
DEVELOPMENT OF HEAT AND MASS TRANSFER 
CONSTITUTIVE MODEL FOR PARCHMENT COFFEE 

DEHYDRATION PROCESS

By

Moises Y. Ocasio Latorre

A master thesis in partial fulfillment of the requirements for the degree of

                                           

MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS

2015

Approved by

________________________________________ _____________

Francisco Rodríguez-Robles, Ph.D.
Chair, Graduate Committee

Date         

________________________________________ _____________  

Orlando Ruiz Quiñones, Ph.D.
Member, Graduate Committee

Date         

________________________________________ _____________

Francisco M. Monroig Saltar, Ph.D.
Member, Graduate Committee

Date         

________________________________________ _____________

Ricky Valentín, Ph.D.
Chairperson of the Department

 Date          

________________________________________ _____________

Hector Rosario, Ph.D.
Graduate School Representative

 Date          



Abstract

     This thesis  presents a  mathematical constitutive model,  based on the volume averaging 

method, to predict the temperature and wet based moisture content of parchment coffee during 

the dehydration process using rotary drum technology. The model considers the two main stages 

of the dehydration process: 1) the funicular stage which is characterized by the vaporization of 

water, and 2) the pendular stage which is dominated by convective diffusive phenomena. These 

driving  forces  depend  on  the  topological  characteristics  of  the  studied  porous  medium. 

Mathematical estimates of parameters such as the permeability were performed due to lack of 

published data. Numerical results are obtained using the finite volume method and appropriate 

discretization schemes. To validate the model, data from a scale rotary drum dryer was used. The 

error of the predicted values is characterized by a percentage difference of  9.14% ± 7.69% for 

temperature and 14.17% ± 9.13% for wet-base moisture content. 
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Resumen

     Esta tésis presenta un modelo matemático constitutivo, basado en el método de volumen 

promediado,  para  predecir  la  temperatura  y  el  contenido  de  humedad  de  la  masa  de  café 

pergamino durante el proceso de deshidratación utilizando la tecnología de batea.  El modelo 

considera las dos etapas principales de este proceso: 1) la etapa funicular, caracterizada por la 

evaporación de agua, y 2) la etapa pendular, dominada por fenómenos de convección y difusión. 

Estos fenómenos dependen de la topología del medio poroso estudiado. Se realizaron estimados 

matemáticos de parámetros como la permeabilidad debido a la falta de datos publicados. Los 

resultados numéricos se obtienen utilizando el método de volumen finito y esquemas apropiados 

de discretización. Para validación del modelo, se utilizaron los datos de un secador tipo batea a  

escala. El error de estas predicciones es caracterizado por un porciento de diferencia de 9.14% ± 

7.69% para temperatura y 14.17% ± 9.13% para el contenido de humedad. 
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 1 Introduction

 1.1 Problem Statement

     Coffee is  the world’s most  traded agricultural  commodity.  According to  the ICO 1,  it  is 

produced in  over 70 countries, employing approximately 25 million people. During the coffee 

year 2012-2013 the  export was 113.157 million bags [1]. From this amount the exports of the 

species  Coffea Arabica accounted for 72.69 %. Healthy coffee crops are usually observed in 

lands with a moderate  temperature, good soil drainage, a soil pH of 4.0 to 7.0, and an annual 

rainfall  that  exceeds the  60 inches.  The presence  of  these conditions  makes tropical  climate 

suitable  for  coffee  production.  Based  on these  environmental  conditions,  it  is  clear  why the 

largest  coffee  producers  are  Brazil,  Mexico  and  Colombia  [2].  Most  of  the  coffee-growing 

countries have one major harvest per year. In the case of Puerto Rico, the coffee (C. Arabica) 

harvest season is between the month of August through January. Once picked, the coffee cherries 

must  be  processed  for  consumption.  There  are  two  common  dehydration  procedures:  dry 

processing and wet processing. The dry method is used to obtain cherry  coffee while the wet 

method is used to process parchment coffee [3].

     Since our focus of interest is parchment coffee, fundamental knowledge of the wet processing 

concept is required. Processing is done immediately after the harvest. The coffee cherries are first 

sorted to determined if they meet the quality criteria. Then, the fruit surrounding the coffee seeds 

is removed. This process is often called “pulping” [5]. In spite of the fruit removal,  a gluey 

mucilage  layer  will  remain.  To  remove  this  coating  of  mucilage  the  bean  is  exposed  to 

fermentation, since it will allow microbial decomposition of this layer [4].  The bean is then 

washed to remove any residual from the mucilage, or any debris. At the end of the cleaning 

process, the coffee bean has an average moisture content of 56%. To satisfy the corresponding 

regulatory agency (e.g. USDA) standards for coffee storage, the moisture content wet base (M.C. 

(w.b.))  of the bean must be in the range of 9 to 12 %. This level must be met to guarantee a high 

1 International Coffee Organization
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quality  coffee.  The  drying  process  is  necessary  to  prevent  deterioration  due  to  bacteria  and 

fungus growth on the grain.  To prevent deformation of the bean due to shrinkage, it should not 

be dried below 9 % moisture [6]. Therefore, a proper dehydration process is required. 

     Small farmers dry coffee beans with direct solar energy, depending on climate conditions. 

However,  this  process  is  not  adequate  for  large  scale  production  due  to  quality  and  health 

concerns [7]. Thus, the usage of mechanical drying equipment is inevitable. The most common 

drying equipment used in Puerto Rico is the simple rotary-drum dryer. It consists of a perforated 

plenum chamber, one or several electric fans, and a combustion heater. During the traditional 

drying  process,  the  hot  air  flows  through  the  coffee  mass,  located  inside  of  the  chamber, 

removing water content from the beans and then the hot moist air exits the dryer. This process is 

continued until the hot air can no longer remove water from the coffee mass or the desired M.C. 

(w.b.)  is  met.  To  determine  if  the  M.C.  (w.b.)  is  in  the  range  of  9%-12%,   field  tests  are  

employed.  The  use  of  a  rotary-drum  dryer  open  system  configuration  entails  high  energy 

inefficiency. The use of a hot air recirculating controlled closed system (HARC2S ) was proposed 

by Rodriguez et al.

 1.2 Justification

     Over the last few decades, the increase in the costs associated to fuel and electricity played a  

major role in the economic losses of the coffee industry. In Puerto Rico, the mean increasing rate  

of electricity from 1999 to 2012 was 8.44%. This situation represents an opportunity for the 

optimization of traditional drying equipment. The open rotary drum dryer used in Puerto Rico for 

the  drying  of  parchment  coffee  is  highly  energy  inefficient  [8].  The  employment  of  such 

inefficient  equipment  makes  evident  the  lack  of  understanding  of  the  mechanics  behind  the 

coffee dehydration process. 

    The dehydration process of a single coffee bean has been studied thoroughly [9, 30, 31]. For 

the  drying  process  of  different  porous  bodies,  there  are  three  usual  stages  observed.  At  the 

beginning of the process the body is saturated with water. Moisture migrates to the surface of the 
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body  driven  by  a  significant  concentration  gradient.  Once  in  contact  with  hot  air,  water  is 

removed  by  evaporation.  Since  evaporation  takes  place  only  at  the  surfaces,  the  surface 

temperature decreases at a faster rate than the body temperature [10]. This phenomenon is often 

referred to as “evaporative cooling”. Through the evolution of the evaporative cooling process, 

the  evaporation  rate  decreases  and  the  convective  heat  transfer  increases  until  they  reach 

equilibrium. When these phenomena, evaporative cooling and convective heat transfer,  are at 

equilibrium, the removal of moisture is obtained at a constant temperature. The time lapse in 

which  this  intermediate  stage  takes  place  is  determined  by  the  convective  heat  transfer 

coefficient. In the last stage of this process, the moisture distribution inside the body becomes 

almost  uniform.  As  a  consequence,  moisture  migration  becomes  increasingly  slower,  while 

temperature increases asymptotically until equilibrium.  

     These characteristics have been observed and modeled for a single body. However, the actual  

drying process consists of a mass of many mutually interacting bodies. The latter stage observed 

for a single body just depends on temperature and concentration gradients between the porous 

solid  and  the  hot  air.  It  does  not  contemplate  the  effect  of  temperature  and  concentration 

gradients between one bean and another. One of the many disadvantages of the traditional open 

rotary-drum  dryer  is  that  temperature  and  moisture  distribution  of  the  coffee  mass  are  not 

uniform [8]. At the latter stage, this implies an increase in the time required to reach equilibrium.  

Therefore,  an analysis  that includes the entire drying mass is  required.  With the information 

given by such model it will be possible to describe the conditions of the coffee mass through the 

entire process. This has the following advantages: (1) understanding the phenomenon a this level 

will help to optimize drying equipment and the parameters (airflow rate, temperature setting, etc.) 

of the process, (2) develop a prediction tool to help determine whether the desired M.C. (w.b.) 

has been reached. Therefore, the development of a constitutive model that describes the dynamics 

of parchment coffee during a typical dehydration cycle in an  open system configuration and a 

HARC2S equipment  is  justified.  The understanding  of  these  dynamics  will  help  to  engineer 

highly energy-efficient coffee dehydrators.
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 1.3 Literature Review

     The dehydration process was first analyzed as a heat and mass transfer problem in W.K. 

Lewis' work The Rate of Drying of Solid Materials [11]. He stated that this process consists on 

two principal stages: an initial stage in which the moisture migrates from the inside of the solid to 

the surface and a latter stage where the moisture is evaporated because of the heat received from 

an external source. This process was modeled as two independent phenomena. Hypothetically the 

early  stage,  often  referred  to  as  the  funicular  state,  is  driven  particularly  by  a  moisture 

concentration gradient. Once the distribution of moisture becomes uniform through the porous 

media, the drying process is dominated by convection and diffusion in the vapor phase. This 

latter stage is called by Haines [12] as the pendular state. Each state was analyzed by itself as an 

equally  important  contribution.  Even  though,  the  researchers  rapidly  move  to  give  greater 

attention to the diffusion of liquid through the porous solid.  An uneven approach like this is 

clearly shown in early works like those of Sherwood [13] and Newman [14]. Thus, their analysis 

was mainly based on Fick's laws of diffusion, stated as:

 

J =−D ∂ C
∂ x

(1.1)

∂C
∂ t

=−D
∂2 C

∂ x 2

(1.2)

     As seen in the equations above, the diffusion is analyzed as an independent phenomenon, 

ignoring the codependency between diffusion and convection. The drying projections done with 

this  assumptions  represented good approximations  for  those scenarios  in  which the  moisture 

content  was relatively high.  For those cases the variability  due to temperature gradient  were 

insignificant in comparison to the concentration gradient, which results in an almost constant 

drying  rate.  Gillilan  &  Sherwood  [15]  used  the  diffusion  equation  (Fick's  second  law  of 

diffusion) to estimate the length of the “constant” rate of drying period. This length is limited by 

the critical  free  moisture content  (Xc),  which represented  the  minimum moisture required  to 
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maintain  a  continuous  film  of  water  in  the  surface  of  the  porous  solid.  Once  the  film  is 

unattained,  the effects  of the convective interaction between the flow and the solid  becomes 

unneglectable. At this point, the wetted surface area starts decreasing and the modeling of the 

dehydration process as a solely diffusion problem becomes totally inaccurate. 

     An  improvement  to  the  engineering  analysis  was  obtained  with  the  inclusion  of  the 

perspective  of  soil  scientists  and  chemists.  This  resulted  in  new  models  that  included  the 

contribution  of  capillary  forces  in  the  moisture  migration  process.  The work of  Comings & 

Sherwood [17] sets an example of the influence of capillarity in the movement of moisture in 

porous media. As advanced as it was; the general knowledge of the dehydration processes was 

Figure 1.3.1: Batch Drying Rate Curve Under Constant Drying  
Conditions (from Mujumdar [16])
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limited by their analysis of heat and mass transfer as mutually exclusive phenomena. The concept 

of dealing with these two as a conjugated problem was first introduced by P.S.H. Henry [18]. He 

described the pores as a “continuous network of spaces included in the solid;  containing the 

medium (e.g. air) through which the diffusion takes place”. His conclusion was that; if vapor is 

absorbed by the solid when heat is added, then the vapor species will be set free by the solid 

when that heat is removed. Thus, diffusion is driven by simultaneously operating gradients of 

concentration and temperature.  The former was a revolutionary addition to the contemporary 

thought of a non-interacting heat and mass transfer. Some refinements to this integrated heat and 

mass transfer model were done in the following decades. Philip and DeVries [19] related the 

diffusion mass flux to the volumetric moisture content gradient, the temperature gradient and the 

buoyancy forces contribution.  Up to this moment,  the contribution of each phenomenon was 

analyzed solely and then the individual effects were combined. This practice ignored the effects 

of a simultaneous exchange of heat and mass. With the physical knowledge of his predecessors; 

Luikov [20] established a coupled system of PDE for heat and mass transfer in porous bodies. 

Using Darcy's law he expressed conservation of mass and energy for a mixture of dry air and 

water vapor. This law, which is represented in the following constitutive equation, relates the 

volumetric flow through a porous medium with the viscosity of the fluid and the pressure drop. 

The permeability of the medium (K) establishes a relation between the fluid migration and the 

ability of a porous material to allow this fluid to pass through it.

∀=
−KA

μ
Pb−Pa

L

(1.3)

     The equation above is manipulated an presented by  Luikov & Mikhailov [21] in terms of the 

mass flow rate (J) and the dry-basis moisture content of the solid (ψ). This migration related to 

the pressure gradient is named “molar transfer” in Luikov's work.  

 

J =
ψ

ψ+1
K ρ
μ ∇ P

(1.4)
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     While this “molar transfer” describes the mass diffusion through the pores, a general equation  

that applies at every point of the control volume had to be developed. The result was a system of 

non-linear  equations,  due  to  the  integration  of  capillary  forces,  gradients  and  variable 

thermophysical properties as mutually inclusive driving forces of the drying process. Therefore, 

the transfer coefficients are represented as functions of either temperature or moisture content 

and the mass flux will depend on its gradients.  

J=ρ0 am(∇ ψ+δ ∇ T ) (1.5)

    

    In  the  equation  above,  the  diffusive  mass  flux  is  expressed  as  a  combination  of  both 

phenomena using the density of the dry solid (ρ0),  the thermogradient coefficient (δ) and the 

moisture diffusivity (am) . By  substituting this expression into the differential energy and mass 

conservation  equations  it  is  possible  to  derive  a  system  of  equations  that  describes  the 

simultaneous heat and mass transfer during the drying process of a porous body. This substitution 

is best known as Luikov´s System of Equations for Heat and Mass Transfer in Capillary-Porous  

Bodies. If the effects of the gravitational force are neglected, it can be written as follows:

ρ0 c
∂T
∂ t

=∇⋅(k ∇ T )+r ϵρ0
∂ψ

∂ t
(1.6)

∂ψ

∂ t
=∇⋅(am∇ ψ)+∇⋅(amδ∇ T )

(1.7)

where  T  is the temperature,  ψ the moisture potential and  c  is the reduced specific heat.  The 

reduced specific heat is given by:

c=c0+∑
i=1

3

ci ψi

(1.8)
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     In this equation, ci  and ψi  represent the specific heat and the mass content for phase i. In his 

work,  Luikov  uses  the  subscript  i=0  referring  to  the  solid  body,  i=1  for  the  vapor  phase 

(including some inert  gases)  and  i=2 for  the  liquid  phase.  Using these  subscripts  we could 

express the moisture content in the following form:

ψ=

∑
1

2

mi

m0

(1.9)

     To solve this complex system of equations, Luikov and Mikhailov [21] used the Laplace 

transform  technique  and  assumed  constant  transfer  coefficients.  With  their  approach  they 

obtained analytical solutions for the simple cases of a rod, a cylinder and a sphere. A different 

approach to this problem is presented by Whitaker [22], who proposed the usage of a volume 

averaged  form  of  the  transport  equations.  Although  Whitaker  and  Luikov  differed  in  their 

approaches their formulations are in agreement and most of the modern simplified models are 

based on these formulations. The governing equations presented in their work are similar; with 

the exception of the solid phase where Whitaker assumed the phase to be a dry solid, therefore 

ignoring the “bound moisture”. This concept refers to a very thin layer of water that remains 

bounded to a solid surface due to the strong electrical polarity of water molecules. His approach 

consist of an application of the momentum principle and the thermal energy equation to describe 

the physical phenomena at every point in the control volume. Hence, an average between the 

governing equations of each separate phase is required. This method is helpful for an analytical 

study of a specific drying process without recurring into complex computational processes. With 

Withaker's approach starts an inclination to simplify the analysis within those coupled heat and 

mass transfer models. 

     The complexity of analyzing  a non-isothermal process, such as the dehydration of a porous 

solid, impulsed the introduction of certain approximations in the usage of the basic conservation 

equations. An approximation commonly used to simplify the mass and momentum balances is 

attributed  to  Boussinesq  [23].  This  approximation  is  based  on  assuming  that  the  density 
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differences are neglectable, and must be considered only in the calculation of buoyancy effects. 

For  this  reason,  in  the  Boussinesq  model,  density  is  treated  as  a  constant  value  in  all  the 

equations,  except  for  the  buoyancy  term in  the  momentum equation.  The  buoyancy  term is 

expressed in terms of the variable density ρ, which is a function of temperature, and the constant 

density ρ0. Boussinesq's approximation is written as follows:

ρ=ρ0(1−β ΔT ) (1.10)

ρ=ρ0(1−β ' ΔC ) (1.11)

     In the equations presented above, the complexity of using a variable density is reduced by 

introducing  the  buoyancy  coefficient  of  temperature  (β)  and  the  buoyancy  coefficient  of 

concentration  (β'). This simplification was implemented to analyze non-isothermal flows in the 

work  of  Rodi  [24]  and   Shatzmann  &  Policastro  [25]. The  former  work  consists  of  a 

mathematical  development  of  this  approximation  and  a  validation  of  non-Boussinesq  and 

Boussinesq  approximated  models  by  comparison  to  experimental  data  from  jet  flow 

measurements.  In the last years this approximation, like most of the approximations related to 

heat and mass transfer phenomena, had been reevaluated and compared with variable density 

models, as in the work of  Geun & Kim [26], concluding that this approximation is acceptable for 

systems with symmetric density distributions. Even though, we must recall the importance of 

buoyancy and capillary  forces in the concerning problem.

     Merging all the concepts mentioned herein, several models had been developed concentrating 

efforts  into the numerical  solution of this  conjugated problem. A one-dimensional  model  for 

simultaneous heat and moisture transfer was presented by Kallel  [10].  In his  work, which is 

mainly based on Withaker´s theory of drying, he expressed the transfer coefficients as function of 

the moisture content. For this purpose, he stated that the vapor mass content was neglectable in 

comparison to the liquid mass content, thus it could be assumed that the moisture content  was 

fundamentally equal to the liquid content.  His approach was to independently calculate the mass 

transfer due to capillary forces and the mass transfer caused by the diffusion fluxes and then add 



10

their contributions. The liquid mass flux due to capillarity was determined using Darcy´s law in 

the following manner:

J c−l=−ρl

K l
μl

∂ P c

∂η (1.12)

K l
μl

∂ Pc

∂η
=

K l
μl (∂ Pc

∂ψ
∂ψ
∂η

+
∂ Pc

∂T
∂ T
∂η )=D´ml

∂ψ
∂η

+ D ´Tl
∂T
∂η

(1.13)

J c−l=−ρo(D ´ ml
∂ψ
∂η

+ D´ Tl
∂T
∂η

)
(1.14)

     In these expressions the flux is determined based on the respective capillarity isothermal mass 

transfer coefficient (D´ml) and non-isothermal mass transfer coefficient (D´Tl). The density of the 

liquid and the density of the air are represented as  ρl and  ρo respectively.  Similarly, the mass 

transfer caused by diffusion was determined applying a modified version of Fick´s law. This 

modification consists of correcting the diffusion flux to account for the resistance to diffusion (ζ) 

inside the porous body, which is stated as dependent of the moisture content.

J d−w=−ζ D j

∂C j

∂η
(1.15)

J d−w=−ρo(D ' 'ml
∂ψ
∂η

+D ' 'Tl
∂T
∂η

) (1.16)

     

     Combining the mass transfer caused by each phenomenon it is possible to express the total 

flux as function of both moisture content and temperature. Substituting the following equation 

into our constitutive equations makes possible to express the dehydration process as a conjugated 

problem.
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J w=−ρo(Dml
∂ψ
∂η

+DTl
∂ T
∂η

)
  

(1.17)

     This equation is another form of the diffusive mass flux equation for the liquid phase Eq (1.5). 

Using the same approach its possible to establish the diffusive mass flux equation for the vapor 

phase. To numerically solve the obtained equations, Kallel discretized the equations explicitly 

using the finite difference method and expressed the boundary conditions in a steady state form. 

The difference from his results and measured values was relatively small for the cooling-down or 

evaporative cooling period (phase 1), which is the first stage in a dehydration process. For the 

constant  temperature  period  (phase  2),  he  had  some  significant  differences  which  could  be 

attributed to the usage of a constant convection coefficient.  

     Using a similar approach, Murugesan & et al.  [27] develop a two-dimensional model to 

describe the process of brick drying.  The governing equations were expressed using the same 

method as Kallel; defining the mass flux in terms of moisture content and temperature by the 

usage of transfer coefficients.  As usual,  these coefficients were determined from correlations 

obtained using boundary layer equations. To solve the coupled equations numerically, Murugesan 

used finite element spatial discretization applying Galerkin's weighted residual method. Again, 

steady flow was assumed and pressure terms in the x and y momentum equations were neglected 

due  to  the  complexity  of  the  problem.  An  extensive  analysis  of  the  heat  and  mass  transfer 

interactions was possible in this work by means of monitoring changes in Nusselt and Sherwood 

number through the geometry of the solid. The results were congruent with those from Kallel, 

making evident the existence of the three phases of the dehydration process. Even though, its 

necessary to point out that the attributes of these phases will vary from one material to another. 

