, in the

global cartesian coordinates {x, y, z} . Thus,

(gij) =
(
gij
)

=


1 0 0

0 1 0

0 0 1

 .

According to (4.40) and (4.41) the Killing vector fields are:

∂

∂x
,
∂

∂y
,
∂

∂z
. (4.42)

and (
xβgiα − xαgiβ

) ∂

∂xi
, where 1 ≤ β < α ≤ 3.

If

β = 1, α = 2 then x
∂

∂y
− y

∂

∂x

β = 1, α = 3 then x
∂

∂z
− z

∂

∂x
(4.43)

β = 2, α = 3 then y
∂

∂z
− z

∂

∂y

Now for those Killing vector fields it is interesting to see the one parameter

groups of transformations generated by them. For example:

for
∂

∂x
,

we obtain,

dx

dλ
= 1, then x = λ+ xo

dy

dλ
= 0, then y = yo,

dz

dλ
= 0, then z = zo.
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where xo, yo and zo are the coordinates of p and lambda is an affine parameter.

The equations for x, y, z are called the integral curves of ∂
∂x

passing through p.

Also such equations represent a one parameter group of transformations, which

assign to each value of λ a point transformation of R3. Next,

for x
∂

∂y
− y

∂

∂x
,

dx

dλ
= −y, dy

dλ
= x,

so,
d2x

dλ2 = −dy
dλ

= −x.

Thus, the solution for this differential equation is

x = A cos(λ)−B sin(λ),

and

y = −dx
dλ

= A sin(λ) +B cos(λ).

Still, we must express x and y in agreement with the initial conditions. We are

looking for integral curves which for λ = 0 cross the point p. Then

xo = A, yo = B.

Therefore the integral curves for x ∂
∂y
− y ∂

∂x
and passing through p are

x = xo cos(λ)− yo sin(λ),

y = xo sin(λ) + yo cos(λ),

z = zo.

So, for each value of λ we have a (x (λ) , y (λ) , z (λ)) which represent a point

transformation of R3. Therefore, the Killing vector fields in (4.42) generate the

well known translations and those in (4.43) generate the rotations. All of the one

parameter groups of transformations are global.
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Minkowski Space-Time

Minkowski space-time14 is the manifold M = RN , N > 1 together with the

metric

g = ds2 = −dx1
2 +

N∑
i=2

dxi
2,

which is globally of hyperbolic signature. For that reason M is called a pseudo-

Euclidean space. The geodesics of Minkowski space-time are the straight lines of

the pseudo-Euclidean space RN .

We study the Killing vector fields and the one parameter groups of trans-

formations that they generate in a Minkowski space-time of dimension 4, with

coordinates {x, y, z, t} ∈ R4, and g = dx2 + dy2 + dz2 − c2dt2. Therefore,

(gij) =
(
gij
)

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −c2

 .

We obtain the Killing vector fields using the same arguments as in Section 4.4.1.

Thus, the Killing vector fields forming a basis of the Lie algebra of Killing vector

fields are:
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂t
. (4.44)

and (
xβgiα − xαgiβ

) ∂

∂xi
.

14[Beem et al., 1996], p. 174-179
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where 1 ≤ α < β ≤ 4 and (x1, x2, x3, x4) = (x, y, z, t). We obtain,

α = 1, β = 2 then y
∂

∂x
− x

∂

∂y
(4.45)

α = 1, β = 3 then z
∂

∂x
− x

∂

∂z
(4.46)

α = 2, β = 3 then z
∂

∂y
− y

∂

∂z
(4.47)

α = 1, β = 4 then x
∂

∂t
+ t

∂

∂x
(4.48)

α = 2, β = 4 then y
∂

∂t
+ t

∂

∂y
(4.49)

α = 3, β = 4 then z
∂

∂t
+ t

∂

∂z
(4.50)

The one parameter groups of transformations for Killing vector fields gen-

erated by (4.44), (4.45)-(4.47) have similar presentation as in Example 4. The

only difference is in additional equations t = to. But, a one parameter groups

generated by (4.48)-(4.50) have different form.

For x
∂

∂t
+ t

∂

∂x
,

we obtain,

dx

dλ
= t,

dt

dλ
= x (4.51)

dy

dλ
= 0, then y = yo, (4.52)

dz

dλ
= 0, then z = zo. (4.53)

The solutions are represented by means of hyperbolic functions. From (4.51)

we obtain
d2x

dλ2 =
dt

dλ
= x,

then we find that

x = xo cosh(λ) + to sinh(λ), (4.54)

t = xo sinh(λ) + to cosh(λ). (4.55)
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Thus the corresponding integral curves are represented by equations (4.52)-(4.55).

A special case of transformations in Minkowski space-time are Lorentz trans-

formations. We recall hyperbolic trigonometric identity

cosh2 (λ)− sinh2 (λ) = 1.

Let

β = tanh (λ) .

Now if λ → ∞ then β → −1, and if λ → −∞ then β → 1. So, since tanh (λ) is

a decreasing function of λ, −1 < β < 1.

