Ortiz-Navarro, Juan A.Cárdenas-Pérez, Victor A.2018-12-132018-12-132018-11-02https://hdl.handle.net/20.500.11801/1608This thesis study the (2,n)-torus knots, uses the Khovanov Homology and Reidemeister Torsion. We show the study made to the Khovanov Homology Groups H^r, for r = -n, -n+1, -1; 0. These are isomorphics to either Z, Z_2 or some direct sum of copies of them. Finally, we applied the Redeimeister Torsion to the chain subcomplexes with polynomial degree of -3n, -3n + 2 and 2 - n using the same class of knots.enR-torsionKhovanov homologyTorus knotsInvariantsKnot theoryReidemeister torsionTorsion theory (Algebra)PolynomialsHomology theoryIsomorphisms (Mathematics)R-torsion on (2,n)-torus knots.ThesisAll rights reserved(c) 2018 Víctor Adolfo Cárdenas-Pérez