     Another two dimensional model for conjugate heat and mass transfer in porous body is 

presented by Amanifard & Haghi [28]. They linked several of the concepts mentioned before 

such as Boussinesq  approximated model and the usage of a total mass flux based on transfer 

coefficients to deal with the inhomogeneity of the phenomena. Using Boussinesq's approximation 

they coupled the different transfers into the momentum equation of the flow field.
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Du
Dt

=−
1
ρ

∂ P
∂ x

+ν ∇2 u (1.18)

Dv
Dt

=g β(T−T ∞)+gβ ' (C−C∞)−
1
ρ

∂ P
∂ y

+
μ
ρ ∇ 2v (1.19)

     To consider coupled heat and mass transfer in the governing equations of the porous solid, 

they used the isothermal and non-isothermal mass transfer coefficients for the moisture content.  

Thus, for incompressible flow and constant thermophysical properties, conservation of energy 

and mass are expressed in terms of these transfer coefficients as follows.

c
∂ T
∂ t

=(
k
ρo

+h fg Dtv)(
∂2 T

∂ x2
+

∂2 T

∂ y2
)+h fg Dmv(

∂
2
ψ

∂ x2
+

∂
2
ψ

∂ y2
)

(1.20)

c=co+ml cl+mv cv (1.21)

∂ψ

∂ t
=(D tl+Dtv)(

∂2T

∂ x2
+

∂2T

∂ y2
)+(Dml+Dmv)(

∂
2
ψ

∂ x2
+

∂
2
ψ

∂ y2
) (1.22)

    

    Some three-dimensional models had been developed recently with the general purpose of 

visualizing certain patterns on the drying process in porous media, specifically to characterize the 

saturation profile and identify the different stages in the drying curves. Le Bray and Prat [29] 

pore network simulation modeled the solid as a simple cube lattice with randomly located voids 

of various sizes; the sizes were given using an uniform distribution with an average width of 0.4 

mm. In their work, they considered the capillarity effects, the phase change at the liquid-gas 

interface and diffusion in the gaseous phase. To calculate the mass transfer at the surface of the 

solid, a local constant mass transfer coefficient was used. The drying curves obtained were in 

qualitative  agreement  with  experimental  results,  but  they  clearly  stated  that  the  results  were 

preliminary  and  that,  due  to  the  complexity  and  time  demand,  the  heat  and  mass  transfer 

transport equations were solved as a non-conjugated problem. 
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     Most of the works mentioned herein do not agree in their approaches but almost all of them 

emphasize in the importance of the transfer coefficients to couple heat and mass transfer as an 

integrated  problem.  Here  is  where  the  physical  model  relies  in  the  data  available  from past 

experiments. Thus, to accurately model this phenomena we must refer to the experimental work 

done using the specific  porous material  to  be studied.  Then,  it  is  our concern to  review the 

research work done on the drying process of wet parchment C. arabica. In the work of Pérez-

Alegría [30], the behavior of physical and thermal properties was estimated as a function of 

moisture content. Geometrical parameters of the parchment coffee bean, such as length, width, 

and thickness were measured. The specific heat was calculated using the method of mixtures; 

which assumes ideal experiment conditions; all the heat lost by the coffee bean is received by the 

surrounding fluid and the calorimeter. To calculate the bulk thermal conductivity, the line heat 

source  method  was  applied  obtaining  a  linear  relation  between  conductivity  and  moisture 

content.  The values of specific heat obtained were greater than the data available for similar 

beans,  while  the  thermal  conductivity  was  smaller.  This  implies  that  the  drying  process  of 

parchment coffee mass requires more energy and takes more time than other drying processes.  

     Another important parameter to consider is the diffusion coefficient. This coefficient will vary 

depending on whether the selected location is within the lattice or at the grain boundary. The 

usual  procedure  is  to  take  an  average  between  both  coefficients.  This  average  is  called  the 

effective diffusivity coefficient D. According to Corrêa [31] the influence of temperature in this 

coefficient could be represented as an Arrhenius relation.

D=D0 exp(
−Ea

RT a

) (1.23)

     In the equation above D0 is the pre-exponential factor,  Ea  is the activation energy,  R is the 

universal gas constant and Ta is the temperature of the air.  Using experimental measurements of 

moisture content they were able to determine an experimental effective diffusivity coefficient. 

This was possible by evaluating an analytical solution of Fick’s second law for the coffee fruit 
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drying process. In our case C represents the concentration of water or moisture content inside the 

coffee cherry.

∂C
∂ t

=D ∇
2 C

(1.24)

 

For a single grain;  assuming azimuthal  and zenithal  symmetry,  and neglecting the shrinkage 

effects of dehydration the solution of the former equation yields to:

MR=
6
π

2 ∑
1

∞ 1
n2 exp (

−n2
π

2 Dt
r2 )

(1.25)

     Where the moisture rate (MR) is defined in terms of the initial moisture content (Ci), the 

equilibrium moisture content (Ce) and the actual moisture content (C). 

MR=
C−C e

C i−C e

(1.26))

     

     A proper  relation  was determined by comparing  the  experimental  coefficients  obtained 

through this method with the Arrhenius equation. For the parchment C. arabica, Corrêa reports a 

pre-exponential factor of 2.041·10-6 m2s-1 and a water activation energy of 22.619 kJ/mol. With 

the  former  knowledge  and  applying  principles  of  energy  and  mass  conservation,  some 

engineering models had been developed as prediction tools for coffee processors. Perez-Alegria 

[7] adapted Bakker-Arkema model for grain drying in deep beds to describe the airflow reversal 

drying process of parchment coffee. The Bakker-Arkema model describes simultaneous heat and 

mass transfer by applying the concepts of sensible and latent energy. The former was modified by 

including a thin-layer relationship. Rodriguez-Robles [51] presented a parametric thermodynamic 

model to predict the behavior of both temperature and moisture content through the dehydration 

process of  parchment  coffee beans.  This  model  consists  of a  formulation of  the first  law of 
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thermodynamics;  accounting for  sensible  and latent  energy.  Including the latent  energy,  both 

energy and mass equations were coupled. This work shows the advantage of using a coupled 

system of equations to describe this phenomenon by obtaining less than 2% of error between the 

thermodynamic model and the experimentally collected data. 

     As stated through this review, the modeling of a dehydration process is not trivial. It requires 

an understanding of the driving forces, the conditions of the specific process and the governing 

principles.  In  our  case,  the  drying  of  wet  parchment  C.  arabica has  been  modeled  for 

multidimensional  simplified  cases  or  parametrically.  Even  when  parametric  models,  which 

analyze the input and the output independently of the system, give useful results there is still a 

gap in the understanding of this process. If we add to our problem the consideration of micro-

macro pore interactions, irreversibility of the process and try to develop a transient 3-D model, 

we will see that there is still room for improvement in our actual models. 

 1.4 Objectives

     In order to reduce the energy inefficiencies associated with the dehydration process of wet 

parchment coffee (C. arabica) in the traditional rotary drum dryers, this drying process must be 

described both physically and mathematically. Formulating a mathematical model will improve 

our understanding of the thermodynamic characteristics of this process. It will allow us to predict 

the temperature and M.C. (w.b.) distributions throughout the coffee mass during the dehydration 

process.  Furthermore, the development of accurate heat and mass transfer mathematical models 

will allow for  parametric optimization of the drying equipment. The proposed research effort 

seeks  to  enhance  the  understanding of  the  dehydration process  of  wet  parchment  coffee (C. 

arabica).  Specific objectives are to:

 1. Develop a mathematical constitutive model that will predict the temperature and  M.C. 

(w.b.) for the dynamics of parchment coffee mass during the dehydration cycle using 

rotary drum technology. 
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 2.  Calibrate  the  mathematical  constitutive  model  with  published  and/or  measured 

experimental data.

The expected outcomes for the proposed research effort are as follows:

 1. Obtain  a  precise  understanding  of  the  thermodynamics  surrounding  the  dehydration 

process of the parchment coffee mass.

 2. Predict the dynamics of dehydration via the use of the developed mathematical model.

 1.5 Materials and Methods

     The methodology to be used will be divided into four general steps: (1) formulation, (2) 

modeling,  (3)  data  collection  and (4)  calibration.  The formulation  of  the  drying  phenomena 

within the coffee mass will be done using the equations of energy and mass transport. The drying 

process will be analyzed at  two different scales: macro-pore level and micro-pore level.  The 

macro level considers the motion of moist air through the coffee mass. At this level its possible to 

describe the moisture removal by generalizing the coffee mass as a single porous body. The 

micro level considers the migration of water and vapor through a single coffee bean. With the 

combination of these formulations we can describe the entire moisture transport phenomenon.

      Once the problem is well posed, the solution will be determined for different cases. It will be 

done starting from the simplest case of one-dimensional steady state conditions, moving towards 

the  complete  multi-dimensional  case.  Due  to  the  complexity  of  the  problem,  most  of  these 

solutions will be numerically obtained. This progressive approach will be essential to determine 

the dependencies of the phenomenon. An appropriate parametric model will be proposed based 

on this information.
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     The  following  step  will  be  to  calibrate  the  obtained  model  using  experimental  data.  

Experimentation will be done using a hot air recirculation controlled-closed system (HARC2S). 

This system was designed and constructed by Dr. Francisco Rodríguez Robles and Dr. Francisco 

Monroig Saltar from the University of Puerto Rico at Mayagüez.  The HARC2S (Figure 1.2) is an 

alternate  dryer  designed  to  decrease  the  energy  consumption  during  the  drying  process  by 

recirculating  and  reconditioning  the  dehumidifying hot  air.  “The  hot  and  humid  air  passing 

through the parchment coffee material is directed to a HX device where a portion of the moist air 

water  content  will  be  condensed and collected  outside  the  dehydration  cycle  with  minimum 

recirculating hot air temperature drop. The dehumidified air will recirculate back into the heating 

source where it will be heated back to the dehydration temperature setting of the equipment [2].” 

     This system will be instrumented with HOBO Pro V2 temperature and relative humidity 

sensors (Figure 1.3) to monitor moist air dry bulb temperature, relative humidity and coffee mass 

temperature. These sensors will be set to take measurements at a sample rate of once per minute. 

The saturated coffee mass will be exposed to a complete drying cycle. Every 30 minutes a sample 

will be taken out of the drying chamber. Then, the M.C. (w.b.) of the sample will be determined 

by loss of weight on heating, which is the accepted standard method [6]. For this purpose we will 

use a calibrated Denver Instrument IR-35 Moisture Analyzer (Figure 1.4). Once the moisture 

level of the sample reaches 12 % the drying process will be finished. The collected data will be 

evaluated  and  compared  with  the  predictions  done  with  the  proposed  model.  Using  these 

measured experimental results will serve to calibrate the mathematical constitutive model. 
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Figure 1.5.1: HARC²S  Device
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Figure 1.5.3: IR-35 Moisture Analyzer

Figure 1.5.2: HOBO Pro V2 Sensor
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 1.6 Thesis Structure

     This study presents the development of a mathematical model for the dehydration process of 

parchment coffee (C.Arabica). In Chapter 2 an overview of the mathematical method, its assumptions, 

constraints and physical significance is presented. At the end of this chapter, a summary of the model is 

presented  and  once  again  the  non-linearity  of  the  equations  used  is  highlighted.  This  system  of 

equations  requires  a  numerical  method,  a  proper  selection  of  boundary  conditions  and  a  solution 

strategy  based on the phenomenology behind this model. Chapter 3 is devoted to the discussion of this  

method.  It  includes  a  brief  introduction  to  the  finite  volume  method,  an  explanation  of  the 

discretization schemes used, a dimensionless study of the system of equations and the development of a 

convergence strategy based on this dimensionless study. In Chapter 4 the results obtained with this 

model  are  presented  and  compared  with  measured  experimental  data.  The  error  of  the  model  is 

characterized and described by simple statistics. In Chapter 5 the conclusions and proposed future work 

to improve the model are presented. There, the probable sources of error are discussed as well as the 

strengths of the model.  
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 2 Mathematical Modeling

     This study considers the motion of liquid water, water vapor and dry air through a rigid porous body 

(parchment coffee  C.Arabica). Water and its vapor migrate through single coffee bean pores (micro-

pore level) due to the gradient of transport quantities (temperature and mass). In the void space created 

between  beans  (macro-pore  level)  the  water  is  removed  by  the  combination  of  vaporization  and 

convection. Although the concept of funicular and pendular states was introduced earlier (section 1.3), 

it is necessary to explain their physical significance since these will be often mentioned in this study. In 

the earlier stage (funicular) of the dehydration process the porous media is saturated and the phase 

change  (vaporization)  will  have  a  stronger  effect  on  transport  quantities  than  other  transport 

mechanisms. The pore channels are filled with water at this stage, hence the liquid water will travel to 

the surface of the coffee beans by capillary action. Once the saturation level decreases substantially, the 

vaporization rate will also decrease. This event announces the transition into the secondary stage of the 

process, in which the migration of liquid occurs due to mass diffusion (concentration gradients) and 

convection-diffusion is the principal source of transport. Both stages are illustrated in Figure 2.1.

Figure 2.1: Dehydration Process Characteristics
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     To  characterize  this  dehydration  process  we  desire  to  determine  the  moisture  content  and 

temperature as a function of time and space. As illustrated above, to do this we must study the transport 

of energy and mass taking place between the different phases included in our studied volume. This 

analysis must consider both the microscopic and macroscopic scale. In the selected nomenclature the σ 

phase represents the solid porous matrix, β phase consists of liquid water (no bubbles) and γ is our gas 

phase, which consists of moist air (dry air and water vapor). The governing equations of these transport  

phenomena will describe the physical processes at a certain point within one of the zones or phases. For 

that reason it will be referred to this system of equations as zonal governing equations.

   

 2.1 Zonal Governing Equations

 2.1.1 Solid Phase (σ)

     The solid phase consists of a rigid solid matrix of parchment coffee beans of the species C.Arabica. 

This solid matrix is assumed to be homogeneous, but anisotropic (spatial variation of thermo-physical 

properties). It is considered to be fixed to the coordinate system, which implies that the velocity of the  

σ  phase is zero. Applying the law of conservation of energy, it yields the following energy equation in 

which the change in energy is purely attributed to the mechanism of diffusion (conduction).

ρσC p−σ

∂T σ

∂ t
=Kσ ∇

2T σ (2.1)

          

     In the equation above the thermal conductivity and specific heat of the σ phase are consider to be 

constant. Still, in the solution of these equations these properties could be evaluated as spatial averaged 

values to improve the accuracy of results. If we apply the law of conservation of mass to the solid 

phase the yielding result is redundant, since the solid mass remains constant and bounded moisture is  

neglected.
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 2.1.2 Liquid Phase (β) 

     The  β  phase  consists  of  liquid  water  and  it  is  the  phase  that  changes  most  throughout  the 

dehydration process. At the beginning of the process this phase is partially continuous  (continuous 

inside  the  pore  volume).  As  the  coffee  mass  moisture  content  decreases  this  phase  becomes 

discontinuous until the number of discontinuities becomes very large; it is to say that the discontinuities 

of  β  phase  becomes  infinite  as  the  porous  media  becomes  completely  dry.  Applying  the  law  of 

conservation of energy it is determine that the local increase of energy (zonal rate of change) at this 

phase must be equal to the the difference between the incoming diffusion energy (via conduction) and 

the dissipation of energy due to advection.   

ρβC p−β (∂T
∂ t

+V⃗ β⋅∇ T β) = Kβ ∇
2 T β (2.2)

     If we also evaluate the conservation of mass (continuity) in the liquid phase, recalling that liquids  

such as water are assumed incompressible fluids, we can say that the local increment in mass must be 

equal  to  the  mass  flux  incoming  to  the  system.  This  is  not  true  at  the  liquid-gas  interfaces  (β-γ 

discontinuities),  where  we must  also  include  the  mass  flux  due  to  phase  change  (vaporization  or 

condensation). Since this is a zonal equation, any phase change is not taken into account. As will be 

seen later, the vaporization-condensation fluxes will be considered as discontinuous phenomena. Thus 

we can write our zonal β phase continuity equation as,

∂ρβ

∂ t
+ ∇⋅(ρβ V⃗ β ) =0 (2.3)

 2.1.3 Gas Phase (γ)

     The gas phase consists of the water vapor and dry air. It is important to point out that no chemical  

reaction occurs in the gas phase, since the dry air is inert. Also, the dry air does not interfere in the 

phase change,  since it  is  insoluble in  water  (β phase).  Something that  must  be understood before 

formulating the energy equation for this phase is that the total energy equals the sum of the energy of 
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the individual species, but the total energy flux is not equal to the sum of the fluxes of the individual  

species. This can be illustrated with the following expressions.

ργ hγ =∑
i=1

i=N

ρi h̄i (2.4)

ργ V⃗ γ hγ ≠ ∑
i=1

i= N

ρi v i h̄i (2.5)

   

     The reason for this inequality is that the total velocity of the phase depends not only on the species 

velocity vi, but also depends on the diffusion velocity of the species ui  (Eq. 2.6). This diffusion velocity 

can be easily related to the gradient of the concentration of the i species using Fick's law (Eq 2.7).

v γ = v i − ui (2.6)

ρi ui = − ργ Di ∇ [
ρi
ργ ] (2.7)

  

Using the law of conservation of energy, the resultant zonal energy equation is

ργ (C p )γ(∂ T γ

∂ t
+V⃗ γ⋅∇ T γ) = K γ ∇

2T − ∇ (∑
i=1

N

ρi ū i h̄i) (2.8)

     Similar to the zonal energy equation of liquid phase, the local change of energy of the γ phase is 

equal to the energy gain via conduction minus the energy removed due to convective transport. The 

difference here, as we can see from the right side of Eq. (2.8), is that some  energy is removed (or 

acquired)  due  to  concentration  gradients.  Again,  the  thermophysical  properties  are  assumed  to  be 

constant in the selected differential volume. When applying the conservation of mass principle, we will 

find that the local change of mass must be equal to the net mass flux entering our control volume (Eq. 

2.9). To be consistent with liquid phase zonal transport equations, any phase change will be assumed to 

take place at the liquid-gas interfaces (β-γ discontinuities). 

∂ργ

∂ t
+ ∇⋅(ργ V⃗ γ ) =0 (2.9)
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     This set of equations describe the phenomena in terms of the individual phases, but it  makes 

impossible to find a solution; since this will be highly influenced by the discontinuity terms at the 

interfaces σ-β, β-γ and σ- γ. To formulate a system of equations valid at any point in space, a volume 

averaged form of these equations, derived by Whitaker [22], will be used.

 

 2.2 Volume Average Method

     To illustrate the volume average technique lets consider the porous media presented in Figure 2.2.1.

 

Figure 2.2.1: Porous Media (with Discontinuous Liquid Phase)
    

     To introduce this method first it is necessary to understand  the difference between spatial, phase and 

intrinsic phase averages. The first one (Eq. 2.10) refers to the average of a quantity defined everywhere 

in our control volume of volume V. The phase average (Eq. 2.11) is the average of a transport quantity 

defined only in one phase with respect to the total volume V.  An intrinsic phase average (Eq. 2.12) is 

the average of a quantity defined only in one phase with respect to the volume occupied by that same 

phase.  The  understanding  of  these  differences  is  vital  in  the  formulation  of  the  volume averaged 

transport equations for our dehydration process. 

β-phase 
(liquid) 

σ-phase (solid)

γ-phase (moist air)

Volume V
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〈ψ〉 =
1
V ∫V

ψdV (2.10)

〈ψi〉 =
1
V ∫V

ψi dV
(2.11)

〈ψi〉
i
=

1
V i

∫V i

ψdV (2.12)

     In spite of the fact that it is not the scope of this study to derive the volume averaged theorem or the  

averaged  transport  equations,  we  may  discuss  some  details  about  this  method  for  its  physical 

implications. For a detailed derivation of the averaging theorem, see the work of Slattery [32]. One of 

the challenges of formulating a system of volume averaged transport equations is relating the average 

gradient of a transport quantity to the average of the quantity itself. A useful expression is developed 

using the so-called averaging theorem . This theorem states that the average of a quantity's gradient is 

equal to the gradient of the quantity's average plus the average of the quantity jumps (discontinuities) at 

interfacial areas between different phases. In terms of the problem presented herein, we can say that  

the volume average of any transport quantity's derivative could be represented as the derivative of that 

quantity's average plus the average jump of the quantity at the interfaces σ-β (solid-liquid), β-γ (liquid-

gas) and σ- γ (solid-gas). This can be mathematically expressed for a transport property at phase i as 

〈∇ ψi〉 = ∇ 〈ψi〉+
1
V
∑
j=1

N

(∫Ai− j
( ψi−ψ j )⋅ηi− j dA) (2.13)

 

     The first term at the right side of Eq. (2.13) represents the gradient of the average of the transport 

quantity  ψi and the second term represents the jump of this quantity at the interface i-j.  To deal with 

these discontinuity terms we'll  need to either employ a constitutive equation or use some physical 

deduction  to  understand  the  significance  of  the  term.  This  terms  represents  one  of  the  biggest 

complexities in the modeling of transport phenomena in porous media and also a common source of 

error.  Utilizing  the  averaging  theorem  and  some  constitutive  equations,  the  average  form  of  the 

transport equations is formulated. In the following section, a descriptive flowchart of the formulation 



27

process is presented. 

 2.3 Methodology – Flowchart

In the diagram depicted in  Figure 2.3.1 the process  of formulating the volume averaged transport 

equations for a porous media is illustrated.

     The first step is to add the zonal equations presented in section 2.1 and simplify the resulting 

expressions using the averaging theorem. This would lead to an early form of the volume averaged 

Figure 2.3.1: Formulation of Volume Averaged Equations

Zonal Equations (σ, β and γ)

Volume Averaged Equations

Usage of constitutive 
equation if not desired

Jump 
discontinuity 

terms  

(e.g.∫
Aβγ

q⃗γ⋅nβ γ dA)

Intrinsic phase 
 average terms  

(e.g. 〈 T 〉
β
)

Dispersion Vector 

(e.g. 〈T β V⃗ β 〉= 〈T β 〉
β 〈V⃗ β〉+ 〈T̃ β Ṽ β 〉)

γ continuity β continuity
Vapor

diffusion
Total thermal

energy (σ, β and γ)
γ momentum β momentum

Combination with 
transport coefficients 
(effective coefficients)

〈∇ ψi〉 = ∇⋅〈ψi〉+
1
V

∑
j=1

N

(∫Ai− j
(ψi−ψ j )⋅ηi− j dA)
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equations. Contained in this expressions we will find average terms   (which are usually the desired 

averaged transport quantities), jump discontinuity terms and dispersion terms which are usually the 

nonlinear terms resulting from averaging convective (non-linear) terms in the transport equations. Jump 

discontinuity terms are usually eliminated by using some constitutive equation and terms containing the 

dispersion vector are either related to the tortuosity vector (if known), determined experimentally or 

combined into effective parameters (e.g. effective diffusion coefficient). In the expressions presented 

by Whitaker [22] the dispersion vectors are combined into effective transport coefficients. A detailed 

analysis of the dispersion vector and its relation to the tortuosity vector is presented by Whitaker [33]. 