Next,

β2 =
sinh2 (λ)

cosh2 (λ)
=

cosh2 (λ)− 1

cosh2 (λ)
,

and, cosh (λ) =
1√

1− β2
, sinh (λ) =

β√
1− β2

Then (4.54) and (4.55) become the so called Lorentz transformations.

x =
xo + βto√

1− β2
= γ (xo + βto)

t =
to + xoβ√

1− β2
= γ (to + xoβ) .

4.4.2 Killing Vector Fields and Geodesics

To infer an explicit form of Killing vectors we have to integrate Killing equations.

Some simplification of that process can be obtained if we know nontrivial geodesic

vector fields. The following proposition is an useful tool for that.

Proposition 25 Let X be a Killing vector field and let Z be a geodesic vector

field, i.e. ∇ZZ = 0. Then

Zg (Z,X) = 0, (4.56)

that is, g(Z,X) is constant along any geodesic γ which is an integral curve of Z.
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Proof. Indeed, using the components of Z and X we have

Zi∇i (Z
mXm) =

(
Zi∇iZ

m
)
Xm + ZmZi∇iXm

= ZmZi∇iXm

= −ZiZm∇mXi

= −Zm∇m

(
ZiXi

)
+
(
Zm∇mZ

i
)
Xi

= −Zm∇m

(
ZiXi

)
.

Hence

Zg (Z,X) = Zi∇i (Z
mXm) = 0

Remark 9 We have even stronger assertion that a vector field X on M defines

an “infinitesimal isometry” if and only if the inner product of X and a unit vector

tangent to a geodesic in M is constant along the geodesic. ( [Okubo, 1987], p.

573)

That fact has an important application in physics. Then in the global coor-

dinate system {x, y, z, t}

ds2 = (dx)2 + (dy)2 + (dz)2 − c2 (dt)2 .

Now we consider a timelike geodesic. Such a geodesic can be parameterized by t

or by the proper time τ , which is defined by the equation

c2dτ 2 = −ds2.

Along the geodesic,

ds2 =

(
dx

dt

)2

dt2 +

(
dy

dt

)2

dt2 +

(
dz

dt

)2

dt2 − c2dt2.
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But v2=
(

dx
dt

)2
+
(

dy
dt

)2
+
(

dz
dt

)2
and then,

ds2 =
(
−c2 + v2

)
(dt)2

ds2 = −c2
(

1− v2

c2

)
(dt)2 = −c2dτ 2.

Hence, dτ =

√
1− v2

c2
dt,

if we require dτ > 0 for dt > 0. Let X = ∂
∂x4 and let Z be a vector tangent to

that particular timelike geodesic. Then along this geodesic

g (X,Z) =
dt

cdτ
= A1

where A1 is a constant. Therefore,

dt

dτ
= A1c,

so,

1√
1− v2

c2

= A1c

mc2√
1− v2

c2

= A1mc
3 (4.57)

where c is the velocity of light. Then (4.57) tells us that the total energy for a

particle of mass m is conserved

Now, let X = ∂
∂x1 and let Z be as before. Then

g (X,Z) =
dx

cdτ
= A2

where A2 is a constant. Then,
dx

dτ
= A2c.

So,

1√
1− v2

c2

dx

dt
= A2c

mv1√
1− v2

c2

= A2mc (4.58)
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where c is the velocity of light. Equation (4.58) tells us that the momentum of

a particle of mass m in the x direction is conserved. Next, we can see that for

X = ∂
∂x2 or ∂

∂x3 , the equations are similar. So g
(

∂
∂x1 , X

)
, g
(

∂
∂x2 , X

)
, g
(

∂
∂x3 , X

)
tell us that the momentum of a particle of mass m which moves at velocity v

is conserved. In this way, the inner product of each Killing vector field with a

vector tangent to a geodesic defines a physical quantity of a particle, which is

conserved in time.

4.5 Null Tetrad formalism

Now, we consider the case for a four-dimensional pseudo-Riemannian manifold,

with matric tensor g of hyperbolic signature + + +−. That fact implies that lo-

cally there exist four pointwise linearly independent vector fields {e1, e2, e3, e4} ,where

e3, e4 are real vectors and e2 is a complex conjugate of e1.

Definition 18 The null tetrad {ea} , a = 1, ..., 4 are four vector fields in which

g (ea, eb) = gab,

(gab) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

The tetrad vectors

eb = eν
b

∂

∂uν
(4.59)

determine the linear differential forms

ea = ea
µdu

µ (4.60)
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where µ = 1, ..., 4. {e1, e2, e3, e4} is an 1-forms basis, and {e1, e2, e3, e4} is its dual

basis. Their members are called the null tetrad 1-forms and the null tetrad vector

fields respectively. They possess this property:

g (e1, e2) = g (e2, e1) = 1 = g (e3, e4) = g (e4, e3)

and otherwise

g (ei, ej) = 0, i, j = 1, ..., 4

The tensor g, is sometimes called the line element ds2. In terms of the null

tetrad 1-forms the metric is given by:

ds2 = 2
(
e1e2 + e3e4

)
.

The scalar product of two vectors X, Y ∈Mp is given by

X · Y = gabξ
aηb,

where ξa, ηb are the components of X and Y respectively. Two vectors are

orthogonal if their scalar product vanishes. A non-zero vector X is said to be

spacelike, timelike, or null, respectively, when the product X · X = gabξ
aξb is

positive, negative or zero. In a coordinate basis, we write the line element ds2 as

ds2 = gijdu
iduj.

In space-time15, an orthonormal basis {Eα} consists of three spacelike vectors Ea

and one timelike vector E4 ≡ t, such that

{Eα} = {Ea, t} = {E1, E2, E3, t} ,

gab = E1aE1b + E2aE2b + E3aE3b − t4at4b

⇐⇒ Ea · Eb = δab, t · t = −1, Ea · t = 0.

15This is a common term used by physicist to call a Pseudo Riemannian four- dimensional
differentiable(C∞, Hausdorff) manifold (M, g) of signature (1, 3) [ i.e., diag (−+ ++)]. See
[Beem et al., 1996] p.25
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We also illustrate the action of the natural isomorphism [ on the vector fields

ei. We have that

(ej)
[ = g (·, ej) .

So,

〈
(e1)

[ , ei

〉
= g (ei, e1) = gi1 =

 1, : if i = 2

0, : otherwise.

Thus,

(e1)
[ = e2.

In the same way we obtain

(e2)
[ = e1, (e3)

[ = e4, (e4)
[ = e3.

We can get the reciprocal equalities using #, the inverse of [. In tensor com-

ponents, we have that

e3µ = eν
4gµν , eν

4 = gµνe3µ,

and so on.

Now we present the components of Ricci and Weyl tensors in terms of null

tetrad. We can contract (Ric⊗ ea ⊗ eb) and the tetrad components of the Ricci

tensor Rab are

Rab = Rµνe
µ
ae

ν
b (4.61)

If we do the same with the Weyl tensor, we obtain

Cabcd = Cαβµνe
α
ae

β
b e

µ
c e

ν
d, (4.62)

Cαβµν = Cabcde
a
αe

b
βe

c
µe

d
ν . (4.63)
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4.6 Algebraic Properties of the Weyl Tensor

The analysis of an algebraic structure of the Riemann tensor as a linear mapping

was first developed by Petrov [Kramer et al., 1980]. It was reduced to certain

eigenvalue problem so he could give invariant characterization of the Weyl tensor

at a point. We shall not present the details of his work here. Instead we call some

of the conclusions. We provide them in terms of (tetrad or tensor) components

of the corresponding object. In general, there exist precisely four distinct null

directions (i.e., nontrivial null vectors la, defined up to scaling la → λla) which

satisfy the relation

lblcl[fCa]bc[dlg] = 0, (4.64)

where Cabcd is the Weyl tensor defined by equation of (3.7). Those null directions

are called principal null directions of the Weyl tensor. In fact, every nontrivial

tensor satisfying the algebraic conditions of the Weyl tensor possesses, in general,

four principal null directions.

In special cases some of these null directions coincide (in which case they

satisfy stronger relations than (4.64), resulting in fewer than four principal null

directions. Weyl tensor is said to be algebraically special if it admits at least one

multiple principal null direction.

71



Algebraic Classification of Weyl Tensor Cabcd 6= 0

Type Description Conditions satis-

fied by multiple

principal null di-

rection la

I Algebraically general; four

distinct principal null direc-

tions

lblcl[fCa]bc[dlg] = 0
↖ ↗

↙ ↘

II Two of principal null direc-

tions coincide

lblcCabc[dlf ] = 0
↑↑

↙ ↘

D Two pairs of principal null

directions coincide

lblcCabc[dlf ] = 0 (two

solutions)

↑↑

↘↘

III Three principal null direc-

tions coincide

lcCabc[dlf ] = 0
↑↑↑

↘

N All four principal null direc-

tions coincide

lcCabcd = 0 ↑↑↑↑

72



Chapter 5

Special Class of Metrics and their

Killing Vector Fields

5.1 Introduction

We present a method of studying the nontrivial solutions of Killing equations.

The method is applied to a class of pseudo-Riemannian structures that depends on

two arbitrary holomorphic1 functions of one complex variable. Some constraints

on these functions arise as a consequence of the existence of nontrivial Killing

vector fields. First of all we present the pseudo-Riemannian structure, i.e., the

metric tensor, and some characterization of the Ricci and the Weyl tensors, then,

we present and apply the method.

1They are functions defined on an open subset of the complex number plane C with values
in C that are complex-differentiable at every point. This condition implies that the function
are infinitely often differentiable and can be described by their Taylor series.
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5.2 Metric Tensor

The class of metric used in this work is a generalization of the metrics presented

in [Plebański and Rózga, 2002]. It is a class of pseudo-Riemannian metrics g on

a space-time manifold M with signature + + +− . M is given by

M =
{
(t, r, y) ∈ R2 × C, y ∈ O ⊂ C, W > 0

}
,

where

W =

{∣∣r + Ā,ȳ

∣∣2 − |H|2 exp

[
− 1

C

(
2t+ ȳA+ yĀ

)]}
. (5.1)

and O ⊂ C is a domain of two holomorphic functions H and A. It has to be

added that, g belongs to a general class detailed in [Plebański, 1978].