 2.4 Assumptions and Limitations of Methodology

    Before presenting the averaged continuum equations, the assumptions and restrictions of our model 

must be clear. Some assumptions have been already introduced but all are summarize here to keep a 

coherent structure in our discussion.

Assumption 1: The solid matrix is fixed to our coordinate system

V⃗ σ=0 (2.14)

     This represents a limitation in terms of the physical understanding of our dehydration process, since 

in the actual conditions of the dehydration process of parchment coffee the coffee is being stirred by a 

lever arm.

Assumption 2: The thermal conductivities of  σ, β and γ phases are constant in the differential volume.

Assumption 3: The enthalpies of σ, β and γ phases are independent of pressure and the specific heats 

are all constants inside the differential volume.

h = h(T )= C p+const (2.15)

To specify that the enthalpy is independent of pressure, not only implies that it is a unique function of 

internal energy but also that the compressional work is negligible. 
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Assumption 4: β (liquid) phase is pure.

Assumption 5:  Viscous dissipation is negligible

Φdissipation−β = Φdissipation−γ = 0 (2.16)

Assumption 6: The change in kinetic and potential energy of  β and γ phases is zero.

Assumption 7: There is no chemical reaction in the γ phase.

     As stated before, the dry air is inert and insoluble in  σ and β phases.

Assumption 8: The γ (gas) phase is ideal.

    This assumption will be substantial, specially at the formulations of vapor pressure and intrinsic 

phase density. 

Assumption 9: The flow is quasi-steady.

∂ V⃗ β

∂ t
=

∂ V⃗ γ

∂ t
≈0 (2.17)

     The characteristic time of most dehydration processes is big enough to treat the flow as quasi-steady. 

While calculating the different time scales (Sections 3.2.4, 3.2.5) it will be shown that this is true for 

this specific process. Another calculation that will support this assumption is the estimate of Reynolds 

number. Due to the resistance that the parchment coffee bed (porous body bulk mass) represents, the 

flow is expected to be in Darcy regime (Re < 1). This will be discussed further in Section 3.2.3.  

Assumption 10:  The  σ (solid),  β (liquid) and γ (gas) phases are assumed to be in local thermal 

equilibrium. This will be explained with further detail in section 2.5.1.

Assumption 11:  The β and γ phases are Newtonian fluids with constant viscosity. This assumption 

eliminates the possibility of studying the presence of certain oils in our porous media. 

Assumption 12: The gas phase is continuous.

Assumption 13: The gas and liquid pressure distribution are hydrostatic.

Assumption 14: The capillary pressure is a unique function of phase average temperature and liquid 

phase volume fraction. 
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〈 P c〉 = f (〈T 〉 ,ϵβ ) (2.18)

〈 P c〉 =−
1

Aβ γ

∫
Aβγ

σβ γ( 1
r1

+
1
r2

)dA (2.19)

     It is known, from Young-Laplace equation (Eq. 2.19), that the capillary pressure is a function of the  

surface tensions and the radii of curvature. Therefore, this assumption implies that the surface tension 

and radii of curvature are also functions of temperature and liquid phase volume fraction.    

 2.5 Continuum Averaged Equations

     The averaged equations presented here are derived with detail in Slattery [32], Gray [34] and 

Withaker [22].

 2.5.1 Total Thermal Energy

     The transport of heat and mass in porous media is usually characterized by having relatively low 

convective heat transfer rates [22, 35]. This could be physically deducted since porous media flows are 

generally in the Darcy regime and, in average, the volumetric resistance to heat transfer prevails over 

the surfaces resistance. Therefore, we can assume that the σ, β and γ phases are in local equilibrium and 

the intrinsic phase average temperatures are all the same temperature <T>. 

〈ρ〉 c p

∂〈T 〉

∂ t
+ [ρβ (c p)β V⃗ β + 〈ργ 〉

γ
〈c p〉

γ
〈V⃗ γ 〉 ]⋅∇ 〈T 〉 =

∇⋅( Keff ∇ 〈T 〉 ) − 〈ṁ〉Δ hvap

(2.20)

     The equation above represents total thermal energy of our solid-liquid-gas system. It states that the 
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local  change  of  energy  must  compensate  for  the  incoming  diffusive  energy  fluxes,  the  exiting 

convective energy fluxes and the energy spent in the vaporization of water.

 

 2.5.2 γ-phase Continuity

     The following equation represents the mass continuity of the gas phase. Physically, it means that the 

change  in  mass  per  unit  volume of  the  gas  phase  is  equal  to  the  incoming  water  vapor  (due  to 

vaporization phenomenon) minus the flux of gas leaving the differential volume.

∂ (ϵγ 〈ργ 〉
γ

)
∂ t

+ ∇⋅(〈ργ〉
γ
〈 V⃗ γ〉 ) = 〈ṁ〉 (2.21)

     As we can see in the last equation, the average mass per unit volume of gas is written as the product  

of the gas phase volume fraction (εγ) and the intrinsic phase average density.  It is essential to clarify 

that the intrinsic phase average density of the different species in the gas phase is different to the phase  

average. 

〈ρi〉
γ
=

1
V γ

∫
V

ρi dV ≠
1
V ∫

V

ρi dV (2.22)

〈ρi〉
γ
= f ( 〈T 〉 ,ϵγ ) (2.23)

     The intrinsic phase average is both a function of the phase average temperature and the space 

occupied by the gas phase (γ volume fraction). For this reason the density used in this equation cannot 

be evaluated from thermodynamic correlations based on phase average temperature. In the latter stage 

of the process, when the coffee mass is not saturated anymore, we can say that the gas occupies all the 

space between coffee grains and the intrinsic phase average will be function of temperature and bulk 

porosity.
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 2.5.3 β-phase Continuity

      

     The volume averaged β-phase continuity equation is presented in Eq. (2.24). This expression states 

that  the change (reduction)  in  the volume occupied by the  liquid  water  (εβ) must  equal  the water 

evaporating plus the water exiting the differential volume in liquid form.         

∂ϵβ

∂ t
+ ∇⋅〈V⃗ β〉 +

〈ṁ〉
ρβ

= 0 (2.24)

     In the expression above we can see how the intrinsic phase average water density has been replaced 

by its phase average. The reason for this substitution is that liquid water is an incompressible fluid. 

Consequently, an increment in the water content will be instantaneously followed by an increment in 

the water volume fraction.

 

 2.5.4  γ-phase Motion

     As discussed in section 2.4, the porous media flow is characterized by very low speeds. For this 

reason we will treat the gas velocity as a quasi-steady quantity (local change in time is negligible).    

〈V⃗ γ〉 =−(λ γ

μγ
) [ ∇⃗ 〈 Pγ−P0〉

γ−ργ g⃗ ] (2.25)

     This vector equation is a form of Darcy's law; where λγ represents the permeability tensor and μγ is 

the dynamic viscosity tensor. For the solely development  of this equation the flow was treated as  

incompressible although some variations in the density are expected. An assumption implemented here 

is that the gas phase is always continuous. This represents a limitation specially at the early stage of the 

dehydration process when we expect  the gas phase to be discontinuous and its density will vary due to 

the presence of liquid water.
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 2.5.5 β-phase Motion

     The approach Whitaker [22] proposed to model the motion of water in porous media is to assume 

that the liquid flow depends only on gravity and capillary forces. Gravity force is  represented by the 

hydrostatic pressure and the capillary force is represented by the capillary pressure. The former is a 

function  of  the  surface  tension  forces  and  the  radii  of  curvature  at  the  gas-liquid  interfacial  area 

(discontinuities). Based on this, the following expression for the motion of β phase is developed.  

〈V⃗ β〉 =−(ξ λβϵβ

μβ )[ ∇ Pc+ (ρβ−ργ ) g⃗ ] (2.26)

     As we can see the equation above is a form of Darcy's law. In this expression we state that the flow 

of water is proportional to the pressure drop due to capillarity minus the gravitational potential of the 

liquid phase relative to the gas phase. This equation introduces the parameter ξ, which is a function of 

the topology of the liquid phase. When  ξ equals 1, the equation above becomes Darcy's law.  This 

represents the case where β phase is totally continuous and the only discontinuity is the boundary 

enclosing it.  Similarly the magnitude of the liquid motion decreases to zero as  ξ becomes 0. This 

represents the case where the number of discontinuities goes to infinity. Therefore, we can say that the 

topological parameter ξ is inversely proportional to the number of phase discontinuities M.

ξ∝
1
M

(2.27)

  

     One of the problems of this methodology is determining this parameter, which could be extracted 

from the experimental  deduction of  the saturation curves.  In  our  modeling,  this  parameter  will  be 

related to the volume fraction of liquid phase (Section 2.6.8). Now, we still have to model or determine 

the capillarity pressure in terms of our transport quantities. This will be done assuming that the pressure 

is a unique function of temperature and volume fraction. Thus, the capillary pressure gradient can be 

written as

∇⃗ 〈Pc 〉 =−kϵ ∇⃗ ϵβ−k 〈T 〉 ∇⃗ 〈T 〉 (2.28)
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Introducing Eq. (2.28) into Eq. (2.26) we obtain:

〈V⃗ β〉 =−(ϵβξλβ

μβ )[ k ϵ ∇⃗ ϵβ+k 〈T 〉 ∇⃗ 〈T 〉−(ρβ−ργ ) g⃗ ] (2.29)

where

k ϵ =−
∂〈 P c 〉

∂ ϵβ

, k〈T 〉 =−
∂〈 P c 〉

∂〈T 〉
(2.30)

     The parameters presented in Eq. (2.30) can be determined from an experimental curve relating the 

capillary  pressure  to  the  liquid  saturation  level.  However,  in  our  study  of  the  drying  process  of 

parchment coffee, we will represent this parameters with the following expressions.

k 〈T 〉 =−
∂〈 P c 〉

∂ 〈T 〉
=−

∂〈 Pc 〉

∂ σβ γ

∂〈σβ γ〉

∂〈T 〉

(2.31)

k ϵ =−
∂〈 Pc 〉

∂ ϵβ

=−
∂〈 P c 〉

∂σβ γ

∂〈σβ γ〉

∂〈T 〉

∂〈T 〉
∂ϵβ

(2.32)

     The  expressions above assume again that the surface tension is a unique function of temperature 

and that the radii of curvature is constant. Therefore, Young-Laplace equation reduces to

〈 P c〉 =−
2

Aβ γr ∫
Aβγ

σβγ dA (2.33)

Substituting Eqs.(2.31) and (2.32) in to Eq. (2.20) we obtain

〈V⃗ β〉 =−(ϵβξλβ

μβ )[Ωβ∇⃗ 〈T 〉−(ρβ−ργ ) g⃗ ] (2.28)

where

Ωβ = 2 k〈T 〉 (2.29)
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 2.5.6 Volumetric Constraint

The volume fractions of σ, β and γ phases are defined as:

ϵσ=
V σ

V
, ϵβ=

V β

V
, ϵγ=

V γ

V
(2.30)

     

Since the sum of the individual volumes occupied by each species must equal the total volume V, then 

the sum of the individual volume fractions is one.

ϵσ+ϵβ+ϵγ=1 (2.31)

     In our model it is assumed that the pore volume (voids) are always filled with either liquid, gas or a 

combination. Therefore we can state that the sum of the fluid volume fractions must equal the porosity 

φ of the studied porous body. Using this assumption we can rewrite Eq. (2.31) as

ϵσ+ϕ=1 (2.32)

 2.5.7 γ-phase Diffusion Equation

In their work The Drying of Solids, Comings and Sherwood state: 

“At certain stages in the drying of many solids the water moves as a liquid part way to the solid 

surface and then diffuses as water vapor through the air-filled openings in the porous solid near the 

surface.” [17]

     There are two important diffusional resistances that we will  consider in our model.  First,  the 

resistance to liquid motion in the interior of the solid. This one, mainly due to capillary forces, has been 

thoroughly considered in the formulation of the equation of motion. The second one is the resistance to 

diffusion of water vapor through the air-filled pores in the surface of the coffee bean. Using Eq. (2.21) 
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we can formulate an equation of continuity for either dry air or water vapor species. This equation will 

be independent from the continuity of gas phase, since it will include the inter-diffusion of gas species. 

This diffusive term is obtained by substituting Fick's Law in the discontinuity terms that appear from 

averaging the intrinsic phase density of vapor species. The diffusion of vapor into the gas phase is then 

given by 

∂ (ϵγ 〈ρ1〉
γ

)
∂ t

+ ∇⋅(〈ρ 1〉
γ
〈V⃗ γ 〉 ) − 〈ṁ〉 = ∇⋅[〈ργ〉

γ D eff ∇ ( 〈ρ1〉
γ

〈ργ〉
γ )] (2.33)

 2.6 Porous Media Effective Parameters

     Most of the complexities that came up from the averaging of non-linear terms (dispersion vectors) 

are reduced by introducing effective parameters. However, there is a general drawback; the accuracy of 

our model depends substantially in the experimental work done to determine these coefficients. In  A 

Theory  of  Drying in  Porous  Media, Whitaker  [22]  wrote:  “Once  again  we have  swept  all  of  our 

difficulties into one parameter, the total effective diffusivity, and experimental determination of this 

parameter, even for an isotropic media, will be a very difficult matter”. The following sub-sections 

present the correlations or modeling used to determine these parameters as well as other important 

properties.

 2.6.1 Spatial Density

     To calculate the total energy change of our system we need to define the spatial density. This density 

represents the total mass per unit volume and is given by Eq.(2.31).

〈ρ〉=ϵσ 〈ρσ〉
σ
+ϵβ 〈ρβ 〉

β
+ϵγ∑

i=1

N

〈ρi 〉
γ (2.34)
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To calculate the solid phase density we will employ the following expressions, experimentally deducted 

by Perez-Alegria and Ciro-Velásquez [2001].

ρσ−bulk=5.9993 M (%w.b.)+282.40 (r 2
=0.9742)

(2.35)ρσ−kernel=5.6561 M (%w.b.)+647.23 (r 2
=0.9832)

0.04≤M (w.b.)≤0.56

     It  is  necessary to  clarify that  the bulk density  refers  to the mass per  unit  of total  volume of 

parchment coffee. Thus, it includes the void volume. On the other hand, the kernel density is the phase 

density  of  coffee  mass;  without  including the  void  space  in  the  calculation.  Both  will  be used to 

determine the porosity, since it is define as the void volume per unit of total volume .

ϕ=1−
ρσ−bulk
ρσ− kernel

(2.36)

     While the coffee mass density will be evaluated as a function of the wet-base moisture content, the 

fluid phases (β and γ) densities will be correlated to the volume averaged temperature. The water vapor 

density (ρ1) will be determine using Eq. (2.37) developed by Tortike [1989]. 

ρ1=−93.7072+0.833941T −0.00320809T 2

+6.57652x10−6 T 3
−6.93747x10−9T 4

+2.97203x10−12T 5

(2.36)

In like manner, the dry air and liquid water densities will be obtained from the correlations presented in 

Eqs. (2.37) and (2.38).

ρ2=0.001293/ (1+0.00367T ) (2.37)

ρβ=1.30753x10−8 T 3
−5.44149x10−6 T 2

−6.00025x10−6T +1.00039 (2.38)
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     As was previously stated (section 2.5.2), for the gas phase species, the intrinsic phase average 

density is different from the density evaluated at the averaged phase temperature. The main reason for 

this is that the gas phase is compressible and the density is a function of both temperature and phase 

volume fraction. This is more evident in the funicular state (early stage) when the porous media is  

saturated and the volume occupied by the gas phase is minimum. At the latter stage (pendular state) of 

the process, Eqs. (2.36) and (2.37) are a good estimate of the gas phase species densities. After the 

water saturation level decreases, due to the initial vaporization stage, the gas phase occupies basically 

all the void space  between coffee beans. At this point we still have to determine the distribution of the 

gas species (water vapor and dry air)  in the  γ phase.  However,  we can state that at  this  stage the 

intrinsic average phase densities are only a function of temperature.  This deduction is based on the 

assumption that the  γ phase is ideal in the thermodynamic sense. In an ideal gas, the species do not 

interact with each other and thus we say that they occupy the same volume.

 2.6.2 Heat Capacity

     The local resistance of our system (solid-liquid-gas) to increase or decrease its temperature could be 

represented by its  equivalent  heat  capacity.  This will  be calculated via  the use of  a  mass fraction 

weighted average of the different specific heats, as shown on Eq. (2.39).

C p=

ϵσ 〈ρσ 〉σ (c p)σ+ϵβ 〈ρβ 〉
β (c p)β+ϵγ∑

i=1

N

〈ρi〉
γ (c p)i

〈ρ〉

(2.39)

     This weighted average allows us to combine the contribution of each species to the total energy of 

the system. With this coefficient we couple the mass volume fractions to the total energy equation. To 

obtain the specific heat of the parchment coffee mass we will employ Eq. (2.40), published  by Perez-

Alegria and Ciro-Velásquez [30]. 

(c p)σ=0.0535 M (%w.b.)+1.6552 (r 2
=0.8932) (2.40)

The specific heat of liquid water, dry air and water vapor will be determined using the correlated data 

presented by Incropera and DeWitt [36]. 
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 2.6.3 Effective Thermal Conductivity

     In the formulation done by Whitaker [22] the difficulty represented by the dispersion vector terms is 

handled  by  incorporating  it  into  the  effective  thermal  conductivity  tensor.  In  a  case  were  the 

conductivity of the solid phase is expected to be much more significant, as ours, the dispersion vector 

can be considered to be negligible [37]. That being the case, the effective thermal conductivity reduces 

to Eq. (2.41).

k eff =ϵσ kσ +ϵβ kβ+ϵγ k γ (2.41)

The bulk thermal conductivity will be determine using the correlation developed by Perez-Alegria and 

Ciro-Velásquez [2001]. 

k=0.00002 M (%w.b.)+0.0087 (r 2
=0.971) (2.42)

 2.6.4 Total Effective Diffusivity

     As mentioned at the beginning of this section, all the difficulties of modeling the gas phase diffusion 

phenomena  are  incorporated  into  the  total  effective  diffusivity.  This  coefficient  represent  the 

proportionality between the molar flux of water vapor through the porous media  and the gradient of 

water vapor concentration. The higher this value, the faster the water vapor will diffuse into the gas 

phase. For a porous media, this diffusion process is highly dependent of the topology of the pores. This 

dependence is usually accumulated in the so-called tortuosity vector. However, we can determine the 

effective diffusivity  without  characterizing the pore structure of the coffee bean by experimentally 

correlating it using the Arrhenius equation (Eq. 1.23). This relation assumes that on the average this 

coefficient depends only on the temperature. Assuming that the shrinkage effects are negligible and that 

diffusion of water vapor occurs strictly at the surface of the coffee beans, Corrêa [31] developed the 

following expression for the effective diffusivity coefficient.  

Deff =2.041x10−6 exp(−22.619
R T ) (2.43)
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Where R is the universal gas constant presented below.

R=0.008314 kJ /mol−K (2.44)

 2.6.5 Single Coffee Bean Permeability

     One of the most important parameters involving any flow characterized by Darcy's law is the  

permeability of the porous body. Permeability could be defined as the mean effective area normal to a 

fluid flow passing through a porous material. Clearly, the permeability tensor is a direct function of the 

topology of the porous body. Therefore, experimentation is required to determine its value. This is a big 

limitation for our study, since there is no permeability data for parchment coffee (C.Arabica) available 

at  this  moment.  To estimate the permeability of a  single coffee bean,  we will  employ the method 

developed  by  Marshall  [38]  .  In  his  work,  he  published  a  mathematical  expression  relating  the 

permeability  and  the  pore  size  distribution  of  an  isotropic  material. The  assumptions  of  this 

methodology are the following:

• The material is isotropic or its pore space is randomly distributed.

• There are no lengthy conducting channels.

• The rate of flow is controlled by the cross-sectional area of the necks connecting the pores and 

obeys Darcy's law.

• The pore channel is assumed to be straight. This assumption is based on the work done by 

Slichter  [39],  where  he  demonstrates  that  the  errors  of  this  approximation  are  mutually 

compensating.

      This assumptions seem reasonable with the exception of the isotropy of our porous material. To 

assume  that  a  coffee  bean  (C.Arabica)  is  an  isotropic  porous  media  we  need  some experimental 

evidence. In his work concerning the micro-structure of C.Arabica, Pittia concludes: 

     “The  methodological  approach  to  the  evaluation  of  the  porosity  in  green  beans  under  study 
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evidenced a limited presence of voids or pores differently distributed between the internal and external 

volumes ” - [40]

     Based on the evidence provided by Pittia [40] we decided to assume that the coffee bean studied 

herein is an isotropic porous media. Using this assumptions, we implemented Marshall's methodology. 

The concept behind his method is that the linear stream-line velocity governed by Darcy's law (Eq. 

2.45) must be equal to Poiseuille's solution (Eq. 2.46) for mean velocity inside a narrow circular tube. 

Comparing this two expressions and relating the mean equivalent pore cross-section radius (Re) to the 

pore size distribution he developed Eq. (2.47). This allows us to estimate the permeability characteristic 

of a single coffee bean.  

u=−λ
μ

dP
ds

(2.45)

umean=
−ϕ Re

2

8μ

dP
ds

(2.46)

           

k=
1
8

ϕ
2 n−2 (r 1

2
+2r 2

2
+5r3

2
+7r 4

2
+ ...+(2n−1)r n

2 ) (2.47)

Where

r 1>r2>r3>r 4>...>r n (2.48)

     Now, to evaluate Eq. 2.47 we need to know the porosity φ and the pore radius (ri) distribution. Pittia 

[40] reported that the pore size distribution is dominated by macropores in a range between 10 to 70 

μm. As it can be seen, Eq. 2.47 does not depends on the frequency of a pore radius, since it is assumed 

to be randomly distributed. This means, using the law of large numbers, that as we increase the number 

of terms in the distribution (n), the sum of  terms at the right side of Eq. 2.47 becomes closer to the 

mean equivalent  radius  (Re).  To do our  permeability  estimate,  a  random distribution  of  500 terms 

between 10 and 70  μm was used. The distribution generated in this step is shown in Figs. 2.6.1 and 

2.6.2.
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Figure 2.6.2: Pore Size Distribution Histogram

Figure 2.6.1: Random Pore Size Distribution
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     After generating the pore size distribution, the different radii were sorted in descending order to 

satisfy Eq. (2.48). The next step in the methodology was to select the proper value of porosity. We 

already discussed, at Eq. (2.36), how to determine the macro-porosity of our system. Now, we need to  

distinguish between that porosity and the porosity of a single coffee bean. The former will be identified 

in this study as the micro-porosity. In his work, Pittia [40] presented the following data for C.Arabica 

green bean.