In [Plebański and Rózga, 2002] there is employed a coordinate system {u1, u2, u3, u4} =

{r, t, y, y} where y is the complex conjugate of y. The metric tensor is

g = 2
(
e1e2 + e3e4

)
(5.2)

or g = gµνdu
µduν , (5.3)

where

e1 := (r + A,y) dy +

[
H exp

(
−t+ A

C

)]
dy

e2 := e1 (5.4)

e3 := dt+ Ady + Ady

e4 := −dr

A, H are holomorphic function of the complex variable y ∈ O and A, H their

complex conjugate functions respectively. C 6= 0 is a real parameter and e2 is the

complex conjugate of e1. ( Complex conjugation is to be denoted by a bar).

The range of coordinates {r, t, y, ȳ} is restricted by the condition:

W > 0, (5.5)
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where W is defined by (5.1). This is a physical condition2. The two additional

conditions we impose are,

e3 ∧ de3 6= 0, (5.6)

and

H 6= 0, everywhere. (5.7)

The former condition (5.6) tells us that e3 can not be expressed as a multiple of

the differential. It is equivalent to

Ā,ȳ − A,y 6= 0, for all y ∈ O. (5.8)

And the latter condition (5.7) guarantees that the curvature tensor and in

particular the Weyl tensor are everywhere nontrivial.

5.2.1 Geometric Properties

One of the properties of the null tetrad vector fields {e1, e2, e3, e4} is the geometric

one related to the covariant derivatives. We verify it using Maple 7
R©
,

∇e3ei = 0 = ∇e4ei, (5.9)

for 1 ≤ i ≤ 4. As a result of (5.9), the vector fields e3 and e4 are geodesic and

the family of tangent vectors corresponding to each e1, e2, e3, e4 is parallel along

the integral curves of e3 and e4 (see 2.7). In particular, the vector fields e3 and

e4 span the tangent space of a totally geodesic two dimensional surface. Also, in

the coordinate system {r, t, y, y}

e3 =
∂

∂t
,

e4 = − ∂

dr
.

2See [Plebański and Rózga, 2002] pg. 6037
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If X is a Killing vector field, then e3g (e3, X) = 0 and e4g (e4, X) = 0, see (4.56).

Thus g (e3, X) and g (e4, X) represent physical quantities which are conserved,

when a particle moves along the corresponding geodesic.

5.2.2 Ricci and Weyl Tensors

In addition, this metric possesses the properties related to the curvature, to be

specific, the properties of the Ricci and Weyl tensors.

We find , using Maple 7
R©

that the Ricci curvature can be written in a form

of

Ric = −ρe3 ⊗ e3. (5.10)

Its components in local coordinates are,

Rµν = −ρe3µe3ν ,

and its components with respect to {e1, e2, e3, e4} are

Rab = Ric(ea, eb)

= −ρe3 (ea) e
3 (eb)

= −ρδ3
aδ

3
b .

R33 = −ρ

(The only nonzero null tetrad component is R33 = −ρ). Thus the 1-form e3 =

e3µdu
µ (or equivalently the vector field e4 = eµ

4
∂

∂uµ ) is distinguished by the Ricci

curvature.

Also, we have that the Weyl tensor is of an algebraic type N, i.e., the Weyl

tensor is not trivial and fulfills the condition

C (X, Y, Z, e4) = 0, for all X, Y, Z ∈Mp. (5.11)
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The only algebraically independent components of the Weyl tensor and of

the Ricci tensor, with respect to the basis {e1, e2, e3, e4} , which is dual of the

one-forms basis{e1, e2, e3, e4} , are respectively3

C3131 = −
H
(
r + Ā,ȳ

)
exp

[
− 1

C
(t+ ȳA)

]
C2W

,

and

R33 =
−2HH̄ exp

[
− 1

C

(
2t+ yĀ+ ȳA

)]
C2W

.

5.3 Integration of Killing Equations

We apply the Proposition 25 to the metric tensor (5.2), which have the property

that the vector field Z of the form

Z = a
∂

∂r
+ b

∂

∂t
,

where a, b are arbitrary constants, is geodesic.

We obtain the following equations on the first two components of the Killing

one-form K, where K = g(X, ·), for X a Killing vector field,

∂K1

∂r
= 0

∂K2

∂t
= 0

∂K2

∂r
+
∂K1

∂t
= 0.

That is equivalent to,

K1 = t q(y, ȳ) + ϕ
1
(y, ȳ) (5.12)

K2 = −r q(y, ȳ) + ϕ
2
(y, ȳ) (5.13)

3For a detailed explanation about components of the Weyl tensor and the uniqueness of the
direction of e4 in Equation 5.11 see Appendix B.
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where the functions q, ϕ
1
, ϕ

2
are real-valued functions of y, ȳ. There are no restric-

tions on K3, K4 which are complex-valued functions of all four variables and K4

is the complex conjugate of K3. Now, after we have established the dependency

on r and t of K1 and K2, we look at the remaining seven out of the ten Killing

equations. First we concentrate on the four Killing equations which involve the

derivatives of K3 and K4 with respect to r and t. They have the form:

K3;1 = −K1;3, (5.14)

K3;2 = −K2;3, (5.15)

K4;1 = −K1;4, (5.16)

K4;2 = −K2;4. (5.17)

In addition, (5.16) and (5.17) are complex conjugates of (5.14) and (5.15) respec-

tively. From (4.18) we obtain an explicit form of those equations. So, (5.14) and

(5.15) read

∂K3

∂r
− 2Γ3

13K3 − 2Γ4
13K4 = 2Γ1

31K1 + 2Γ2
13K2 −

∂K1

∂y
,

∂K3

∂t
− 2Γ3

23K3 − 2Γ4
23K4 = 2Γ1

23K1 + 2Γ2
23K2 −

∂K2

∂y
.

Where K1 and K2 can be substituted from (5.12) and (5.13).

On the other hand, we use the Ricci Identity (2.23) to obtain integrability

conditions of the system (5.14)-(5.17) and the result is the following system of

linear algebraic equations on K3 and K4 :

R3
312K3 +R4

312K4 = −R1
312K1 −R2

312K2

+K1;32 −K2;31, (5.18)

R3
412K3 +R4

412K4 = −R1
412K1 −R2

412K2

+K1;42 −K2;41. (5.19)
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The matrix of the above system turns out to be nonsingular. Therefore we

can obtain from it a unique expressions for K3 and K4. In that way one gets an

explicit dependence of K1, ..., K4 on r and t. Still however, we have to make sure

that those functions satisfy (5.14)-(5.17). And so, we substitute them back into

(5.14)-(5.17), and we get a system of equations involving the functions of y and

ȳ : q, ϕ
1
, ϕ

2
.

Also we obtain that (5.14) and (5.16) are identically satisfied while (5.15) and

(5.17) are not. The numerators of Killing equations involving K2;3 and K2;4 are

polynomial functions of degree ≤ 4 in r, whose coefficients are expressed in terms

of q and ϕ
2
. Exploring that fact we infer that ϕ

2
and q must be constants, and

these are the only conditions from (5.15) and (5.17).

Now, we pass through a similar process with the remaining three Killing

equations

K3;3 = 0

K4;3 +K3;4 = 0

K4;4 = 0.

These equations result in some conditions on ϕ
1
, H and A.

We can obtain and integrate the constraints on q, ϕ
1
, H and A applying

a separation of variables arguments, due to the simple dependencies of Killing

equations on r and t. We have used the symbolic computation program Maple
R©

7

to execute a quite long computation.

The results are discussed in the next section.
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5.4 Results

Theorem 26 The nontrivial Killing vector fields for the metric (5.2) exist in the

following cases. In each of these cases the corresponding Lie algebra of Killing

vectors fields is one-dimensional.

5.4.1 Case 1

A,yyy = −iµ (A,yy )2

and

A,yy 6= 0 6= µ.

Then,

q = 0

A =
−i [(µy − iv )ln(µy − iv) + yµ(a− 1) + bµ]

µ2

H,y =
(ys− 2iµC + Av̄ + β)

C i (µy − iv)
H,

ϕ
1

= αΨ where,

Ψ =
[
ȳy + (iµA− s) ȳ −

(
iµ Ā+ s̄

)
y − vĀ− v̄A− β

]
ϕ

2
= α, and α 6= 0

where α, β, µ are real and s , v, a, b are complex constants.

• For this case we get the following contravariant components for the Killing

vector field:

K1 = −α

K2 =
α
[(
A,y−Ā,ȳ

)
Ψ + ĀΨ,ȳ−AΨ,y

]
Ā,ȳ − A,y

K3 =
αΨ,ȳ

A,y − Ā,ȳ

K4 =
αΨ,y

Ā,ȳ − A,y
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5.4.2 Case 2

µ = 0

and

A,yy 6= 0

then,

A,yyy = 0

q = 0

A =
y2

2v
+ 2 a2 y + a1

H,y = H

(
ys̄ + Av̄ + β

Cv

)
H := h exp

(
y2s̄+2v̄

∫
Ady + 2βy

2vC

)
Where, s= −2a2v and

∫
Ady =

y3

6v
+ a2 y

2 + a1y

ϕ
1

= α
(
ȳ y − sȳ − s̄y − vĀ− v̄A− β

)
ϕ

2
= α, α 6= 0

where α, β is real a2, a1,v, h are arbitrary complex constants.

• For this case we get the following contravariant components to Killing vector

K1 = −α

K2 = −α(yȳ + 2yā2v̄ + 2ȳa2v − β)

K3 = vα

K4 = v̄α

5.4.3 Case 3

A,yy = 0, and

Ā,ȳ−A,y 6= 0,
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then,

q = 0

A = a2 y + a1.Where, a2 6= ā2

H,y =
H {ky + s}
C(y + b)

,

H = h exp

{
ky + (k− sb) ln (y + b)

C

}
,

where, s = (ā2 − a2)ω − ā1b−2C,

k = b̄(ā2 − a2)− ā1.