     Although this data is for green coffee beans, it could be used under the assumption that shrinkage 

effects are negligible. For the estimate of coffee bean permeability we used an average porosity value  

of 0.049. Substituting the previously determined pore size distribution and this average porosity value 

into Eq. (2.47) we obtained a value of 1.444E-7 cm² for the permeability of a single coffee bean.

 2.6.6 Bulk Permeability

     In  section  2.6.5  we  estimated  the  permeability  of  a  single  coffee  bean  using  the  pore  size 

distribution and porosity of a single grain. This permeability is indeed the effective area for the motion 

of liquid water in our porous media as could be seen in Eq. (2.49). It is also the effective area for the 

motion of gas in the portion of our control volume occupied by the solid . 

k β = kbean = 1.44x10−7 cm2 (2.49)

     To calculate the total permeability of gas phase, we must understand that the air will have a different 

Table 2.6.1: Porosity  of Green Coffee Beans in 2 External and Internal Regions [40]

Porosity (φ)

Coffee Bean External 1 External 2 Internal Average Uncertainty

Green 0.041 0.041 0.064 0.049 ± 0.004
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permeability depending if it is located in the region occupied by the solid phase or in the void space 

between grains (macro-pore).  Our approach to determine a characteristic permeability for the γ phase 

was to formulate a volume weighted average between the micro-scale and macro-scale permeabilities. 

In the void space (φ) the permeability of the air will be the still undetermined coffee bed permeability 

(.kbed) and everywhere else (1-φ) the characteristic permeability will be assumed to be the the micro-

scale permeability ( kbean ). The formulation of this bulk permeability is seen in Eq. (2.50).

K =ϕ k bed +(1−ϕ)k bean (2.50)

     Even though we are assuming the micro-scale  permeability  to  be constant  (due to  negligible  

shrinkage  effects),  the  bulk  permeability  will  vary  as  the  bulk  porosity  varies.  Therefore,  the 

permeability of the gas phase will be a function of porosity as shown in Eq. (2.51).

k γ= K = f (ϕ) (2.51)

     The remaining difficulty is to estimate the bed permeability (kbed). This could be done using Eq. 

(2.47),  as  long  as  we  know  the  macro-pore  size  distribution.  To  determine  the  macro-pore  size 

distribution we will assume that our control volume consists of the interaction of perfectly spherical  

beans of equivalent diameter De. In the future, the concept of sphericity could be incorporated into this 

formulation, but at the moment we will make this radical assumption. Based on observation, it was 

decided to represent our control volume using an analogy to cubic crystal structures as shown in Fig.  

2.6.4.  
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  To generate the macro-pore size distribution we assumed that the pore diameter varies from a less 

packed configuration to a close-packed one. Therefore, the minimum pore radius is equivalent to the 

space between atoms (λ) in an FCC configuration as formulated in Eq. (2.52) and the maximum pore 

radius is equivalent to the space between atoms in a BCC configuration (Eq. 2.53). 

λmin=2 R (2.52)

λmax=2(√(3)+1) R (2.53)

  

Where,

R=
D e

2
(2.54)

Figure 2.6.3: Porous Media Control Volume Used for Macro-Permeability Estimate
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     From the data published by Perez-Alegria [2001] it can be determined that the mean equivalent  

diameter for parchment coffee (C.Arabica) is 7.87E-3 m. With this equivalent diameter, and using Eqs. 

(2.52) and (2.53), we determined that the macro-pore distribution is in a range between 7.87 to 21.4 

mm. Subsequently,  we generate  a  random distribution  of  70 values  inside  the  calculated  range as 

illustrated in Figs. 2.6.5 and 2.6.6.

Figure 2.6.4: Random Macro-Pore Size Distribution
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     In figure 2.6.6 we can observe that the probability of our random distribution is uniform. This is  

important to state that our distribution was really random. All the events (possible radii) should have 

the  same  probability  of  occurrence.  Using  the  macro-pore  distribution  obtained  it  is  possible  to 

calculate the coffee bed permeability by employing Eq. (2.47). Evaluating our results for coffee bed 

permeability and single bean permeability in Eq. (2.50) we obtained the following relationship between 

bulk permeability and wet base moisture content. 

Figure 2.6.5: Macro-Pore Distribution Histogram



48

Figure 2.6.6: Bulk Permeability of Parchment Coffee (C.Arabica) 

     It is important to remember that the permeability of air will be the same as the bulk permeability.  

Therefore,  Figure  2.6.7  represents  a  prediction  of  the  permeability  of  air  in  parchment  coffee 

throughout its drying process. It is interesting that the permeability of air in our medium is in the same 

order of its  permeability in well-sorted gravel (10E-3),  given that they physically look alike.   The 

results  shown  in  this  section  were  implemented  in  the  modeling  of  the  dehydration  process  of 

parchment coffee (C.Arabica) presented in our study. At the moment this study is written, no data or 

estimate of the permeability of air (and water) in coffee mass has been published. 

 2.6.7 Topological Parameter (ξ)

     As we discussed in Section 2.5.5, the parameter  ξ in the liquid motion equation (Eq. 2.29), is a 
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parameter in  terms of transport  quantities,  we represented it  as the ratio between the actual liquid 

volume fraction and its initial value. This expression is shown in Eq. (2.55).

ξ=
ϵβ

{ϵβ}t =0

(2.55)

 2.7 Pressure Calculations

     One of the drawbacks of this methodology is that the pressure field must be either known or  

determined  using  laminar  boundary  layer  theory.  In  our  work  we  will  constrain  the  vapor  phase 

pressure gradient to be constant and we will impose boundary conditions based on the inlet and outlet 

pressure determined experimentally. 

Pressure Constraint ∇ p1 = constant (2.56)

Using the relative humidity data obtained in our experiment, we can determine the vapor pressure at 

both the inlet and the outlet of our system by using Eq. (2.57). The vapor saturation pressure will be 

evaluated using the thermophysical properties data presented by Moran and Shapiro [41].

p1 = RH psat (2.57)

 2.8 Mathematical Model Summary

      

     The mathematical model presented here aims to predict  the temperature and moisture content 

dynamics during the studied process. There are a total of 12 unknown quantities to solve in this system 

of coupled phenomena. 

12 unknowns → 〈T 〉 , 〈V⃗ β 〉 , 〈V⃗ γ〉 , ϵβ , ϵγ , 〈ṁ〉 ,

〈 pγ〉
γ , 〈 p1〉

γ , 〈 p2〉
γ , 〈ργ 〉

γ , 〈ρ1〉
γ , 〈ρ2〉

γ ,
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The formulated system of equations consist of  the following 6 transport equations

• Total thermal energy (Section 2.5.1)

• γ phase continuity (Section 2.5.2)

• β phase continuity (Section 2.5.3)

• γ phase motion (Section 2.5.4)

• β phase motion (Section 2.5.5)

• Vapor diffusion equation (Section 2.5.7)

     In addition to this  equation we have two other  constraints  related to the volumetric  fractions 

(Section 2.5.6) and the pressure field (Section 2.7). That leaves us with 8 equations and 12 unknown 

quantities.  At this  point,  4 additional relations are required to have a well  posed problem from an 

algebraic point of view. The first two relationship are based on the assumption that the gas phase is 

ideal in a thermodynamic sense. Using Eqs. (2.58) and (2.59) we can relate the pressure of the gas 

species to the temperature using the ideal gas law.

〈 p1〉
γ
=〈ρ1〉

γ R1 〈T 〉 (2.58)

 

〈 p2〉
γ
=〈ρ2〉

γ R2 〈T 〉 (2.59)

     Where R1 and R2 are obtained by dividing the universal gas constant by the molecular weight of each 

species. Since both the dry air and the water vapor are assumed to be constant, they are supposed to 

share the same volume. Therefore we can state that the intrinsic phase average density of the γ phase is 

the sum of the individual species intrinsic phase average density. 

〈ργ 〉
γ
=〈ρ1〉

γ
+〈ρ2〉

γ
(2.60)

Also we can state that the total pressure is equal to the sum of the partial pressures, based on Dalton's 

law.

〈 pγ〉
γ
=〈 p1〉

γ
+〈 p2〉

γ
(2.61)
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     With this last equation we completed a total of 12 expressions to relate the 12 unknown transport  

quantities. This only means that it is possible to algebraically solve this system of equations. As it could 

be seen throughout this chapter, the equations that describe our phenomena are non-linear and highly 

coupled. Consequently, numerical methods are required to find the solution of this problem. However, 

depending on the selection of boundary conditions, the solution could be either good, make no sense or 

does not exist. The next chapter of this study is dedicated to the selection and implementation of a 

numerical method to solve this coupled system of equations.
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 3 Numerical Solution

     In chapter 2 we presented the mathematical model describing the dehydration process of our porous 

body. It  is  clear that this  system of equations, as presented,  does not have any analytical solution. 

Consequently, a numerical method must be implemented to find a solution. In this chapter, we will  

present the employment of the finite volume method in order to solve these equations. This set of 

equations  is  coupled,  mathematically  and phenomenologically.  It  means that  to  properly  solve  the 

equations we will need to understand the numerical weight of the different phenomena interacting in 

this  process.  To  refine  the  knowledge  of  the  phenomena  presented  in  the  former  chapter,  a 

dimensionless analysis of our system of equations is presented herein. Using the physical deductions 

obtained from our analysis, its possible to develop a solution strategy.

  

 3.1 Physical Domain

     The equations presented in our study are general enough to include the possibility of implementing 

this model to various porous media and diverse machinery. However, the model will be calibrated using 

experimental data from an unique porous body dehydrated in an unique device. The studied volume 

consists of a parchment coffee bed with a total diameter of 0.646 meters (25.5 in) and a height of 0.235  

meters (9.25 in).  A schematic representation is presented below (Figure 3.1.1). 

Figure 3.1.1: Schematic Representation of the Porous Media
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 3.1.1 Mesh Generation

     To algebraically solve equations involving differentials (derivatives, gradients, etc.) we must first 

transform a continuous space (with infinite subdivisions) into a discrete space with finite subdivisions. 

To model  the  concerning  phenomena we will  solve  the  coupled  system of  equations  proposed in 

chapter 2  over a quasi-three dimensional space. This will be done by assuming cylindrical symmetry 

around z-axis. It is a valid assumption when the transport quantities distributions are uniform revolving 

z-axis. In our case, that is a reasonable statement since the drying equipment has an internal agitator 

that mixes the coffee beans step-wise. With this simplification the studied physical domain reduces to a 

2-D space with a width equal to the radius of the rotary drum dryer and height equal to the height of the 

coffee bed. This domain is shown on Figure 3.1.2. 

Figure 3.1.2: Quasi-Three Dimensional Discrete Domain
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V cell = dr dz (3.1)

     The volume (V) contained in this space will be divided into cells of volume per unit depth  Vcell  

which is represented by Eq. (3.1). Although the visual representation is a rectangular space, we should 

not forget  that this  is  just  a simplification from a cylindrical  coordinates  system. Even though the 

volume per unit depth of each cell is the same, the actual volume represented by each cell becomes 

greater as we move far from the symmetry axis. Therefore, the discretization of the volume averaged 

transport equations shall consider that fact. Another important subject we must pay attention to is the 

selection of a proper mesh resolution. When a continuous space is transformed into discrete volumes, 

each generated cell must be small enough to properly transmit information to neighbor cells. In the 

following section (3.1.2) a mesh resolution sensibility analysis is presented.

 

 3.1.2 Mesh Resolution Sensibility Analysis

     To select a proper mesh resolution for our numerical method a resolution sensibility analysis is 

required.  The purpose of this  is  to  prove that  the results  obtained from our numerical  method are 

independent from the mesh resolution selected. The sensibility to changes in the mesh resolution is an 

unique characteristic of each model. Therefore we need first to be able to solve our set of equations to 

perform a sensibility analysis. The selection and implementation of numerical schemes to solve these 

equations will be discussed in the next few sections. However, this section will make reference to the 

numerical methods included in following sections and present a mesh resolution sensibility analysis 

based on our results.

     The sensibility analysis was performed using three different mesh resolutions of 25x25, 50x50 and 

80x80 cells. Using a time step of 1 minute, the coupled system of equations was solved given a known 

air  inlet  temperature  of  43.8  ºC  and  a  given  air  inlet  speed  of  1.8E-03  m/s.  The  results  for  the 

temperature distribution after 1 hour of drying of these three cases is presented in Figs. (3.1.3), (3.1.4)  

and (3.1.5).
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Figure 3.1.3: Temperature Distribution in Coffee Mass Bed at t=1 hr (25x25 Cells)

Figure 3.1.4: Temperature Distribution in Coffee Mass Bed at t=1 hr (50x50 Cells)
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Figure 3.1.5: Temperature Distribution in Coffee Mass Bed at t=1 hr (80x80 Cells)

     From the images above we can state that the temperature profile does not vary significantly as we 

move from a less dense mesh to a more dense one. In spite of that, a qualitative comparison is not 

enough to determine the magnitude of the variation of the temperature due to changes in the mesh 

resolution. For a more accurate analysis, lets use Fig. (3.1.6) in which the temperature is monitored for 

10 minutes using 6 different mesh resolutions.  The temperature plotted here is taken from the cell  

equivalent to position r = 0.16 m and z= 0.118 m. From this image it is clear that the temperature 

increases slightly as the resolution increases. This variation becomes less apparent as we reach the 

highest resolution plotted. A mesh resolution of 50x50 nodes was selected, in order to generate a mesh 

for which the temperature is independent of the cell size. This was determined based on the effects of  

cell  size in  the temperature,  since  the temperature is  the transport  quantity  that  experiments  more 

variations throughout the dehydration process. It can be argued that the moisture content experiments 
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even more variation due to the nature of the drying process. However, there are two reasons to not use 

the moisture content (either liquid volume fraction or wet base average) as our critical quantity in this 

analysis. First, as illustrated in Fig. (2.1), the early stage of the dehydration process is characterized by 

a constant drying rate. That means that the moisture distribution is almost uniform and the effects of 

mesh resolution are minimum. Second, at the latter stage the drying rate decreases dramatically and the 

variations of the moisture content from one time step to another are very small.    

 

 3.1.3 Boundary Conditions

     The  selection  and  implementation  of  boundary  conditions  is  critical  to  properly  model  any 

phenomena and a  dehydration process  is  not  the exception.  It  has been reported that  for  different 

boundary conditions the solution will represent a different flow, temperature and moisture distribution 

[42].   In  our  case,  due  to  the  non-linearity  of  the  equations  we need to  consider  2  criteria  when 

selecting the appropriate boundary conditions: (1) the boundary conditions should represent at its best  

Figure 3.1.6: Sensibility of the Coffee Mass Temperature  to Mesh Resolution 



58

the  real  conditions  of  the  physical  phenomenon  under  study  and (2)  they  should  be  strategically  

imposed to enhance the convergence properties of our numerical method.

     The boundary conditions for the temperature field are presented in Eqs (3.2)-(3.5). The temperature  

at the bottom of the coffee bed was assumed to be equal to the air inlet temperature, thus imposing a 

wall condition on the bottom boundary (Eq. 3.2). This supply air temperature (TSA) will be an input 

function based on the configuration of the drying equipment used. At time  t  = 0 the temperature at 

every point is equal to the initial temperature T0  = 23 ºC with the exception of the bottom surface as 

shown on Eq. (3.3). In Eq. (3.4) it is stated that the heat flux is zero at r = 0 and r = R. At the center of 

the drum dryer this is assumed due to axis-symmetry and at the circumference of the drum because the  

equipment used to take the experimental data was insulated on the outer surface.   

〈T 〉z=0 ,t>0 = T SA (3.2)

〈T 〉z≠0 ,t=0 = T 0 , 〈T 〉z=0 ,t=0 = T SA (3.3)

(∂〈T 〉

∂ r )
r=0 ,t >0

= 0, (∂ 〈T 〉

∂ r )
r=R ,t>0

= 0
(3.4)

In  the  former  expressions,  the  boundary  conditions  for  the  temperature  field  has  been  presented 

excluding the air outlet (z = H). To select a boundary condition for this surface we will quote the words 

of  H. K.  Versteeg and W.  Malalasekera [43]: “If the location of the outlet is selected far  away from 

geometrical disturbances the flow often reaches a fully developed state where no change occurs in the 

flow direction”. In our case, this could be assumed since our flow is within Darcy regime. Furthermore, 

the  resistance  to  flow  represented  by  the  parchment  coffee  bed  makes  the  effects  of  inlet  flow 

negligible at the outlet. The gradients of all transport quantities (excluding clearly the pressure) could 

be set to zero at the outlet surface without incurring in significant error. In subsequent discussion, this 

will be referred to as the zero gradient outlet assumption. For the temperature field this can be written 

as
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(∂〈T 〉

∂ z )
z=H , t≥0

= 0
(3.5)

     The boundary conditions for the motion of liquid phase is presented in Eqs. (3.6)-(3.7). The velocity 

of the liquid phase is set to zero at the walls of the drum dryer due to the no-slip condition. Likewise,  

the velocity at the inlet (z = 0) is set to zero, because the volume fraction of the liquid phase is assumed 

to be zero at  the entrance; only gas occupies the entrance of our system. To impose the boundary 

condition at the exit surface (z = H) we will make reference to the zero gradient outlet assumption as 

shown in Eq. (3.8).

〈V⃗ β〉r=0, t≥0 = 0 , 〈 V⃗ β〉r=R , t≥0 = 0 (3.6)

〈V⃗ β〉z=0, t≥0 = 0 (3.7)

(∂〈 V⃗ β〉

∂ z )
z=H , t>0

= 0
(3.8)

     Similar to the boundary conditions for the motion of liquid phase, the motion of gas phase at the  

walls of the drum dryer is set to zero (Eq. (3.9)). However, at the air inlet, we assume that flow exists  

only in the z-direction and that it is equal to the volumetric flow provided by the fan per unit area. This  

flow is corrected by a factor Centrance (equal to 0.78 in our case) due to an obstruction at the inlet caused 

by a sheet metal grid. For the velocity at the outlet we assumed the velocity gradients in z-direction to  

be zero (zero gradient assumption).

〈V⃗ γ〉r=0, t≥0 = 0 , 〈 V⃗ γ〉r=R , t ≥0 = 0 (3.9)
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〈V⃗ γ 〉t≥0 , z=0 = 0 î + 0 ĵ + C entrance

Q fan

ASA

k̂
(3.10)

(∂〈 V⃗ γ〉

∂ z )
z=H ,t>0

= 0
(3.11)

    To determine the boundary conditions for the phases volume fractions we must make reference to the 

liquid phase continuity equation presented at Eq. (2.24). If we wanted to integrate this equation to 

obtain the volume fraction at any time we would just need an initial condition. To determine the initial 

value of the volume fractions its necessary to introduce an expression relating the wet based moisture  

content (ψ) to the volume fraction of  β-phase. Recalling that the volume fraction is the ratio of the 

volume occupied by a phase to the total volume we can write Eq. (3.12). Using Eq. (3.13) and knowing 

from our experimental data the initial value of the moisture content, we can find the initial condition for 

the volume fraction of water.

 

ψt=0 = {
ρβV β

ρβV β+ρσ V σ

}
t=0

= {
ρβ ϵβ

ρβϵβ+ρσ
}
t=0

(3.12)

{ϵβ}t=0 = [ ψ ρσ

(1−ψ )ρβ
] t=0

(3.13)

If we combine Eqs. (2.31) and (3.13) we can relate the initial volume fraction of gas phase to the initial 

volume fraction of liquid phase as shown in Eqs. (3.14) and (3.15)

ϵγ , t=0 = 1−ϵσ , t=0−ϵβ , t=0 (3.14)

ϵγ , t=0 = 1−(1−ϕ ) t=0−[ ψ ρσ

(1−ψ )ρβ
] t=0

(3.15)

     These boundary conditions, Eqs. (3.2) to (3.15), complete the set of conditions entailed to have an 
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algebraically well-posed system of partial differential equations (PDE). Other transport quantities such 

as the vaporization mass flow rate, the gas pressure and the phase densities do not, mathematically, 

require any boundary condition since they are not involved in any differentiation process and can be 

deduced  from other  transport  quantities.  The term “mathematically”  is  employed  here  since  these 

quantities may require some numerical constraints to ensure compliance with fundamental laws, such 

as the conservation of mass principle. 

     The first numerical constraint we will imposed is the conservation of mass at the outlet of the 

system. Even when this  principle is  implicit  in the formulation of the volume averaged continuity 

equations we will verify if this is being satisfied. The reason is that such a coupled system of PDE 

needs to  be  solved iteratively.  At  the  intermediate  iterative  steps  (when the  equations  are  not  yet  

simultaneously satisfied) failing to comply with the conservative principle could cause our system to 

diverge. The mass flow entering our system should be equal to the total mass exiting minus the mass of 

water evaporated in the studied domain. It can be expressed as

ṁinlet = ṁoutlet − ṁevap (3.16)

     The second numerical constraint is that the initial mass flow rate is not exactly zero.  A constant  

value of initial vaporization rate will be assumed to avoid zero division at the beginning of the iterative 

solution method. This value should be small to avoid any significant deviation from the solution.

 

〈ṁ〉z>0 , t=0 = 1x10−4 kg

m3
⋅s

(3.17)

     With Eq. (3.17) we finish the list of conditions that will be numerically imposed to our system of 

equations. More detail on the implementation and consequences of these conditions will be presented 

later in this study. 

 3.2 Dimensionless Analysis of Transport Equations

     One  of  the  challenges  of  modeling  a  multistage  process  such  as  the  one  studied  herein  is 

understanding the phenomena behind the process and how their contribution to the process in general 
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may be considerable at  times and at times may not. This understanding is necessary to reduce the 

computational cost of our model. It is very common that one of the terms relevant in one part of the  

process  is  almost  negligible  in  other  part  of  the  same  process.  Ignoring  some  terms,  when  its 

reasonable, could reduce our computational cost without adding significant error to our calculations. 

On the other hand, keeping such a small term could be a source of error by inducing numerical noise. 

To understand the  contribution  of  the  different  phenomena responsible  for  the  dehydration  of  our 

porous media we will use the well-known dimensional analysis [44].  

 3.2.1 Dimensionless Parameters

     The dimensional analysis is done by substituting our dimensioned variables by an equivalent 

expression relating this dimensioned  variables to their dimensionless form via the use of a reference 

value.  In  Eqs.  (3.18)  to  (3.21)  we  introduce  the  dimensionless  variables  that  are  required  in  the 

dimensional analysis of our mathematical model. The dimensionless length is presented in Eq. (3.18) as 

the ratio of any dimensioned length to the characteristic length of our porous media. Since, the scope of 

this study is to model the dehydration process at the level of a single bean and not at the micro-scale,  

the  characteristic  length  used  will  be  the  average  coffee  grain  diameter.   In  the  case  of  the 

dimensionless velocity, presented in Eq. (3.19), it will be represented as the ratio of the velocity to the  

air inlet speed. The dimensionless time, will be equal to the ratio of the time to the characteristic time 

of the process. This characteristic time will be calculated dividing the characteristic length by the air  

inlet velocity. To calculate the dimensionless temperature we will select our reference temperature as 

the maximum temperature difference in our system as shown in Eq. (3.21). The drawback of choosing 

this temperature is that the value of the dimensionless temperature could be sometimes higher than 1. 

This  is  done,  instead  of  using  a  fixed  position  temperature,  due  to  our  need  of  using  a  constant 

reference value. The dimensionless densities will be evaluated in reference to the air inlet density as 

shown in Eq. (3.22).

l̂ =
l i

l c
 (3.18)

V̂=
V
U ∞

(3.19)
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t̂ =
t
t c

(3.20)

T̂=
T

ΔT max
(3.21)

ρ̂ =
ρ

ρ∞
(3.22)

 3.2.2 Dimensionless Numbers

     Substituting the dimensioned quantities by expressing them using Eqs. (3.19) to (3.22) will force the 

apparition of some dimensionless numbers common in the field of heat and mass transfer. Sometimes 

the  terms  involving  these  numbers  will  be  obvious,  but  sometimes  it  will  require  some algebraic 

manipulation of the equations. These dimensionless numbers represent the ratio between two specific 

forces or phenomena and their magnitude could be interpreted as the dominance of one phenomena 

over the other. In our dimensional analysis we will introduce the following dimensionless numbers:

Reynolds Number

R e =
ρ∞U ∞ l c

μ∞
=

inertia force
viscous force

(3.23)

Prandtl Number

Pr =
Cpi μi

K i

=
viscous dissipation
thermal dissipation

(3.24)
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Fourier Number

Fo =
K eff t c

〈ρ〉C p Lc
2 =

thermal diffusion rate
storage rate (3.25)

Capillary Number

Ca =
λ i Pc

l c U ∞μi

=
capillary force
viscous force

(3.26)

Gravity Number

Gr =
λ iρi g

U ∞μi

=
gravity force
viscous force

(3.27)

Schmidt Number

Sc =
μi

〈ρ1〉
γ Deff

=
viscous diffusion rate

molecular diffusion rate (3.28)

 

 3.2.3 Dimensionless Equations

     Using Eqs. (3.19) to (3.22) and introducing the dimensionless numbers from Eqs. (3.23) to (3.28) 

we obtain the dimensionless form of  the volume averaged transport equations. These equations will 

allow us to apply our physical deductions to improve and simplify our model, as well as improving the 

convergence of our numerical method described in the following sections. 

Dimensionless Energy Equation

1
Fo

〈ρ̂〉
∂ T̂
∂ t̂

+R e {Prβ ρ̂β
̂⃗V β+ Prγ ρ̂γ

̂⃗V γ }∇̂⋅T̂ = ∇̂
2 T̂ −

〈ṁ〉 lc
2

K eff

Δhvap

ΔT max

(3.29)
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     In the early stage of the dehydration process, the vaporization (source) terms dominate the change of 

energy in the system. If we compare the magnitude of the convective terms, which are of the order of 

Reynolds number (Re is approximately one for Darcy flow), to the local term (time derivative) and the 

source term we can determine it to be negligible at this stage. The same could be stated referring to the 

diffusive term. However, one of the lessons learned in the modeling process is that even when the 

diffusion-conduction term seems negligible, its contribution is vital to transfer the energy from one 

computational  cell  to  its  neighbors.  The  consequence  of  neglecting  the  diffusive  term is  that  the 

temperature will  increase abnormally at the bottom boundary of our domain causing the solution to 

diverge. Then, for the early stage of our process the dimensionless energy equation could be written as

1
Fo

〈ρ̂〉
∂ T̂
∂ t̂

= ∇̂
2 T̂ −

〈ṁ〉 l c
2

K eff

Δ hvap

ΔT max

(3.30)

     Now, in the latter stage the drying rate rapidly decreases and the transport of energy in the porous  

media will be more accurately represented by convection-diffusion phenomena. This could be written 

as shown in Eq. (3.31).

1
Fo

〈ρ̂〉
∂ T̂
∂ t̂

+R e {Prβ ρ̂β

̂⃗V β+ Prγ ρ̂γ

̂⃗V γ }⋅∇̂ T̂ = ∇̂
2 T̂ (3.31)

Dimensionless β-phase Motion Equation

     The dimensionless form of the equation of liquid motion is presented on Eq. (3.32). As can be seen 

the  second  term on  the  right  side  of  the  expression  is  described  by  the  gravity  number.  For  the 

phenomena analyzed in our study the contribution of gravitational forces is negligible. Therefore, Eq. 

(3.32) could be simplified into Eq. (3.33).

̂⃗
V β = Caβ (ξϵβ ){∂ P̂β

∂ϵβ

̂⃗
∇ ϵβ−

∂ P̂β

∂ T̂
̂⃗
∇ T̂ }−Grβ ( ξϵβ) {ρ̂β−ρ̂γ } (3.32)
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̂⃗
V β = Caβ (ξϵβ ){∂ P̂β

∂ϵβ

̂⃗
∇ ϵβ−

∂ P̂β

∂ T̂
̂⃗
∇ T̂ } (3.33)

Dimensionless γ-phase Motion Equation

     The dimensionless form of the equation of gas motion is presented on Eq. (3.34). With the same 

reasoning used to analyze the motion of  β-phase, based on negligible gravitational effects we can write 

our dimensionless gas phase motion as shown in Eq. (3.35).

̂⃗V γ =−Caγ

̂⃗
∇ ( P̂γ−1 )+Gr γ ρ̂γ (3.34)

̂⃗V γ =−Caγ

̂⃗
∇ ( P̂γ−1 ) (3.35)

Dimensionless β-phase Continuity Equation

     The dimensionless liquid phase continuity equation is presented in Eq. (3.36). As state before, in the 

early stage the vaporization flux prevails over the convective fluxes allowing us to simplify it into Eq. 

(3.37).  In the latter stage, the vaporization mass flow rate becomes negligible and the phenomenon 

becomes convection-diffusion driven yielding Eq. (3.38).

1
Foβ

∂ϵβ

∂ t̂
+ R eβ Prβ ∇̂ ( ̂⃗

V β )+ 1
Foβ

tc
ρ∞

〈ṁ〉
ρ̂β

= 0 (3.36)

∂ϵβ

∂ t̂
+

t c
ρ∞

〈ṁ〉
ρ̂β

= 0 (3.37)

1
Foβ

∂ϵβ

∂ t̂
+ R eβ Prβ ∇̂ ( ̂⃗V β ) = 0 (3.38)
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Dimensionless γ-phase Continuity Equation

     The  dimensionless  gas  phase  continuity  equation  is  presented  in  Eq.  (3.39).  Similar  to  the  

dimensional analysis of β-phase continuity, in the early stage the convective fluxes could be neglected 

simplifying  Eq. (3.39) into Eq. (3.40).  In the latter stage, the vaporization mass flow rate becomes 

negligible and the mass conservation of gas phase is best represented by Eq. (3.41).

1
Foγ

∂
∂ t̂

(ϵγ ρ̂γ ) + R eγ Prγ ∇̂ ( ρ̂γ
̂⃗

V γ ) = 1
Foγ

t c
ρ∞

〈ṁ〉 (3.39)

∂
∂ t̂

(ϵγ ρ̂γ ) =
t c
ρ∞

〈 ṁ〉 (3.40)

1
Foγ

∂
∂ t̂ (ϵγ ρ̂γ ) + R eγ Prγ ∇̂ ( ρ̂γ

̂⃗V γ ) = 0 (3.41)

Dimensionless Vapor Diffusion Equation

     A dimensionless form of the vapor diffusion equation is presented on Eq. (3.42). From our physical 

understanding  we can simplify and adjust this equation for the two main stages of the drying process. 

At  the  initial  stage,  vaporization  prevails  over  convective  transport.  Also,  the  mass  diffusion  is 

meaningless since the porous media is saturated and no concentration gradient exists. Eliminating both 

the convection and mass diffusion terms we obtain Eq. (3.43). In the later stage the vaporization rate 

becomes negligible and convective-diffusive transport takes place as shown in Eq. (3.44).
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1
Foγ

∂
∂ t̂ (ϵγ ρ̂1 ) + R eγ Pr γ ∇̂⋅(ρ̂1

̂⃗
V γ ) − 1

Foγ

tc
ρ∞

〈ṁ〉 =
Prγ

Sc
∇̂⋅{ρ̂γ ∇̂ (

ρ̂1
ργ )} (3.42)

1
Foγ

∂
∂ t̂ (ϵγ ρ̂1 ) −

1
Foγ

tc
ρ∞

〈ṁ〉 = 0 (3.43)

1
Foγ

∂
∂ t̂ (ϵγ ρ̂1 ) + R eγ Pr γ ∇̂⋅(ρ̂1

̂⃗
V γ ) =

Prγ

Sc
∇̂⋅{ρ̂γ ∇̂ (

ρ̂1
ργ )} (3.44)

 3.2.4 Reynolds number estimate

     To classify the porous media flow properly it is necessary to estimate the Reynolds number. The 

properties used to calculate the Re (air density and dynamic viscosity) were evaluated at the air inlet  

maximum temperature (51.8 ºC) to calculate a maximum possible value of this dimensionless number. 

The mean pore diameter was used as the flow characteristic length for this estimate, which is shown in 

Eq. (3.45). 

R e =
(1.09

kg

m3 ) ( .0018m /s ) (1.75x10
−6

m )

.0000196 kg /m−s
= 2.86x10−4 (3.45)

As we can see from the result presented in Eq. (3.45) the porous media flow is characterized by a small 

Reynolds number (Re << 1). This gives grounds to our assumptions of a quasi-steady flow within the 

Darcy regime.

 3.2.5 Funicular Stage Time Scale

     As mentioned previously throughout this study, the drying process of a porous media consists of 

different stages, each one influenced by different phenomena. In our study, we have mentioned two 

characteristic stages mentioned in the literature; the initial (funicular) stage driven by the vaporization 

process and the latter (pendular) stage which is driven by the convective-diffusive transport of energy 
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and mass. In this section, the calculation of the characteristic time of the initial stage is presented. To do 

so we will make reference to the work of Whitaker [22], in which it is stated the the characteristic time 

associated  with  transport  in  porous  media  is  on  the  order  of  d²/νγ.  In  this  expression,  d is  the 

characteristic flow diameter and  νγ is the kinematic viscosity of the air. For the early stage, we will 

determine both a convection and a diffusion time scale, since together these two summarize the time 

scale for transport at any location. For the time scale of the diffusive transport phenomena we will use 

the mean grain diameter (Dg) as our characteristic length scale. Likewise, for the convective transport 

phenomena we will use the mean pore diameter (De). The reason for these selections is that diffusion is 

assumed to occur mainly at the solid region (including the micro-pores) while convection will take 

place in the void space between grains. The early stage convective time scale will be denoted as  t1, 

while the early stage diffusive time scale will be denoted as  t2.  Their formulation and estimate is 

shown in Eqs. (3.46) and (3.47). For these calculations the properties (density and dynamic viscosity) 

will be averaged in the entire computational domain.

t 1 =
̄〈ρ〉

γ
⋅De

2

〈μγ〉
=

(583.8 kg /m3 ) (0.0147 m )
2

1.8447x10−5 kg /m−s
= 6838.7 s (3.46)

t 2 =
̄〈ρ〉

γ
⋅Dg

2

〈μγ 〉
=

(583.8 kg /m3 ) (7.87x10−3 m )
2

1.8447x10−5 kg / m−s
= 1960.1 s (3.47)

     

 3.2.6 Pendular Stage Time Scale 

     For the estimate of the latter (pendular) stage time scale we will follow the same procedure used for 

the time scale of the early stage (Section 3.2.5). The latter stage convective time scale will be denoted 

as t3, while the latter stage diffusive time scale will be denoted as  t4. Their formulation is presented in 

Eqs. (3.48) and (3.49).

t 3 =
̄〈ρ〉

γ
⋅De

2

〈μ γ〉
=

(584.4941 kg /m3 ) (0.0147 m )
2

1.8447x10−5 kg /m−s
= 6846.8 s (3.48)
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t 4 =
̄〈ρ〉γ⋅D g

2

〈μγ 〉
=

(584.4941 kg / m3 ) (7.87x10−3m )
2

1.8447x10−5 kg /m−s
= 1962.5 s (3.49)

     As stated in our assumptions (section 2.4), the characteristic time of our drying process is big  

enough to assume it is a quasi-steady process. This is in agreement with Whitaker [22], in his statement 

that the characteristic time of dehydration phenomena is usually in the order of minutes or hours. It is 

noticeable that the intrinsic phase average density of the gas phase is very high. This happens because 

of the compressibility of the gas phase and also because the intrinsic phase average uses the volume of 

the phase instead of the total volume. Based on these calculations we concluded that a time step in the 

order of minutes is reasonable for  our dehydration process.

 3.3 Solution Strategy – Flowchart

          To solve the coupled system of equations that describes our model it is important to specify the 

general solution strategy that will be employed. The first detail that will be pointed out is that the  

equations will be solved in a segregated way. This means that, although coupled, the equations will be 

solved independently. With the solution of each equation the transport quantities will be updated and 

used to solve the next equation. This process will be repeated iteratively until all the equations are 

simultaneously satisfied. Only then, we will be able to move forward in time to keep modeling our 

drying process.   Before  presenting the selected numerical  methods  it  is  important  to  have a  clear 

understanding of the sequence in which the equations will be evaluated and what will be the variable 

updated using that equation as shown in Figure 3.3.1 and Figure 3.3.2. 
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Figure 3.3.1: Solution Strategy (Part I)

Figure 3.3.2: Solution Strategy (Part II)

〈ργ 〉
γ ∂ (ϵγ〈ργ〉

γ
)

∂ t
+ ∇⋅(〈ργ〉

γ〈 V⃗ γ〉 ) = 〈ṁ〉

〈ρ1〉
γ 〈 p1〉

γ=〈ρ1〉
γ R1〈T 〉

〈ρ2〉
γ

〈ργ〉
γ=〈ρ1〉

γ+〈ρ2〉
γ

〈 p2〉
γ

〈 p2〉
γ
=〈ρ2〉

γ R2 〈T 〉

〈 pγ〉
γ

〈 pγ〉
γ
=〈 p1〉

γ
+〈 p2 〉

γ

〈ṁ〉

Obtain 

Obtain 

Obtain 

Obtain 

Obtain 

Obtain 
∂ (ϵγ 〈ρ1〉

γ
)

∂ t
+ ∇⋅(〈ρ 1〉

γ
〈V⃗ γ〉 ) − 〈ṁ〉 =

∇⋅[〈ργ 〉
γ Deff ∇ ( 〈ρ1〉

γ

〈ργ〉
γ )]

Obtain 〈T 〉 〈ρ〉 c p

∂〈T 〉

∂ t
+[ρβ(c p)β V⃗ β+〈ργ〉

γ
〈c p〉

γ
〈 V⃗ γ〉 ]⋅∇⋅〈T 〉 =

∇⋅( K eff ∇ 〈T 〉 )−〈ṁ〉 Δhvap

Obtain 

Obtain 

Obtain 

〈V⃗ β〉 =−(ϵβξλβ

μβ )⋅[k ϵ∇⃗ ϵβ+k〈T 〉∇⃗ 〈T 〉−( ρβ−ργ ) g⃗ ]〈V⃗ β〉

〈V⃗ γ 〉

ϵβ

∂ϵβ

∂ t
+ ∇⋅〈 V⃗ β〉 +

〈 ṁ〉
ρβ

= 0

〈V⃗ γ〉 =−(λ γ

μγ
) [∇⃗ 〈 Pγ−P0〉

γ−ργ g⃗ ]
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 3.4 Finite volume method

     The solutions provided by the mathematical model proposed in this work will  be numerically 

studied using the finite volume method. This method is a discretization method based on the integral  

form of the conservation law. One of the advantages of this method is that it increases the accuracy of  

the central differences by locating the discretization node at the center of the control volume. Also, it  

provides a better physical understanding than other methods (such as finite difference method). This 

mainly  because  the  algebraic  quantities  that  appear  throughout  the  discretization  process  are 

approximations  of  the  transport  quantities  flux  at  surfaces  of  the  control  volume.  For  a  detailed 

explanation  of  the  method refer  to  the  work of  Patankar  [45],  Versteeg  and Malalasekera  [43]  or 

Ferziger and Períc [46]. 

     In the solution of the transport equations in porous media we will be dealing with two types of  

equations.  The  first  type  is  the  linear  expressions  which  can  be  solved  using  simple  algebraic 

manipulations.  An example of this kind of equation are the thermodynamic relations, such as Eqs. 

(2.57) to (2.60). The second type is the unsteady equations, which could be either linear or non-linear 

expressions. Most of our equations, such as the total energy equation (Eq. 2.20), could be classified as 

non-linear unsteady equations. These expressions require a lot more work than linear relations, and 

analytical solutions are not expected. An example of the unsteady transport of a quantity φ is presented 

in Eq. (3.50).

∂(ρϕ)

∂ t
+∇⋅(ρ V⃗ ϕ )=∇⋅(Γ∇ ϕ)+Sϕ (3.50)

     In the equation above there are four terms that we need to understand and treat numerically. The first 

term in the left side of Eq. (3.50) is the rate of change of intensive quantity  φ. It is followed by the 

convective term. This term usually represents the non-linear part of an individual expression, since it is 

the gradient of the product of two undetermined transport quantities (velocity and φ in this example). 

On the right side of Eq. (3.50) we first have the diffusion term, followed by the source term Sφ. Now 

that we have identified each term we need to decide a proper discretization scheme for the differentials 

present in each one of them,  excluding the source term which is not a differentiated quantity. 
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 3.4.1 Central differencing scheme

     The first term we will deal with is the diffusion term. This term represents represents the diffusion 

driven by the gradient of transport quantity φ. Integrating this term using the finite volume method and 

applying the divergence theorem will lead us to Eq. (3.51).

∫ ∂
∂ x

(Γ
∂ϕ

∂ x
)dV =(Γ

∂ϕ

∂ x
A)

i+ 1
2

−(Γ
∂ϕ

∂ x
A)

i−1
2

(3.51)

     The resultant expression states that net diffusive flux along x-axis  incoming to our differential 

volume is equal to the sum of the diffusive fluxes at the two surfaces of our differential volume along 

that axis. We can see that the diffusive term depends only on the gradient of transport quantity φ. For a 

linear term like this we can employ the central differencing scheme without significant error. The only 

criterion necessary to select a discretization scheme for this term is the conservation of the extensive 

quantity being transported. Versteeg and Malalasekera [43], call this scheme conservative since it uses 

consistent expressions and the derivatives are evaluated at the surfaces of the differential volume. An 

example of the employment of the central differencing scheme for the diffusive terms is shown in Eq. 

(3.52).

  

∂ϕ

∂ x i− 1
2

=
ϕi−ϕi−1

Δ x
,

∂ϕ

∂ x i+ 1
2

=
ϕi+1−ϕi

Δ x
  (3.52)

     Lets now consider the transport equation involving both convective and diffusive terms. If we 

integrate these terms using the finite volume method we will end up with an expression of the form of 

Eq. (3.53).

(ρV x Aϕ )
i+

1
2

−(ρV x Aϕ )
i−

1
2

=(Γ
∂ϕ

∂ x
A)

i+ 1
2

−(Γ
∂ϕ

∂ x
A)

i−1
2

(3.53)

     To simplify this equation, lets introduce the convective mass flux per unit area F and the diffusion 

conductance at cell face D. Both are common parameters used in computational fluid dynamics (CFD). 

With the substitution of these parameters, presented in Eq. (3.54), and assuming the surface area of all  
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the CV faces as equal, we can write Eq. (3.53) as Eq. (3.55). However, the assumption of constant 

surface area will be removed later due to the variations of area in our cylindrical coordinates mesh. 

F = ρV x and  D = Γ
δ x (3.54)

F
i+ 1

2

ϕ
i+ 1

2

−F
i−1

2

ϕ
i− 1

2

= D
i+ 1

2
( ϕi+1−ϕi )− D

i− 1
2

(ϕi−ϕi−1 ) (3.55)

     The challenge from the equation above is to find a suitable discretization scheme consistent for both 

the linear and non-linear terms. Employing a method such as central differencing for the convective 

terms could result in a solution very far from the expected. The principal reason is that the central 

differencing scheme gives the same weight to all the fluxes at all the control volume faces. That is not 

true if the quantity under study depends on the velocity of the transporting fluid. Depending on the 

direction and magnitude of the fluid flow, the influence of one neighbor node on our control volume 

could be very different than the influence from the other nodes. Take as an example three aligned nodes 

(A,B,C)  located over a heating element. If the flow is in the direction (C,B,A) is more likely that the  

properties from C will have a stronger effect on B than the properties of A. The ability of a scheme to 

account for the effects of direction and magnitude of the fluid flow is called transportiveness. Since the 

convective terms present in our transport equations depend on the velocity of the fluids in motion, a  

transportive discretization scheme will be employed in their treatment. 