ϕ
1,yy = 0, ϕ

1,ȳȳ = 0, ϕ
1,yȳ = α, α 6= 0

ϕ
1

= α(ȳ y + b̄y + bȳ + ω),

ϕ
2

= 0 .

where α, ω are real constants, a2, a1,s, h, b, k are complex constants.

• For this case we get the following contravariant components to Killing vector

K1 = 0

K2 =
α
[
(ā1 − ā2b̄)y + (a2b− a1)ȳ + ā1b− a1b̄

]
(ā2 − a2)

− αω

K3 =
α (y + b)

(a2 − ā2)

K4 =
α
(
ȳ + b̄

)
(ā2 − a2)

5.4.4 Case 4

ϕ
1,yȳ = 0
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then,

q = 0

A = a2 y + a1

H,y =
H [vy + w]

C (1 + iβ)

H = h exp

{
y (vy + 2w)

2C (1 + iβ)

}
where, w = η (ā2 − a2)− (1 + iβ) ā1

v = (1− iβ) (ā2 − a2)

ϕ
1,yy = 0, ϕ

1,ȳȳ = 0.

ϕ
1

= α [(1 + iβ) ȳ + (1− iβ) y + η] , α 6= 0

ϕ
2

= 0.

where α, β, η are real constants, v, w, a2, a1, h, are complex constants.

• For this case we get the following contravariant components to Killing vector

K1 = 0

K2 = α
a2 (1 + iβ) ȳ − ā2 (1− iβ) y + η(a2 − ā2)

(ā2 − a2)

+α
ā1 (1 + iβ)− a1 (1− iβ)

(ā2 − a2)

K3 =
α (1 + iβ)

(a2 − ā2)

K4 =
α (1− iβ)

(ā2 − a2)

5.4.5 Case 5

ϕ
1,yȳ = 0
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then,

q = 0

A = a2 y + a1

H,y =
H [vy + w]

iC

H = h exp

{
y (vy + 2w)

2iC

}
where, w = η (ā2 − a2)− iā1

v = i (a2 − ā2)

ϕ
1,yy = 0, ϕ

1,ȳȳ = 0.

ϕ
1

= α [iȳ − iy + η] , α 6= 0

ϕ
2

= 0

where α, η are real constants, v, w, a2, a1, h, are complex constants.

• For this case we get the following contravariant components to Killing vector

K1 = 0

K2 =
α [ia2ȳ + iā2y + η(a2 − ā2) + iā1 + ia1]

(ā2 − a2)

K3 =
iα

(a2 − ā2)

K4 =
iα

(ā2 − a2)

5.4.6 Some Local One -Parameter Groups of Transforma-

tions

We can obtain the local one parameter group of transformations for Case 2 in-

tegrating the contravariant components of the Killing vector fields Ki, i = 1, ...4

with respect to affine parameter λ, we obtain,
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r = −αλ+ ro

t = −α
[
λ3 |v|α2

3
+
λ2α

2
[yov + ȳov̄ + 2 |v| (ā2 + a2)]

]
−αλ [|yo|+ 2yov̄ā2 + 2ȳova2 − β] + to

y = vαλ+ yo

ȳ = v̄αλ+ ȳo
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5.5 Discussion

Explicit expressions for nontrivial Killing vector fields have been found based on

the properties of metric (5.2), under conditions (5.5)-(5.7). In some cases we

have found explicit formulae of a local one parameter group of transformations,

in special cases when the dependency of Ki, i = 1, ..., 4 on y and ȳ is at most

linear.

The expressions for the Killing vector fields have been worked out for the

specific coordinate system, without an attempt to change it as in Remark 6.

All of the results are local. To make global statements would require taking

into account other properties of the manifold, such as topological, analytical and

so on. A paper by Nomizu [Nomizu, 1960] would be helpful to move in that

direction.

The assumption of existence of Killing vector fields and the properties of

the class of metrics let us find conditions on functions ϕ1, A and H, and then

explicit expressions of those functions. The metric is independent of ϕ1, while

components of the Killing vector field, Ki, i = 1, ..., 4, are not, due this fact, we

find the presence of α in allKi expressions, i.e., the Lie algebra is one-dimensional.

One can be tempted to ask why we had to apply this particular method. In

fact often, given a metric we can find Killing vector fields just by inspection. For

this purpose we look for a coordinate on which the metric is independent. For

example given the following metric,

g = −
(

1− 2M

r

)
c2dt2 +

dr2

1− 2M
r

+ r2
[
dϑ2 +

(
sin2 ϑ

)
dϕ2
]

where M is a positive constant. In a coordinate system {t, r, ϑ, ϕ} , we can see

that it is independent on t and ϕ, consequently ∂
∂t

and ∂
∂ϕ

are Killing vector fields.