 3.4.2 Space discretization scheme selection

     A  discretization  scheme  that  is  conservative,  unconditionally  bounded  and  satisfies  the 

transportiveness  criterion  is  the  hybrid  scheme.  This  scheme was  presented  by  Spalding  [88]  and 

consists  on  switching  the  discretization  employed  depending  which  phenomenon  prevails  in  our 

process, either convection or diffusion. To determine the appropriate discretization in each direction the 

cell  Peclet  number  is  introduced.  This  dimensionless  number  represents  the  ratio  between  the 

convective flux and the diffusive flux at a single face of our control volume. The cell Peclet number 

could be evaluated from the expression in Eq. (3.56).
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Pe =
F
D

=
ρV x

(Γ/δ x )
(3.56)

     

     The hybrid scheme assumes that for small Peclet numbers (Pe < 2) the transport phenomena could 

be approximated as pure diffusion. Therefore, for this cases we can employ the central differencing 

scheme to treat both convective and diffusive terms. On the other hand for large Peclet number (Pe ≥ 

2), the problem is assumed to be pure convection and the diffusion term in this direction could be set to 

zero.  In  this  case  the  convective  term is  treated  using  the  so-called  upwind scheme in  which  the 

transport quantity φ at the surface of the CV is set to be equal to the value of this quantity in the node 

having stronger influence. In the example mentioned before (Section 3.4.1) the value of the transport 

quantity at the surface between C and B would be set to be equal to the transport quantity at C and the 

value at the surface between B and A to be equal to B. For a more detailed explanation of the upwind  

differentiation scheme refer to Versteeg and Malalasekera [43].

 3.4.3 Time discretization scheme selection

     In the previous  sections  the discretization schemes that  will  be used to  deal  with the spatial 

derivatives  is  shown.  It  is  now our  priority  to  select  a  proper  methodology to deal  with the  time 

derivatives.  As  we  solve  this  unsteady  system of  transport  equations  we  will  be  integrating,  and 

moving, both in space and time. If we integrate Eq. (3.50) over a differential volume and a time step we 

will obtain an expression in the form of Eq. (3.57).  

[ (ρϕ )i
k +1

−(ρϕ ) i
k ]ΔV + ∫

t

t+Δ t

[ F
i+ 1

2

ϕ
i+ 1

2

−F
i− 1

2

ϕ
i −1

2 ] dt =

∫
t

t+Δ t

[ D
i+

1
2

( ϕi+ 1−ϕi )−D
i−

1
2

( ϕi−ϕi−1 )] dt + ∫
t

t+Δ t

〈S 〉V ΔV dt

(3.57)

     As seen from Eq. (3.57) the local change in time has been easily evaluated by expressing the definite 

integral in terms of the value of the transport quantities at time steps k and k+1. Now, if we do the same 

with  the  terms  involving  spatial  derivatives  we  will  introduce  the  values  of  the  neighbor  control 
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volumes properties at different time steps. Then it will become an unsolvable system, since we can only 

determine one unknown at the time.  

     There are three different approaches with which we can deal with this problem. First we could 

employ an explicit method, in which we assume the transport quantities from the spatial derivatives to 

be evaluated at old time step k. This would be convenient considering that as we move in time we will 

always know the old values of the transport quantities (starting from our initial conditions). The second 

approach is to use an implicit method in which we assume that the transport quantities are evaluated at 

a future time step within k and k+1. This introduces some numerical complexity, since we don't know 

the value of the transport quantities for a future time step and the solution of the equations will be only 

possible via iterative methods. Nonetheless,  implicit methods are numerically unconditionally stable. 

Again the word “numerically” is used to emphasize that this only ensures finding a solution for a well-

posed system of equations and does not release us from other numerical instabilities due to the non-

linearity of the process. Using a fully implicit scheme, which means evaluating the spatial derivatives 

at k+1, could provide further advantages such as ensuring that all our coefficients (at i, i-1, etc.) have 

the same sign.  This  would improve the  convergence properties  of  our  system of  equations.  If  we 

implement the fully implicit scheme to Eq. (3.57) and assume that the average source term is a linear 

function of the concerning transport quantity it could be written as shown in Eq. (3.58). About the 

treatment of the source term we will get back in the discussion presented in the next sections.
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 3.5 Implementation of Space-Time Schemes

     For the solution of parchment coffee (C.Arabica) dehydration equations, discretization will be done 

using  the  hybrid  scheme  to  integrate  in  space  and  a  fully  implicit  scheme  for  time.  The  former 

statement means that the temperatures, humidities and other transport quantities will be solved using 

new variables at time t+Δt. Consequently, we need to solve the equations iteratively at each time step. 

This could be computationally expensive, but at the same time our scheme will not require a very small 
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time step to ensure numerical stability. A diagram for the one dimensional solution of a single PDE in 

our system of equations is shown in Fig. 3.5.1. In the top part of the image we can see how the input 

values are mainly estimates of the transport quantities at time  t+Δt.  As the iteration process moves 

forward this estimates are refined until all the volume averaged transport equations are simultaneously 

satisfied. In this diagram (Fig. 3.5.1) we can also see the implementation of the hybrid scheme for the 

spatial  discretization  of  our  transport  equations.  The  first  step  for  this  implementation  is  the 

accumulation  of  coefficients  from Eq.  (3.58)  into  the  algebraic  expression  in  Eq.  (3.59).  In  this 

equation the central coefficient, which is the coefficient concerning the quantity to be determined in 

this equation, is given by Eq. (3.60). To apply the Peclet number criterion we will use the expressions 

proposed by Versteeg and Malalasekera [43], as shown in Eq. (3.61). Using these expressions it is 

possible to formulate the value of the neighbor coefficients accounting for the effects of the direction 

and magnitude of the flow.  
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Figure 3.5.1: Implementation of Discretization Schemes
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 3.6 Implementation of Boundary Conditions

     The formulation of the boundary conditions for our mathematical model has been presented in 

section 3.1.3. It is now our intention to discuss the numerical implementation of these conditions. It 

will be done in a vector notation form. However, for the actual implementation in the code developed 

the reader can refer to Appendix II. The boundary conditions for the temperature field are presented in 

Eqs. (3.62) to (3.64). In these expressions  i refers to the radial coordinate of the center of a control 

volume and j refers to the vertical coordinate, both within the domain of a n x m mesh grid. To evaluate 

the zero flux boundary conditions Eqs. (3.4) and (3.5) we will generate  ghost cells at position i=1, i=n 

and  j=m. This cells will be outside of our physical domain (at a distance 0.5∆r or 0.5∆z from our 

boundaries) and their properties will be set to be equal to their neighbors to force a zero flux condition 

at these surfaces. This is clearly shown in Eqs. (3.63) and (3.64). It must be pointed out that these 

conditions are truth for k ≠ 0.

T i , j=1
k

= T SA (3.62)

T i=1, j
k

= T i=2, j
k , T i=n , j

k
= T i=n−1, j

k (3.63)

T i , j= m
k

= T i , j=m−1
k (3.64)

At t = 0 the coffee bed is at a temperature T0 = 23 ºC. The implementation of this condition is shown in 

Eq. (3.65).

T i , j
k =0

= T 0 (3.65)

     Using the same notation, the boundary conditions for the liquid motion are presented in Eqs. (3.66)-

(3.68).   The  conditions  in  Eq.  (3.66)  represent  the  no-slip  conditions  applied  to  the   cells  at  the 

boundaries  of the domain.  As explained earlier,  the Neumann boundary conditions (flux boundary 

conditions) are imposed by generating a series of ghost cells. This is shown ins Eq. (3.68) were we use 

a ghost cell (i, m) to set the change in velocity at the boundary to zero.   
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〈uβ〉i=2, j
k

= 0, 〈uβ〉i=n−1, j
k

= 0, 〈wβ 〉i=2, j
k

= 0, 〈wβ〉i=n−1, j
k

= 0 (3.66)

〈uβ〉i , j=1
k

= 0, 〈wβ〉i , j=1
k

= 0 (3.67)

〈uβ〉i , j=m
k

= 〈uβ 〉i , j=m−1
k , 〈 wβ〉i , j=m

k
= 〈wβ 〉i , j=m−1

k (3.68)

The initial condition for the liquid phase velocity field is shown in Eq. (3.68).

〈uβ〉i , j
k =0

= 0, 〈wβ〉i , j
k =0

= 0 (3.69)

With the same reasoning as  that  used for  the implementation of  β-phase boundary conditions,  the 

boundary conditions and the initial condition for the gas motion are presented in Eqs. (3.70) to (3.73).

〈uγ〉i=2, j
k

= 0, 〈uγ〉i= n−1, j
k

= 0, 〈wγ〉i=2, j
k

= 0, 〈wγ〉i=n−1, j
k

= 0 (3.70)

〈uβ〉i , j=1
k

= 0, 〈wβ〉i , j=1
k

=
C entrance⋅Q fan

ASA
(3.71)

〈uγ〉i , j=m
k

= 〈uγ 〉i , j=m−1
k , 〈wγ〉i , j=m

k
= 〈wγ〉i , j=m−1

k (3.72)

〈uγ〉i , j
k =0

= 0, 〈wγ〉i , j
k=0

= 0 (3.73)

      Finally, the numerical implementation of the initial conditions for the volume fractions is shown in  

Eq. (3.74)-(3.75) . At the air inlet (j=1) the volume fraction of liquid is zero. Although Eq. (3.13) shows 

that the initial  condition of the liquid volume fraction is  a function of the moisture content,  if  we 

assume the porous media to be completely saturated at t=0, the liquid volume fraction would be equal 

to the porosity. 

〈ϵβ〉i , j=1
k

= 0 〈ϵβ〉i , j>1
k=0

= ϕ (3.74)

〈ϵγ〉i , j=1
k

= 1 〈ϵγ〉i , j>1
k=0

= 0 (3.75)
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 3.7 Mass Conservation Verification at Pressure Outlet

     The verification of the conservation of mass at the pressure outlet as discussed in section 3.1.3 is 

implemented in Eq. (3.76). In this expression we calculate the residual volumetric flow. Physically, the 

gas phase volumetric flow at the pressure outlet must be equal to the inlet volumetric flow plus the total 

vaporization per unit volume. In Eq. (3.77) we uniformly distribute the residual flow calculated at Eq. 

(3.76)  to  comply  with  the  conservation  of  mass  principle.  This  is  done by correcting  the  γ-phase 

velocity at the outlet.

 

V̇ residual =∑
i=1

N

[ 〈wγ〉i , j=1
k A j ] + ∑

i=2

n−1

∑
j=2

m−1
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k −∑
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N

[ 〈wγ〉i , j=m
k A j ] (3.76)

〈wγ〉i , j=m
k

= 〈wγ〉i , j=m
k

+
V̇ residual

( n−2 ) A j

(3.77)

 3.8 Numerical Solution – Flowchart

    Throughout this chapter we have discussed the development and implementation of a numerical  

method to solve our coupled system of equations. This method was applied in a MATLAB code written 

with the solely purpose of demonstrating the capabilities of our mathematical model and comparing our 

solutions with experimental results obtained for this study. In the flowchart presented on Fig. 3.8.1 the 

different  subroutines  operating  inside  this  code  and their  functions  are  illustrated.  The parameters 

concerning  the  mesh  generation,  time  duration  of  the  simulation  and  thermophysical  correlated 

properties are read by the code from input files. This information is used to generate the mesh and 

create  an  initial  vector  of  transport  quantities  based  on  the  initial  conditions.  When  relating  the 

transport quantities to a vector we must recall that at the end we will end up solving a matrix system 

(Ax  =  y) for each PDE. In this system the transport quantities at any location are contained in the 

column vector x. These vectors are then used as an estimate of the future transport quantities (at  t+Δt). 

The next step is to generate the coefficients matrix A and the solution column vector y for our transport 

equations based on the selected discretization schemes.  These arrays are sent to the solver, which uses 

the  bi-conjugate  gradient  stabilized  method  to  provide  a  solution.  Since  we  are  solving  an 
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homogeneous 2-D system of equations the resultant array of coefficients is a pentadiagonal sparse 

matrix. This solution vector is used to update the estimate of the future transport quantities. After all the 

equations are solved the algorithm verifies if there was any change in the variables with respect to the 

previous estimate. If the total residual in changes was greater than 1.0 E-4 for any variable, the iterative 

process continues. Once all the equations are satisfied simultaneously (total residuals less than 1.0 E-4) 

the solutions are written into a time labeled output file and the time step moves forward to continue our 

simulation.    

Figure 3.8.1: MATLAB Code Flowchart
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 4 Results and Discussion

     Using the mathematical model discussed in Chapter 2 and the numerical solution method proposed 

in Chapter 3 we were able to predict the dynamics of temperature and moisture content throughout the 

dehydration process of parchment coffee. This was done at a certain degree of accuracy which is a 

direct result of the assumptions done in our modeling as well as the controllability of the experimental 

data acquisition. This chapter is devoted to the presentation and discussion of the results obtained. 

 4.1 Experimental Results using HARC²S

     A series of experiments was performed using the  HARC²S as discussed in the materials  and 

methods presented on Chapter 1. This system, designed and built by  Dr. Francisco Rodríguez Robles 

and Dr. Francisco Monroig Saltar [8], was used to obtain temperature and moisture content data during 

five different dehydration processes.  Four of these experiments were done using the capability of air 

recirculation provided by the HARC²S and one experiment was performed discharging the air without 

any recirculation. The four experiments using air recirculation are referred in this study as closed batea 

(CB) and the experiment done without recirculation as open batea (OB). A temperature sensor as that 

shown in Fig. 1.5.2 was located inside the parchment coffee bed at a height of 0.18 m (7 in) and a 

radius of 0.152 m (6 in). The following images are two examples of the data obtained for the coffee 

mass temperature and moisture content using either closed batea or open batea configuration.
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Figure 4.1.1: Experiment configurations Open Batea (OB) and Closed Batea (CB)
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Figure 4.1.2: Experimental Data of Dehydration Dynamics (CB1)

Figure 4.1.3: Experimental Data of Dehydration Dynamics (OB2)
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     Due to the nature of the experiment, and the selected data acquisition method, the obtained 

temperature data is limited to the behavior of the coffee mass temperature at a single position. 

For the moisture content the coffee mass sample were randomly taken from the exposed coffee 

bed surface. This selection increases the probability of our sample of being a better representation 

of the average conditions. Now, understanding these limitations it is clear that the accuracy of our 

temperature prediction can only be determined in terms of proximity to the experimental value at 

the specific location of the temperature sensor. Likewise, the moisture content prediction can 

only be compared at an average level.

     Analyzing  the  relationship  between  the  coffee  mass  temperature  and  the  supply  air 

temperature could provide important information about the phenomena itself. In Fig 4.1.3 we can 

appreciate how the coffee mass temperature and air supply temperature behave for a specific 

configuration.

Figure 4.1.4: Heat Transfer Coffee Mass Resistance (CB1)
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     As we can see from Figure 4.1.3, at the beginning of the dehydration process, the coffee mass 

temperature increases even higher than the supply temperature. This is expected since the coffee 

bed is saturated with water.  Given that the water has a higher heat capacity than the air, it delays 

the heat release from the coffee mass causing an increment in temperature. We could say that the 

presence of water causes the porous body to accumulate energy as shown by the coffee mass 

temperature rise.  As we move to the completion of the first  hour of our drying process,  the 

temperature of the coffee mass becomes smaller than the temperature of the supply air. This is 

not because of the reduction of the moisture content since it has only started decreasing. The 

reason for this phenomenon is the so-called evaporative cooling. Due to the vaporization of water 

at the surface of the coffee grains, the coffee mass is loosing some of the heat delivered by the 

gas phase. Once the supply air has basically reached the setup temperature (at approximately 1.2 

hours) an unexpected coffee mass temperature reduction occurs. The initial hypothesis for this 

occurrence was that it was a combination of the evaporative cooling and the arrival of a steady 

supply air temperature condition. However, as shown in Fig. 4.1.4, this occurrence is not repeated 

in  any  of  the  other  experiments.  This  lead  us  to  conclude  that  it  represents  some  sort  of 

environmental disturbance such as raining incidence. Stating that this is not a phenomenological 

characteristic of our process is important to evaluate the quality of the model developed in this 

study.  Another  important  comment on the  comparison between coffee mass  temperature and 

supply air temperature is that at the end of the process they coincide. This is primarily due to the 

fact that we arrived to a steady state condition and the water resistance in our porous body is not 

significant  anymore.  In  the  next  section we present  a  comparison between the  mathematical 

model and the empirical data.
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Figure 4.1.5: Experimental Results Comparison

 4.2 Numerical Results

     The main objective of this study is to develop a mathematical model able to predict the 

dynamics  of temperature and moisture content  throughout  the concerning drying process.  To 

evaluate the accuracy of our model, the simulated data was plotted against the experimental data. 

Doing this comparison for different assumptions and cases enhances the understanding of the 

driving forces behind each of the stages of our process. The first simulation presented below (Fig. 

4.2.1) is the drying process using an open batea configuration. 
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Figure 4.2.1: Resulting Dynamics of Dehydration (OB2)

    It is important to recall that for convergence purposes and to decrease the computational cost 

the modeling will be divided into two stages as proposed in section 2.3.3. The first stage will not  

consider convective fluxes due to the saturation level of the coffee mass as shown in Eq. (2.29) 

and the second stage will  not consider the vaporization sink terms as done in Eq. (2.30). To 

switch between these two models the understanding provided by the empirical data was used. If 

we observe the drying curves of all our experimental cases we can observe that the temperature 

nonlinear behavior is limited to the first 2 hours of dehydration and the final hour of dehydration. 

     The first non-linear section could be attributed to the vaporization of water. The volume 

occupied by water is reducing dramatically, introducing phase discontinuities (or jumps) into the 

macro-pore volume. Due to the difference between the heat capacity of air and water the
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 temperature increases in a nonlinear way until the macro-pore section is basically dry and the 

water left is inside the coffee beans (micro-pores). At this point, the macro-pores are filled with 

moist-air and the flow becomes continuous in terms of intrinsic phase average density of air. 

From  that  point  on,  the  γ-phase  flow  becomes  organized  and  the  convective  heat  transfer 

becomes significant in the behavior of the coffee mass temperature. In Figures 4.2.2 – 4.2.9 we 

can see the coffee mass  temperature distribution  as  it  develops  throughout  the  entire  drying 

process of the selected configuration (OB2) . While these images are contour plots and have little 

use for validation purposes, it will give us some important insights of the phenomena under study 

and how well our model capture certain characteristics of the process.

Figure 4.2.2: Temperature Distribution at t=0.27 hrs (OB2)
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Figure 4.2.3: Temperature  Distribution at t=1.0 hrs (OB2)

Figure 4.2.4: Temperature Distribution at t=1.5 hrs (OB2)
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Figure 4.2.5: Temperature Distribution at t=2 hrs (OB2)

Figure 4.2.6: Temperature Distribution at t=4 hrs (OB2)
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Figure 4.2.7: Temperature Distribution at t=6 hrs (OB2)

Figure 4.2.8: Temperature Distribution at t=8 hrs (OB2)



94

Figure 4.2.9: Temperature Distribution at t=9 hrs (OB2)

     In Figure 4.2.2 it is shown how at the beginning of the drying process the air inlet (bottom of 

the contour plot) has a very small effect in the temperature changes of the body. This image is  

taken around 15 minutes after the drying started and the temperature of the coffee mass is still 

very close to the initial  temperature (23  ºC).  Also,  we can see how the contours are  almost 

straight due to the little influence. If the flow passing through the macro-pore were significant we 

would be able to see the radial effects on the temperature distribution. The studied volume is a 

cylinder, therefore as we approach the center (r=0) the control volume becomes smaller and the 

conduction heat transfer is smaller. At this point of the process we still cannot see this effect 

because of the saturation level. As the saturation level decreases we expect the mass weighted 

averaged heat capacity to become smaller (since water has a higher specific heat) and the heat 

transfer rate to increase. This result is replicated in Figure 4.2.1 were the model temperature 

behavior is first concave downwards and as the saturation level  decreases it becomes concave 

upwards. Some discrepancies exist between our model and the experimental data which gives 

notion of multiple inflection (more than one change of concavity). After the inflection occurs and 
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the heat transfer rate increases, the radial effects of heat transfer must be evident. This is clearly 

shown  on  Figure  4.2.3  where  the  temperature  contours  are  shaped  like  positive  parabolic 

functions.

     The heat transfer rate will reduce as we get close to the linear region of the process since the 

temperature  gradient  becomes  almost  negligible.  In  Figure  4.2.5  we  can  see  some  blurry 

contours, and if we pay attention to the legend we will realize that the maximum temperature 

gradient is of the order of one hundredth of a degree. This helps to explain why the temperature 

response becomes almost linear after this point (see Figure 4.2.1). It is clear that the rate of 

change of temperature will depend strongly on the convection fluxes, while the diffusion and 

vaporization fluxes influence will be minimal. This will be true until the steady stage is reached. 

As it can be seen in Figure 4.2.1, the behavior of the model temperature response is very similar 

to a first order system that reaches its steady value within the first 2 hours of drying. This is 

different to the real behavior which delays its arrival to equilibrium until the end of the process. 

One of the possible reasons for this difference is the assumption of a constant pressure gradient 

which pushes the air velocity to be relatively constant. This comparison between our model's 

predictions and the experimental data seems to be very consistent for different drying conditions 

as seen on Figures 4.2.10 to 4.2.13. A comparison between the predictions of the proposed model 

and the predictions of the model published by  Rodriguez-Robles [51] is presented on Figure 

4.2.14.
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Figure 4.2.10: Resulting Dehydration Dynamics (CB1)

Figure 4.2.11: Resulting Dehydration Dynamics (CB2)
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Figure 4.2.12: Resulting Dehydration Dynamics (CB3)

Figure 4.2.13: Resulting Dehydration Dynamics (CB4)
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Figure 4.2.14 Dehydration Dynamics Model Comparison

    Each one of the five different simulated cases shown above present the same discrepancy with 

the  experimental  temperature.  However,  all  of  them  present  fairly  good  predictions  of  the 

moisture content; especially at equilibrium. In the next section we present a short summary of the 

deviation of our results from the actual data. This will be done at fixed locations as explained at 

the beginning of this chapter. 

 4.3 Statistical Analysis

     The percent  of  difference  between the  experimental  data  and our  predicted  values  was 

calculated for all of the cases. This difference is defined as the ratio of the difference between the 

experimental  data  and the  predicted  values  to  the  average  between these  two.  A calculation 

example for the temperature percentage difference is shown in Eq. (4.1). The mean and standard 

0 1 2 3 4 5 6 7 8 9
20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

0

10

20

30

40

50

60

T_Exp T_Rodriguez T_Ocasio

M.C._Exp M.C._Rodriguez M.C._Ocasio

Time (hrs)



99

deviation of the percentage difference of both temperature and moisture content is presented in 

Tables 4.3.1 and 4.3.2.

%diff T =
∣T −T exp∣

1
2

(T +T exp )
(4.1)

Case Temperature Mean % diff Temperature % diff Stdev

OB2 6.88 5.12

CB1 9.53 8.85

CB2 10.32 7.18

CB4 9.50 9.25

CB4 9.48 8.07

Table 4.3.1: Temperature Percentage Difference Statistics

Case M.C. (%w.b.) Mean % diff M.C. (%w.b.) % diff Stdev

OB2 23.73 11.99

CB1 9.40 7.98

CB2 18.60 11.20

CB4 10.30 7.25

CB4 8.83 7.21

Table 4.3.2: Moisture Content Percentage Difference Statistics

    

     As it can be seen by comparing the last two tables, the error of these predicted values could be 

as  high  as  30  %.  From  these  statistics,  it  seems  to  be  that  the  model  is  better  predicting 

temperature than moisture content. However, these conclusions should not be taken so fast. The 

former statement is only true if the error (percentage difference) distribution of our results is 
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perfectly Gaussian.  Since the equations and assumptions  behind our model are  not the same 

through the entire simulation, it is to be expected to have a non-Gaussian error distribution. This 

characteristic is common of step-wise like models as the one proposed in this study. As it will be 

shown in the images below this is found to be true for our simulation. An example distribution of 

the percentage difference of moisture content is presented in Figures 4.3.1 and 4.3.2 for two 

different cases. In the first image (case CB1), the percentage difference of the moisture content 

remains below 10 % for the first seven hours of dehydration, increasing at the last stage up to a  

percentage  difference  of  24.8  %.  On  the  other  hand,  in  the  second  image  (case  CB4)   the 

percentage difference stays below 10 % most of the drying process with the exception of the 

fourth and fifth hours. We can notice from the histograms below that both cases behave far from 

a normal distribution.   

Figure 4.3.1: M.C. Percentage Difference Distribution (CB1)
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Figure 4.3.2: M.C. Percentage Difference Distribution (CB4)

     The reason for this non-Gaussian behavior is not only the phenomena switching but also the 

given test  conditions.  Due to  the  nature  of  the  measurement,  the  moisture  content  sampling 

resolution  is  limited.  As mentioned earlier  in  this  study,  from the  law of  large  numbers  we 

understand that the average of a sample becomes representative of the population average as we 

increase the number of samples itself.  That is not the case of the moisture content which was 

experimentally measured at a rate of one sample per hour. 

     Now, for the evaluation of our coffee mass temperature predictions the resolution is not a 

problem since it was measured every minute throughout the entire experiments. The temperature 

percentage difference for this two cases is shown in Figures 4.3.3 and 4.3.4. As expected from the 

results presented in the previous section, the highest percentage differences occur at the initial 

drying stage and the discrepancies reach a maximum close to the end of the first hour, when the 

phenomena switching is most likely to happen. Once the drying rate decreased substantially and 
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the  convective-diffusive  stage  takes  place,  the  percentage  differences  become smaller.  If  we 

observe the histograms below we will see that the temperature percentage difference distribution 

is also non-Gaussian. This can be attributed to the high error incidences in the initial stage, the 

phenomena  switching  and  the  assumptions  imposed  to  estimate  some  of  the  transport 

coefficients. About the effect of the transport coefficient is important to clarify that not all of 

them are function of the same variables. If, as an example, our coefficients were only temperature 

dependent  we would expect to have a normal error distribution,  function of the error  of the 

predicted temperature (given that each coefficient's correlation is accurate). However, some of 

our coefficients depend on temperature, others depend on moisture content and others depend on 

multiple transport quantities.   

Figure 4.3.3: Temperature Percentage Difference (CB1)
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Figure 4.3.4: Temperature Percentage Difference (CB4)

 4.4 Drying Rate Estimate

     One of the challenges related to the modeling of any dehydration process is the prediction of 

the drying rate. A lot of research effort is concentrated in the modeling of the drying rate as a  

function primarily of temperature and equilibrium moisture content [16, p.1676]. As mentioned 

at the beginning of chapter 2, and shown in Figure 2.1, the drying rate could be used to identify 

the transition between the two drying stages. In the initial (funicular) stage the changes in drying 

rate are small enough to consider it to be constant. Otherwise, at the latter (pendular) stage the 

drying rate decreases almost linearly. To study the drying results we will consider one of the 

dehydration cases. In Figure 4.4.1 the behavior of the drying rate throughout these drying process 
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is presented. The initial behavior of the drying rate is common to some drying processes and is 

denominated as the initial transient. Due to the reduction of the saturation level, the drying rate 

shows a high slope reduction during the first half-hour of dehydration. This high slope reduction 

finishes with an evident inflection point,  which could be attributed to the dehydration of the 

macro-pore region. Since the parchment coffee mass was initially saturated the air is not able to 

flow through the macropores until the saturation level decreases to a certain amount. Once the air 

starts  flowing through the void space,  the energy input  at  the inlet  is  not used uniquely for 

vaporization anymore. Now, part of the energy delivered to the coffee mass will be transferred to 

the air as part of the fluid-surface interaction. At the same time the temperature gradients start 

becoming smaller as discussed in section 4.2. This reduction in the temperature gradient affects 

negatively the migration of water to the surface (due to the Soret effect) leading to a stabilization 

of the drying rate. In other words, the non-linear terms depending on the temperature gradient 

become negligible and the drying rate becomes linear as a consequence. This linear behavior is 

expected and thoroughly studied due to its simplicity advantages [16, p.1677]. As seen in Figure 

2.1,  we expected the behavior  of  the drying rate  to  be linear  at  the latter  stage.  Our results 

regarding the relationship between the drying rate and the moisture content (Figure 4.4.2) are 

validated by this drying theory.
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Figure 4.4.1: Drying Rate Characterization (CB1)

Figure 4.4.2: Relationship Between Drying Rate and M.C. (%d.b.)
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 5 Conclusions

     The complexity of modeling the dehydration process of a porous media can be divided in 

three  wide  groups:  formulation  constraints,  transport  coefficients  estimate  and  numerical 

stability. Most of the discrepancies with the empirically obtained data could be assigned to one of 

these. For a better sequential presentation of our conclusions, they will be separated based on the 

phenomenological time frame. First, we will present the conclusions on our predictions over the 

funicular state, followed by the conclusions related to the pendular state. 

     

 5.1 Discrepancies on Funicular State

     The funicular state is driven by the phase change phenomenon (primarily vaporization) at the 

liquid-gas interface. Therefore, the accuracy of the predictions depend on the ability of our model 

to  predict  the vaporization rate.  One of  the disadvantages of the proposed model  is  that  the 

prediction of the vaporization rate is based solely on the local change of energy. This means that 

the  vaporization  rate  is  calculated  as  the  ratio  of  the  local  rate  of  change  of  energy  to  the 

temperature gradient. A more accurate and phenomenologically correct formulation would have 

to include the change of energy due to mass diffusion. The former phenomenon is known as the 

Dufour effect and is included in the formulations of heat and mass transfer in capillary porous 

bodies  presented  by  Luikov  [21].  This  was  excluded  from the  original  formulations  due  to 

problems regarding the stability of our numerical solution. This instability issue summarizes one 

of  the  greatest  limitations  of  the  methodology  selected.  Since  the  volume  average  method 

considers all  quantities in an average sense, it fails in predicting the distribution of moisture. In 

other  words,  given  that  both  the  concentration  gradient  and  the  diffusivity  are  very  small 

quantities, the mass fluxes become practically zero after the averaging process. The solution to 

this  issue  is  clear,  though.  Increasing  the  mesh  resolution  will  improve  the  predictions  by 
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decreasing  the  uncertainty  due  to  volume  averaged  space.  However,  decreasing  the  volume 

averaged size will result in a numerically unstable solution. The reason for this instability is that 

our mesh volume size will be too close to the representative element volume (REV). Close to (or  

under) the REV, our analysis scale would be affected by random pore scale heterogeneity causing 

our  results  to  fluctuate  from  iteration  to  iteration  without  converging.  To  substantiate  this 

conclusion, the REV sizes determined by Constanza-Robinson [48] were compared to the volume 

averaged  size  used  in  our  model.  This  was  studied  for  different  mesh  resolutions.  It  was 

determined that for mesh finer than 100x100 nodes the volume averaged sized is smaller than the 

referenced nominal REV calculation. 

 5.2 Discrepancies on Pendular State

     The pendular state is driven by the convection-diffusion phenomena. The mechanism of water 

removal is still vaporization, but the time scale of this process is a lot slower than the transfer of 

energy due to convection at the macro-pore interface. Observing the results as the system gets 

closer to the steady state conditions, the accuracy of the predictions improve. This implies that 

the energy transfer in the latter drying stage could be properly modeled as solely convection-

diffusion heat transfer. The small discrepancies present in this stage could be attributed to errors 

in  the  modeling  of  the  convective  heat  transfer  and  errors  in  the  estimate  of  topological 

parameters.  While  modeling  the  convective  phenomenon  it  was  assumed  that  the  effects  of 

convective  fluxes  were  only  significant  in  the  equations  of  continuity.  This  constraint  was 

introduce given that the volumetric  effects  are  expected to  be much greater  than the surface 

interaction at the macro-scale. In spite of that, neglecting these effects introduces some error in 

our  predictions  since  the  absence  of  convection  heat  transfer  increases  the  conduction  heat 

transfer rate. Not having any convection resistance, the coffee mass temperature increases at a 

faster rate than the observed (measured) temperature.  Considering the convective heat  fluxes 

could be an option to improve our predictions. Even though, some modifications must be done to 
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the model to account for flow direction effects. As concluded by Pierre [49] the volume averaged 

method convergence is guaranteed only for unidirectional velocity fields. However, on the steady 

state  he  concluded:  “concentrating  on  the  stationary  solution  associated  with  large  Peclet 

numbers, it has been found that volume averaging methods converge toward the exact solution”. 

This agrees with the results obtained using our model; the closer to equilibrium, the better the 

predictions.

 5.3 Recommended Usage

    The mathematical  model proposed in  this  work is  accurate in predicting the equilibrium 

conditions as well as the average transport quantities. Therefore, it is within these limits that its 

use is recommended. This model should be used as a tool to determine the equilibrium moisture 

content  and the  time required  to  obtain that  state.  The predicted  temperature  could be  post-

process to determine the energy input necessary to satisfy a predetermined equilibrium criteria 

using a specific machinery configuration. Additional to energy, other integral quantities could be 

accurately determined using this model such as volumetric air flow, total mass evaporated and 

average moisture content. This model should not be used with the intention of capturing micro-

scale  dynamics  for  the  reasons  discussed  in  previous  sections.  As  will  be  proposed  in  the 

following  section,  this  model  could  be  employed  as  a  low-level  (macro-scale)  predictor  to 

provide boundary conditions to a high level (micro-scale) mathematical model.

 5.4 Recommended Drying Process Parameters

     The understanding of this dehydration process facilitates the selection of drying parameters 

that will promote coffee mass moisture transport during dehydration with minimal energy input. 

Based on this study, it is impossible to optimize this drying process with a unique combination of 

parameters. To effectively promote moisture transport during the entire dehydration process, the 
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drying parameters should adapt adequately to the two different stages inherent to this process. At 

the  beginning of  the  drying process,  the  coffee  mass  is  saturated  in  water  and the  air  flow 

effective area is minimum. Therefore, it is recommended to set the inlet air velocity (fan speed) 

to a minimum. In contrast,  at  this early stage it  is recommended to set  the temperature to a 

maximum  level  to  overcome  the  resistance  represented  by  the  high  specific  heat  of  water. 

However, once the coffee mass has reached a temperature close to the air inlet temperature, the 

temperature of the air should be reduced to prevent burning the coffee beans close to the inlet.  

The secondary stage of this process (pendular state) is mainly driven by convective heat transfer. 

At  this  point  in  the  dehydration  process  there  is  no significant  resistance from the  moisture 

content in the macro-pore region. This implies that the air is now able to flow inside the macro-

pores developing a velocity profile and that the heat can distribute easier throughout the coffee 

mass.  Thus,  it  is  recommended  to  set  the  the  fan  speed  to  a  maximum.  At  this  stage  the 

temperature should be set to an average value because the drying process in the pendular state is 

dominate by convection heat transfer. Using a high temperature setting will have a small effect 

on the process, since the coffee mass temperature distribution is uniform and the mean value is 

close to the steady state temperature of the process. From an energetic point of view, the use of  

high  temperature  air  flow  at  the  latter  stage  of  a  drying  process  entails  significant  energy 

inefficiency.

 5.5 Future Work

     This study does not pretend to model all the scales involved in the drying of a porous medium. 

The objective of this work was to predict the dynamics of temperature and moisture content as 

well  as understanding the contribution from the responsible  physical  phenomena.  Due to the 

limitations and constraints inherent to the methodology selected, this study was performed only 

at the macro-pore level. The next step towards a better modeling of this process is the refinement 

of the transport coefficients and topological parameters. Both the topological function ξ and the 
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permeability  of  the  parchment  coffee  mass  could  be  determined from experiments.  Relating 

Darcy's law with appropriate volumetric flow rate calculations, the permeability tensor could be 

determined.  For the calculation of  ξ, the capillary pressure of the porous medium needs to be 

correlated  experimentally.  An easy  approach for  this  would  be to  use  the  Leverett  function. 

However this will require information regarding the micro-scale flow interactions. For a macro-

level, our proposed estimate of the topological function (section 2.6.7) seems reasonable, both 

physically and numerically. This refinement of parameters will improve our results especially at 

the transition between funicular and pendular states, since at that point the liquid-gas interactions 

at the pore channels is most significant. 

     To  accurately  analyze  the  micro-pore  level,  a  different  approach  must  be  used.  The 

recommendation  is  to  formulate  a  multi-scale  model.  In  this  methodology  a  coarse  domain 

(macro-level) is first solved using the volume averaged equations of heat and mass transfer. Then 

the estimates from this model are entered as boundary conditions into a fine domain (micro-pore) 

governed by capillary-diffusive phenomena. Again, such approach requires empirical acquisition 

of  parameters  such  as  curvature  radii  and  surface  tension.  A final  comment  on  micro-scale 

modeling  is  that  it  cannot  be  accurately  modeled  using  conventional  deterministic  methods. 

Reasons for that are the number of unknowns, the uncertainty level for a volume smaller than the 

REV, and unexpected interactions with the environment. However, a multi-scale model could be 

randomized and solved repeatedly (“random search”) until an accurate solution is obtained via 

the  use  of  a  genetic  algorithm such as  the  Monte  Carlo  algorithm.   Genetic  algorithms are  

suitable to deal with unknown parameters such as the topological function or its related so-called 

tortuosity tensor.  This approach is suggested for the solution of flow in porous media by S.D. 

Harris [50]. As implied in these recommendations, the selection of a methodology to model a 

dehydration process will depend on the scale desired, the concerning quantities, and also the data 

available to obtain parameters unique of our specific porous medium.
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Appendix I: Matlab Finite Volume Code

%Transient Solution of the Equations of Simultaneous Heat and Mass
%Transfer in the Dehydration Process of Parchment Coffee (C. Arabica)
 
%Author: Moises Y. Ocasio
%Adviser: Dr.Francisco Rodriguez
%Comittee members: Dr. Orlando Ruiz
%                  Dr. Francisco Monroig
 
 
clear all
close all
clc
close all hidden
 
 
 
 
% Changing directory to Field Data Directory
 
cd('/home/myobhel/Desktop/Research/MATLAB Code/');
 
%% I. READING INPUT DATA
 
%Static Data
 
P=importdata('param.txt');
 
T_SA=importdata('CB1/SUPPLY.txt');
 
A=importdata('CB1/PSAT.d');
 
II=importdata('CB1/RH1.d');
       
O=importdata('CB1/RH2.d');
 
T_Smax=61;
 

%% II. CREATING MESH
 
%1-radial, 2-bed height
 
L1=.32258; L2=.235;
 
N1=20; N2=20; N3=(N1)*(N2);
 
DR=L1/(N1-1); DZ=L2/(N2-1);
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DRd=1/(N1-1); DZd=1/(N2-1);
 
D5=[N1 1 0 -1 -N1]; %specifier for pentadiagonal sparse matrix
 

%% III. INITIAL CONDITIONS
 
 
%1.Input Conditions
 
 
T_0=23; %Initial Coffee Mass Temperature (Celsius)
 
W_Y0=0.0018; %Air Inlet Z-Speed (m/s)
 
M_0=.56;
 
 
%General Parameters
 
G=9.81; %Gravitational Acceleration
 
DTIME=120; %Time Step in seconds
 
TTIME=10000; %Total Time in seconds
 
%Phenomenological Switching
 
SWITCH1=11;
 
SWITCH2=11;
 
ITER=20; %Number of IMPLICIT iterations
 
KTOTAL=ceil(TTIME/DTIME); 
 
SOR=1E-10; %Ratio of reduction for CGSTAB Solver
 
R_IDEAL=8.3144621;
 
MAIR=.0289645; %Kg/mol
 
MH2O=.01801528; %kg/mol
 
Rallow=.001; %Convergence criteria (Total RMS)
 
 
 
%2.Transport Quantities



117

 
 
T=ones(N2,N1);
 
U_B=ones(N2,N1);
 
U_Y=ones(N2,N1);
 
W_B=ones(N2,N1);
 
W_Y=ones(N2,N1);
 
EPS_S=ones(N2,N1);
 
EPS_B=ones(N2,N1);
 
EPS_Y=ones(N2,N1);
 
RHO_Y12=zeros(N2,N1);
 
MASS=ones(N2,N1);
 
M=ones(N2,N1);
 
 
%3.Transport Parameters
 
 
M100=zeros(N2,N1);
 
RHO_TRUE=zeros(N2,N1);
 
RHO_BULK=zeros(N2,N1);
 
CP_MASS=zeros(N2,N1);
 
K_MASS=zeros(N2,N1);
 
TK=zeros(N2,N1);
 
D_EFF=zeros(N2,N1);
 
RHO_AIR=zeros(N2,N1);
 
RHO_VAP=zeros(N2,N1);
 
RHO_Y=zeros(N2,N1);
 
RHO_WAT=zeros(N2,N1);
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RHO_12=zeros(N2,N1);
 
CP_AIR=zeros(N2,N1);
 
CP_VAP=zeros(N2,N1);
 
CP_WAT=zeros(N2,N1);
 
MU_AIR=zeros(N2,N1);
 
MU_VAP=zeros(N2,N1);
 
MU_WAT=zeros(N2,N1);
 
K_AIR=zeros(N2,N1);
 
K_VAP=zeros(N2,N1);
 
K_WAT=zeros(N2,N1);
 
ENT=zeros(N2,N1);
 
PORE=zeros(N2,N1);
 
PERM_AIR=zeros(N2,N1);
 
PERM_WAT=zeros(N2,N1);
 
SURF=zeros(N2,N1);
 
XI=zeros(N2,N1);
 
K_EFF=zeros(N2,N1);
 
RHO=zeros(N2,N1);
 
C=zeros(N2,N1);
 
FO=zeros(N2,N1);
 
PR_B=zeros(N2,N1);
 
PR_Y=zeros(N2,N1);
 
SC=zeros(N2,N1);
 
P_1=zeros(N2,N1);
 
P_2=zeros(N2,N1);
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P_Y=zeros(N2,N1);
 
SU=zeros(N2,N1);
 
AN=zeros(N2,N1);
 
AT=zeros(N2,N1);
 
AS=zeros(N2,N1);
 
AB=zeros(N2,N1);
 
AP0=zeros(N2,N1);
 
AP=zeros(N2,N1);
 
P_R=zeros(N2,N1);
 
P_Z=zeros(N2,N1);
 
RHO_1=zeros(N2,N1);
 
RHO_2=zeros(N2,N1);
 
T_R1=zeros(N2,N1);
 
T_Z1=zeros(N2,N1);
 
DELTA1=zeros(N2,N1);
 
DELTA2=zeros(N2,N1);
 
T_test=zeros(KTOTAL+1,1);
 
time_test=zeros(KTOTAL+1,1);
 
MC_test=zeros(KTOTAL+1,1);
 
m_test=zeros(KTOTAL+1,1);
 
 
%4. Implementing Initial Conditions =========================================
 
T(:,:)=T_0;
 
U_B(:,:)=0;
 
U_Y(:,:)=0;
 
W_B(:,:)=0;



120

 
W_Y(1,:)=W_Y0;
 
W_Y(2:end,:)=0;
 
EPS_Y(2:end,:)=0.01;
 
EPS_B(1,:)=0;
 
M(:,:)=M_0;
 
RHO_Y12(:,:)=0.00001;
 
T_test(1)=T_0;
 
m_test(1)=.1;
 
time_test(1)=0;
 
MC_test(1)=100*M_0;
 
 
for J=1:N1;
    
    for I=1:N2;
        
        %Initial Properties
        
        %A. Coffee Mass Density (1-4) - Perez-Alegria (2001)
        
        
        %Correlations taken from Perez-Alegria (2001) use M.C.(%w.b.)
        