However, they are not the only ones. Indeed, there are more. The point is, when

we work with a non flat manifold with a metric not necessarily “pretty”, it is
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difficult to find Killing vector fields without studying the integrability conditions

and the restrictions which arise as consequence of those.
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Chapter 6

Conclusions

1. Only under conditions presented in Case 1 to 5 nontrivial Killing vector

fields exist for the metric (5.2).

2. The Lie algebra of Killing vector fields is one dimensional

3. The geometric property (5.9) is very important to find the dependency of

covariant components K1, K2, K3, K4 on two real variables r, t instead

of four; r, t, y, ȳ. This fact, is decisive to obtain explicit expressions for

functions ϕ1, A, andH, and further explicit expressions for the contravariant

components of Killing vectors fields.

4. For the metric (5.2), the 1-form e3 is distinguished by the Ricci curvature,

and the Weyl tensor, which is of algebraic type N. As a consequence of that

the tetrad components C3131 of Weyl tensor and R33 of Ricci curvature are

the only algebraically independent components of those objects.

5. We found explicit expression for local one parameter groups of transforma-

tions in the case when the dependency of Ki, i = 1, ..., 4 on y and ȳ is at

most linear. In general, it is difficult to find “nice” expressions for a local
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one parameter group of transformations, as in the most general Case 1, be-

cause three of four components of contravariant Killing vector field depend

on Ψ and A and their first derivatives.

89



Bibliography

[Beem et al., 1996] Beem, J., Ehrlich, P., and Easley, K. (1996). Global

Lorentzian Geometry. Number 202 in Monographs and Textbooks in Pure

and Applied Mathematics. Marcel Dekker. Inc, New York, second edition.

[Detweiler, 2003] Detweiler, S. (2003). Notes on General Relativity. Notes on

course PHZ 7608: Special and General Relativity. Section 3287X.

http://www.phys.ufl.edu/˜det/7608/grnotes.pdf.
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[Rózga, 2002] Rózga, K. (2002). Geometric Properties of Certain Solutions of

Einstein Equations. XVI Seminario Interuniversitario de Investigación en Cien-
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Appendix A

Conformal Transformations

Definition 19 Let M be an m-dimensional Pseudo-Riemannian manifold with

metric g. A metric g∗ on M is said to be conformally related to g if it is

proportional to g, that is, if there is a function ρ > 0 on M such that g∗ = ρ2g ,

which does not change the angle between two vectors at a point. By a conformal

transformation of M is meant a transformation Φ of M with the property that

Φ∗g = ρ2g

where ρ is a positive function on M. If ρ is a constant function, Φ is said to be

homothetic transformation. If ρ is identically equal to 1, Φ is nothing but an

isometry.

If the Pseudo-Riemannian metric g is conformally related to a Pseudo-Riemannian

metric g∗ which is locally Pseudo-Euclidean, the Riemannian manifold M with

the metric g is said to be conformally flat. Clearly then, the Weyl conformal

curvature tensor of M vanishes.

Proposition 27 A necessary and sufficient condition for a Pseudo-Riemannian

manifold of dimension m > 3 be conformally flat is that its Weyl conformal

curvature tensor vanish.
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Appendix B

Related with Weyl Tensor for the

Metric g

Proposition 28 The Weyl tensor satisfying the condition (5.11) is of the form

C = 4C3131e
3 ∧ e1 ⊗ e3 ∧ e1 + 4C3232e

3 ∧ e2 ⊗ e3 ∧ e2.

Thus, it is nontrivial if and only if C3131 6= 0

Proof. We assume that the Weyl tensor is not trivial. In components (5.11)

reads

Cαβµνe
v
4 = 0

From (4.63) we have

Cabcde
a
αe

b
βe

c
µe

d
ve

v
4 = 0

Cabcde
a
αe

b
βe

c
µδ

d
4 = 0

Cabc4e
a
αe

b
βe

c
µ = 0.

Therefore,Cabc4 = 0, for all a, b, c. Because of symmetries of the Weyl tensor,

Ca4cd = 0, C4bcd = 0 and Cab4d = 0 for all a, b, c, d.
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On the other hand, from (4.62) we get

gabCabcd = 0.

So, if c = 4 or a = b we have that Cabcd = 0 and by symmetries the only non

trivial are gbcCabcd, but they vanish. So we have to verify what happens when

each a, b, c, d are 1, 2, 3. We show that if ab = 12 then C12cd = 0.

if gbcC1bc2 = 0

C1122 + C1212 + C1342 + C1432 = 0

so, C1212 = 0,

if gbcC1bc3 = 0

C1123 + C1213 + C1343 + C1433 = 0

so, C1213 = 0,

if gbcC2bc3 = 0

C2123 + C2213 + C2343 + C2433 = 0

so, C1223 = 0.

Hence,

C12cd = 0.

Now we check what happens when ab = 13. The only components that remain to

investigate are C1332, C1323, C1313, and C2323

Since,

gbcC3bc3 = 0

then,

C3123 + C3213 = 0

−C1323 − C1323 = 0
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so,

C1323 = 0.

Consequently,

C = Cabcde
a ⊗ eb ⊗ ec ⊗ ed

C = C1313e
1 ⊗ e3 ⊗ e1 ⊗ e3 − C1331e

1 ⊗ e3 ⊗ e3 ⊗ e1

+ C3131e
3 ⊗ e1 ⊗ e3 ⊗ e1 − C3113e

1 ⊗ e3 ⊗ e1 ⊗ e3 + (similar terms for C2323)

= C1313e
1 ⊗ e3 ⊗

(
e1 ⊗ e3 − e3 ⊗ e1

)
+ C3131e

3 ⊗ e1 ⊗
(
e3 ⊗ e1 − e1 ⊗ e3

)
+ (similar terms for C2323)

= C3131

(
e3 ⊗ e1 − e1 ⊗ e3

)
⊗
(
e3 ⊗ e1 − e1 ⊗ e3

)
+ (similar terms for C2323)

= 4C3131e
3 ∧ e1 ⊗ e3 ∧ e1 + 4C3232e

3 ∧ e2 ⊗ e3 ∧ e2.

Hence, if C 6= 0 then C3131 6= 0, since e2 = e1, and C3232 = C3131.

The converse is trivial.

Proposition 29 If K is a null non trivial vector and C (X,Y, Z,K) = 0, for all

X, Y, Z ∈ Mp, where C 6= 0, then the direction of K is unique, i.e., if there is

another non trivial vector L such that C (X,Y, Z, L) = 0 for X, Y, Z ∈ Mp then

L is proportional to K.

Proof. We can choose a null tetrad {e1, e2, e3, e4} so that K = e4. Then,

L = Ae1 +Be2 +De3 + Ee4.

Next,

C (X, Y, Z, L) = 0

AC (X, Y, Z, e1) +BC (X, Y, Z, e2) +DC (X,Y, Z, e3) + EC (X, Y, Z, e4) = 0

AC (X,Y, Z, e1) +BC (X, Y, Z, e2) +DC (X, Y, Z, e3) = 0
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We recall that Cabcd = C (ea, eb, ec, ed) . Let (X, Y, Z) = (e3,e1,e3) , then

AC (e3, e1, e3, e1) +BC (e3, e1, e3, e2) +DC (e3, e1, e3, e3) = 0

AC3131 +BC3132 +DC3133 = 0

AC3131 = 0

and consequently,

A = 0

since,

C3131 6= 0.

Similarly with (X, Y, Z) = (e3, e2, e3 ) we obtain B = 0, because C3232 6= 0 and

if we set (X, Y, Z) = (e1, e3, e1) we infer D = 0. So E 6= 0 since L is not trivial.

Therefore L is proportional to e4.
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Appendix C

The Theorem of Frobenius

Definition 20 1Let E, F be two Banach spaces over K, A, (resp.B ) an open

subset of E (resp. F ) , U a mapping of A × B into the Banach space L (E;F )

of linear and continuous transformations from E to F . A differentiable mapping

u of A into B is a solution of the total differential equation

y′ = U (x, y) (C.1)

if, for any x ∈ A, we have

u′ (x) = U (x, u (x)) . (C.2)

Remark 10 When E = K, L (E;F ) is identified to F, and a total differential

equation is thus an ordinary differential equation

x′ = f (t, x) .

When E = Km is finite dimensional, a linear mapping U of E into F is defined

by its value at each of the m basis vector of E, and, by definition, C.2 is thus

equivalent to the system of m “partial differential equations”

Diy = fi

(
x1, ..., xm, y

)
(1 ≤ i ≤ m) (C.3)

1This section is taken from [Dieudonné, 1970], p.307 - 311
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Definition 21 Let U be a mapping of A×B into the Banach space L (E;F ) ,where

A,B are open subsets of E, F respectively. Equation (C.1) is completely inte-

grable in A×B if, for every point (xo, yo) ∈ A×B, there is an open neighborhood

S of xo in A such that there is a unique solution u of (C.1), defined in S, with

values in B, and such that u (xo) = yo.

Theorem 30 (Frobenius) Suppose U is continuously differentiable in A×B. In

order that (C.1) be completely integrable in A× B, it is necessary and sufficient

that, for each (x, y) ∈ A×B, the relation

D1U(x, y) · (s1, s2) +D2U(x, y) · (U(x, y) · s1, s2) =

D1U(x, y) · (s2, s1) +D2U(x, y) · (U(x, y) · s2, s1) (C.4)

holds for any pair (s1, s2) in E × E.

Remark 11 When E = Km, the Frobenius condition (C.4) of complete integra-

bility is equivalent, for the system (C.3), to the relations

∂

∂xj
fi

(
x1, ..., xm, y

)
+

∂

∂y
fi

(
x1, ..., xm, y

)
fj

(
x1, ..., xm, y

)
=

∂

∂xi
fj

(
x1, ..., xm, y

)
+

∂

∂y
fj

(
x1, ..., xm, y

)
fi

(
x1, ..., xm, y

)
(where it must be remembered that ∂

∂y
fi (x

1, ..., xm, y) is an element of L (F ;F )

(a matrix if F is finite dimensional), and fj (x1, ..., xm, y) an element of F ).
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