        M100(I,J)=100*M(I,J); %100*(M(I,J)/(1+M(I,J)));
        
        
        RHO_TRUE(I,J)=P(1)*M100(I,J)+P(2); %kg/m3
        
        RHO_BULK(I,J)=P(3)*M100(I,J)+P(4); %kg/m3
        
        
        %B. Coffee Mass Specific Heat (5-6) - Perez-Alegria (2001)
        
        CP_MASS(I,J)=P(5)*M100(I,J)+P(6); %kJ/kg-K
        
        
        %C. Coffee Mass Effective Thermal Conductivity (7-8) - Perez-Alegria 
(2001)
        
        K_MASS(I,J)=P(7)*M100(I,J)+P(8); %W/m-K
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        %D. Coffee Mass Total Effective Diffusivity (9-11) - Correa (2006)
        
        TK(I,J)=T(I,J)+273.15;
        
        
        D_EFF(I,J)=P(9)*exp(P(10)/(P(11)*TK(I,J))); %m2/s
        
        
        %*****All fluid properties correlated herein were evaluated in Celsius 

  degrees
        
        %E. Dry Air Density (12-17)
        
        RHO_AIR(I,J)=P(12)+P(13)*T(I,J)+P(14)*T(I,J)^2+P(15)*T(I,J)^3+ ...
            P(16)*T(I,J)^4+P(17)*T(I,J)^5; %kg/m3
        
        %F. Water Vapor Density (18-23)
        
        RHO_VAP(I,J)=P(18)+P(19)*T(I,J)+P(20)*T(I,J)^2+P(21)*T(I,J)^3+ ...
            P(22)*T(I,J)^4+P(23)*T(I,J)^5; %kg/m3
        
        %G. Moist Air density
        
        RHO_Y(I,J)=RHO_AIR(I,J)+RHO_VAP(I,J);
        
        
        %H. Liquid Water Density (24-29)
        
        RHO_WAT(I,J)=P(24)+P(25)*T(I,J)+P(26)*T(I,J)^2+P(27)*T(I,J)^3+ ...
            P(28)*T(I,J)^4+P(29)*T(I,J)^5; %kg/m3
        
        %I. Dry Air Specific Heat (30-35)
        
        CP_AIR(I,J)=(P(30)+P(31)*T(I,J)+P(32)*T(I,J)^2+P(33)*T(I,J)^3+ ...
            P(34)*T(I,J)^4+P(35)*T(I,J)^5)*1000; %J/kg-K
        
        %J. Water Vapor Specific Heat (36-41)
        
        CP_VAP(I,J)=(P(36)+P(37)*T(I,J)+P(38)*T(I,J)^2+P(39)*T(I,J)^3+ ...
            P(40)*T(I,J)^4+P(41)*T(I,J)^5)*1000; %J/kg-K
        
        %K. Liquid Water Specific Heat (42-47)
        
        CP_WAT(I,J)=P(42)+P(43)*T(I,J)+P(44)*T(I,J)^2+P(45)*T(I,J)^3+ ...
            P(46)*T(I,J)^4+P(47)*T(I,J)^5; %J/kg-K
        
        %L. Dry Air Dynamic Viscosity (48-53)
        
        MU_AIR(I,J)=(P(48)+P(49)*T(I,J)+P(50)*T(I,J)^2+P(51)*T(I,J)^3+ ...
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            P(52)*T(I,J)^4+P(53)*T(I,J)^5)/1000000; %kg/m-s
        
        %M. Water Vapor Dynamic Viscosity (54-59)
        
        MU_VAP(I,J)=(P(54)+P(55)*T(I,J)+P(56)*T(I,J)^2+P(57)*T(I,J)^3+ ...
            P(58)*T(I,J)^4+P(59)*T(I,J)^5)/10000000; %kg/m-s
        
        %N. Liquid Water Dynamic Viscosity (60-65)
        
        MU_WAT(I,J)=(P(60)+P(61)*T(I,J)+P(62)*T(I,J)^2+P(63)*T(I,J)^3+ ...
            P(64)*T(I,J)^4+P(65)*T(I,J)^5)/1000; %kg/m-s
        
        %~N. Dry Air Thermal Conductivity (66-71)
        
        K_AIR(I,J)=P(66)+P(67)*T(I,J)+P(68)*T(I,J)^2+P(69)*T(I,J)^3+ ...
            P(70)*T(I,J)^4+P(71)*T(I,J)^5; %W/m-K
        
        %O. Water Vapor Thermal Conductivity (72-77)
        
        K_VAP(I,J)=(P(72)+P(73)*T(I,J)+P(74)*T(I,J)^2+P(75)*T(I,J)^3+ ...
            P(76)*T(I,J)^4+P(77)*T(I,J)^5)/1000; %W/m-K
        
        %P. Liquid Water Thermal Conductivity (78-83)
        
        K_WAT(I,J)=(P(78)+P(79)*T(I,J)+P(80)*T(I,J)^2+P(81)*T(I,J)^3+ ...
            P(82)*T(I,J)^4+P(83)*T(I,J)^5)/100; %W/m-K
        
        
        %Q. Latent Heat of Vaporization - Cengel (84-87)
        
        ENT(I,J)=(P(84)+P(85)*T(I,J)+P(86)*T(I,J)^2+P(87)*T(I,J)^3)*1000;
        
        %kJ/kg
        
        %R. Permeability (88-90) --------------------------------------------
        
        PERM_BEAN=P(88); %Single bean permeability determined by Ocasio (2014)
        
        PORE(I,J)=1-(RHO_BULK(I,J)/RHO_TRUE(I,J)); %Porosity
        
        EPS_S(I,J)=1-PORE(I,J);
        
        TAU=(PORE(I,J)^2)/(8*P(89)^2);
        
        PERM_BED=TAU*P(90)/(10000);
        
        PERM_AIR(I,J)=PORE(I,J)*PERM_BED+(1-PORE(I,J))*PERM_BEAN; %m^2
        
        PERM_WAT(I,J)=PERM_BEAN;  %m^2
        



123

        
        %S. Surface Tension (91-94) 
---------------------------------------------
        
        SURF(I,J)=P(91)*(((P(92)-TK(I,J))/P(92))^P(93))*(1+P(94)* ...
            (P(92)-TK(I,J))/P(92)); %N/m
        
        %T. Radius of Interface Curvature (93)
        
        R_CURV=P(95); %m
        
        
        %U. Gases Specific Constants
        
        R_AIR=R_IDEAL/MAIR;
        
        R_VAP=R_IDEAL/MH2O;
        
        
        %V. Liquid Volume Fraction IC
        
        EPS_B(2:end,:)=PORE(2,1);
        
        
        %W. Intrinsic Phase Gas Density
        
        RHO_Y12(1,:)=RHO_AIR(1,1);
        
        
        %X. Liquid Phase Discontinuities Parameter (M.Ocasio [2015])
        
        
        XI(I,J)=EPS_B(I,J)/PORE(I,J);
        
    end
    
end
 
 
 
 
%% TIME LOOP
 
 
for K=1:KTOTAL;
    
    %% IV. OLD TRANSPORT QUANTITIES    
    
    T0=T;
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    W_Y0=W_Y;
    
    W_B0=W_B;
    
    U_Y0=U_Y;
    
    U_B0=U_B;
    
    RHO_WAT0=RHO_WAT;
    
    RHO_01=RHO_1;
   
    EPS_B0=EPS_B;
    
    EPS_Y0=EPS_Y;
    
    C_0=C;
    
    CP_0VAP=CP_VAP;
    
    CP_0WAT=CP_WAT;
        
    ENT_0=ENT;
    
    RHO_Y012=RHO_Y12;
    
    
    %Local Time
    
    TIME=DTIME*K/3600;
    
    TIMEs=DTIME*K;
    
    fprintf('Time= %.f s  M.C.(w.b.)=%.5f m_dot=%.5f kg/(s*m3)  \n',TIMEs-    

 DTIME,100*M(1,1),mean(mean(MASS)));
    
    %Supply Air
    
    T_S=T_SA(1)+T_SA(2)*TIME+T_SA(3)*TIME^2+ ...
        T_SA(4)*TIME^3+T_SA(5)*TIME^4+T_SA(6)*TIME^5+ ...
        T_SA(7)*TIME^6+T_SA(8)*TIME^7+T_SA(9)*TIME^8+ ...
        T_SA(10)*TIME^9; %Air Inlet Temperature (Celsius)
    
    T(1,:)=T_S;
    
    
    
    %% V. PROPERTIES
    
    for Q=1:ITER;
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        for J=1:N1;
            
            for I=1:N2;
                
                
                %A. Coffee Mass Density (1-4) - Perez-Alegria (2001)
                
                
                %Correlations taken from Perez-Alegria (2001) use M.C.(%w.b.)
                
                M100(I,J)=100*M(I,J); %100*(M(I,J)/(1+M(I,J)));
                
                
                RHO_TRUE(I,J)=P(1)*M100(I,J)+P(2); %kg/m3
                
                RHO_BULK(I,J)=P(3)*M100(I,J)+P(4); %kg/m3
                
                
                %B. Coffee Mass Specific Heat (5-6) - Perez-Alegria (2001)
                
                CP_MASS(I,J)=P(5)*M100(I,J)+P(6); %kJ/kg-K
                
                
                %C. Coffee Mass Effective Thermal Conductivity (7-8) – Perez-

        Alegria (2001)
                
                K_MASS(I,J)=P(7)*M100(I,J)+P(8); %W/m-K
                
                %D. Coffee Mass Total Effective Diffusivity (9-11) - Correa 
(2006)
                
                TK(I,J)=T(I,J)+273.15;
                
                
                D_EFF(I,J)=P(9)*exp(P(10)/(P(11)*TK(I,J))); %m2/s
                
                
                %*****All fluid properties correlated herein were evaluated in 

          Celsius degrees
                
                %E. Dry Air Density (12-17)
                
                RHO_AIR(I,J)=P(12)+P(13)*T(I,J)+P(14)*T(I,J)^2+P(15)*T(I,J)^3+ 
...
                    P(16)*T(I,J)^4+P(17)*T(I,J)^5; %kg/m3
                
                %F. Water Vapor Density (18-23)
                
                RHO_VAP(I,J)=P(18)+P(19)*T(I,J)+P(20)*T(I,J)^2+P(21)*T(I,J)^3+ 
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...
                    P(22)*T(I,J)^4+P(23)*T(I,J)^5; %kg/m3
                
                %G. Moist Air density
                
                RHO_Y(I,J)=RHO_AIR(I,J)+RHO_VAP(I,J);
                
                
                %H. Liquid Water Density (24-29)
                
                RHO_WAT(I,J)=P(24)+P(25)*T(I,J)+P(26)*T(I,J)^2+P(27)*T(I,J)^3+ 
...
                    P(28)*T(I,J)^4+P(29)*T(I,J)^5; %kg/m3
                
                %I. Dry Air Specific Heat (30-35)
                
                CP_AIR(I,J)=(P(30)+P(31)*T(I,J)+P(32)*T(I,J)^2+P(33)*T(I,J)^3+ 
...
                    P(34)*T(I,J)^4+P(35)*T(I,J)^5)*1000; %J/kg-K
                
                %J. Water Vapor Specific Heat (36-41)
                
                CP_VAP(I,J)=(P(36)+P(37)*T(I,J)+P(38)*T(I,J)^2+P(39)*T(I,J)^3+ 
...
                    P(40)*T(I,J)^4+P(41)*T(I,J)^5)*1000; %J/kg-K
                
                %K. Liquid Water Specific Heat (42-47)
                
                CP_WAT(I,J)=P(42)+P(43)*T(I,J)+P(44)*T(I,J)^2+P(45)*T(I,J)^3+ 
...
                    P(46)*T(I,J)^4+P(47)*T(I,J)^5; %J/kg-K
                
                %L. Dry Air Dynamic Viscosity (48-53)
                
                MU_AIR(I,J)=(P(48)+P(49)*T(I,J)+P(50)*T(I,J)^2+P(51)*T(I,J)^3+ 
...
                    P(52)*T(I,J)^4+P(53)*T(I,J)^5)/1000000; %kg/m-s
                
                %M. Water Vapor Dynamic Viscosity (54-59)
                
                MU_VAP(I,J)=(P(54)+P(55)*T(I,J)+P(56)*T(I,J)^2+P(57)*T(I,J)^3+ 
...
                    P(58)*T(I,J)^4+P(59)*T(I,J)^5)/10000000; %kg/m-s
                
                %N. Liquid Water Dynamic Viscosity (60-65)
                
                MU_WAT(I,J)=(P(60)+P(61)*T(I,J)+P(62)*T(I,J)^2+P(63)*T(I,J)^3+ 
...
                    P(64)*T(I,J)^4+P(65)*T(I,J)^5)/1000; %kg/m-s
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                %~N. Dry Air Thermal Conductivity (66-71)
                
                K_AIR(I,J)=P(66)+P(67)*T(I,J)+P(68)*T(I,J)^2+P(69)*T(I,J)^3+ 
...
                    P(70)*T(I,J)^4+P(71)*T(I,J)^5; %W/m-K
                
                %O. Water Vapor Thermal Conductivity (72-77)
                
                K_VAP(I,J)=(P(72)+P(73)*T(I,J)+P(74)*T(I,J)^2+P(75)*T(I,J)^3+ 
...
                    P(76)*T(I,J)^4+P(77)*T(I,J)^5)/1000; %W/m-K
                
                %P. Liquid Water Thermal Conductivity (78-83)
                
                K_WAT(I,J)=(P(78)+P(79)*T(I,J)+P(80)*T(I,J)^2+P(81)*T(I,J)^3+ 
...
                    P(82)*T(I,J)^4+P(83)*T(I,J)^5)/100; %W/m-K
                
                
                %Q. Latent Heat of Vaporization - Cengel (84-87)
                
                ENT(I,J)=(P(84)+P(85)*T(I,J)
+P(86)*T(I,J)^2+P(87)*T(I,J)^3)*1000;
                
                %kJ/kg
                
                
                
                %R. Permeability (88-90) --------------------------------
                
                PERM_BEAN=P(88); %Single bean permeability determined by 

           M.Ocasio(2014)
                
                PORE(I,J)=1-(RHO_BULK(I,J)/RHO_TRUE(I,J)); %Porosity
                
                EPS_S(I,J)=1-PORE(I,J);
                               
                TAU=(PORE(I,J)^2)/(8*P(89)^2);
                
                PERM_BED=TAU*P(90)/(10000);
                
                PERM_AIR(I,J)=PORE(I,J)*PERM_BED+(1-PORE(I,J))*PERM_BEAN; %m^2
                
                PERM_WAT(I,J)=PERM_BEAN;  %m^2
                
                
                %S. Surface Tension (91-94) 
--------------------------------------
                
                SURF(I,J)=P(91)*(((P(92)-TK(I,J))/P(92))^P(93))*(1+P(94)* ...



128

                    (P(92)-TK(I,J))/P(92)); %N/m
                
                %T. Radius of Interface Curvature (93)
                
                R_CURV=P(95); %m
                
                
                %T. Gases Specific Constants
                
                R_AIR=R_IDEAL/MAIR;
                
                R_VAP=R_IDEAL/MH2O;
                
                
                %U. Liquid Phase Discontinuities Parameter (M.Ocasio [2014])
                
                
                XI(I,J)=EPS_B(I,J)/PORE(I,J);
                
                
                
                
                %According to [Withaker (1977), p.174] we must be careful to
                %choose the reference pressure p0 as the intrinsic phase 
average
                %pressure at point <r>=0 so that the term <p_y-p0>-rho_y*<r>*g 
is
                %zero under hydrostatic conditions.
                
                %Gas-phase pressure calculation (p_gamma-p_0)
                
                %NOTE: In the gas phase motion equation p_gamma represents the
                %      total pressure; therefore, 
p_gamma=p_0+rho*g*r+p_dynamic.
                %      This implies that grad(p_gamma-p_0-rho*g*r) is the 
gradient
                %      of the dynamic pressure, which leads us to calculate 
this
                %      phase velocity using Navier-stokes quasi steady  

                           approximation
                %      grad(p_dynamic)=viscosity*grad2(velocity).
                
                
                %V.Mass fraction weighted thermal conductivity
                
                
                
                K_EFF(I,J)=EPS_S(I,J)*K_MASS(I,J)+EPS_B(I,J)* ...
                    K_WAT(I,J)+EPS_Y(I,J)*K_VAP(I,J);
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                %W.Average density (RHO)
                
                RHO(I,J)=EPS_S(I,J)*RHO_TRUE(I,J)+EPS_B(I,J)*RHO_WAT(I,J)+ ...
                    EPS_Y(I,J)*(RHO_AIR(I,J)+RHO_VAP(I,J));
                
                
                %X.Mass fraction weighted averaged heat capacity
                
                C(I,J)=(EPS_S(I,J)*RHO_TRUE(I,J)*CP_MASS(I,J)+ ...
                    EPS_B(I,J)*RHO_WAT(I,J)*CP_WAT(I,J)+ ...
                    EPS_Y(I,J)*(RHO_AIR(I,J)*CP_AIR(I,J)+ ...
                    RHO_VAP(I,J)*CP_VAP(I,J)))/RHO(I,J);
                
                %At this moment the effective conductivity is evaluated as if
                %conduction heat transfer in air could be neglected
                
                
                %Y.Reference Values
                
                LC=R_CURV;
                
                %LC=1.47E-002;
                
                U_INF=W_Y(1,1);
                
                RHO_INF=RHO_AIR(1,1);
                
                TIME_C=LC/U_INF;
                
                DT_MAX=(T_Smax-T_0);
                
                %Z.Dimensionless Numbers
                
                RE=(RHO_Y(1,1)*U_INF*LC)/MU_AIR(1,1);
                
                FO(I,J)=K_EFF(I,J)*TIME_C/(RHO(I,J)*C(I,J)*LC);
                
                PR_B(I,J)=CP_WAT(I,J)*MU_WAT(I,J)/K_WAT(I,J);
                
                PR_Y(I,J)=(CP_AIR(I,J)*MU_AIR(I,J)/K_AIR(I,J)+...
                    CP_VAP(I,J)*MU_VAP(I,J)/K_VAP(I,J))/2;
                
                SC(I,J)=MU_VAP(I,J)/(RHO_VAP(I,J)*D_EFF(I,J));
                
                %AA.Vaporization Rate
                
                DELTA1(I,J)=(EPS_S(I,J)/PORE(I,J))*(ENT(I,J)-ENT_0(I,J))/
(DTIME);
               
                DELTA2(I,J)=CP_WAT(I,J)*(T(I,J)+273.15)- ...
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                    CP_0WAT(I,J)*(T0(I,J)+273.15);
            
                if DELTA1(I,J)==0;
                    
                    MASS(I,J)=0.1;
                    
                else
                
                    MASS(I,J)=DELTA1(I,J)/DELTA2(I,J);
                
                end
                
            end
            
        end
        
        
        
        
        %% VI. DIMENSIONLESS TRANSPORT QUANTITIES
        
        
        Td=T/DT_MAX;
        
        T0d=T0/DT_MAX;
        
        U_Bd=U_B/U_INF;    
        
        U_Yd=U_Y/U_INF;
        
        W_Bd=W_B/U_INF;
        
        W_Yd=W_Y/U_INF;
        
        RHOd=RHO/RHO_INF;       
        
        RHO_Y12d=RHO_Y12/RHO_INF;
        
        RHO_Y012d=RHO_Y012/RHO_INF;
        
        RHO_Bd=RHO_WAT/RHO_INF;
        
        DTd=DTIME/TIME_C;
        
        
        %% VII. TOTAL ENERGY EQUATION
        
        %Calculating matrix coefficients
        
        for J=2:N1-1;
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            for I=2:N2-1;
                
                R=J*DRd;
                
                
                %Finite volume transfer areas
                
                
                %Cylindrical coordinates 
==========================================
                
                A_TB=2*R*DRd; %A_B=A_T
                
                A_N=(R+.5*DRd)*DZd;
                
                A_S=(R-.5*DRd)*DZd;
                
                
                
                %Diffusion Conductances
                
                
                
                %Cylindrical coordinates 
==========================================
                
                DN=((R+DRd))/((R+.5*DRd)*DRd);
                
                DNP=(R)/((R+.5*DRd)*DRd);
                
                DS=((R-DRd))/((R-.5*DRd)*DRd);
                
                DSP=(R)/((R-.5*DRd)*DRd);
                
                DT=1/DZd;
                
                DB=1/DZd;
                
                %Convention: T is the usual N, B is the usual S,
                %----------- N is the usual E, S is the usual W
                
                
                
                %Convective mass flux per unit area
                
                FT=0;
                
                FB=0;
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                FN=0;
                
                FS=0;
                
                
                %Dimensionless cell Peclet number (Pe)
                
                PET=FT/DT;
                
                PEB=FB/DB;
                
                PEN=FN/DN;
                
                PES=FS/DS;
                
                
                
                %Hybrid scheme functionS (+ eta and - eta)
                
                %Top
                
                if PET<=2
                    
                    PETA_T=0;
                    
                else
                    
                    PETA_T=1;
                    
                end
                
                
                if PET >= -2
                    
                    NETA_T=0;
                    
                else
                    
                    NETA_T=1;
                    
                end
                
                
                %Bottom
                
                if PEB<=2
                    
                    PETA_B=0;
                    
                else
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                    PETA_B=1;
                    
                end
                
                
                if PEB>=-2
                    
                    NETA_B=0;
                    
                else
                    
                    NETA_B=1;
                    
                end
                
                
                %North
                
                if PEN<=2
                    
                    PETA_N=0;
                    
                else
                    
                    PETA_N=1;
                    
                end
                
                
                if PEN>=-2
                    
                    NETA_N=0;
                    
                else
                    
                    NETA_N=1;
                    
                end
                
                
                %South
                
                if PES<=2
                    
                    PETA_S=0;
                    
                else
                    
                    PETA_S=1;
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                end
                
                
                if PES>=-2
                    
                    NETA_S=0;
                    
                else
                    
                    NETA_S=1;
                    
                end
                
                
                %Matrix coefficients
                
                %1) Source Term (SU) 
==============================================
                
                
                %Differential volume (DV)
                
                DV=0.5*((R)^2-(R-DRd)^2)*DZd; %Cylindrical
                
                
                
                %Source term
                
                SU(I,J)=-(MASS(I,J)*LC^2/K_EFF(I,J))*(ENT(I,J)/DT_MAX)*DV...
                    -((1/FO(I,J))*(RHOd(I,J)*DV*T0d(I,J))/DTd);
                
                
                %MASS == volumetric vaporization rate ([M]/([T]*[L^3]))
                
                
                
                %North Coefficient (AN) 
===========================================
                
                
                NN(1)=-FN;
                
                NN(2)=(DN-0.5*FN);
                
                NN(3)=0;
                
                AN(I,J)=max(NN);
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                %Top Coefficient (AT) 
=============================================
                
                
                TT(1)=-FT;
                
                TT(2)=(DT-0.5*FT);
                
                TT(3)=0;
                
                AT(I,J)=max(TT);
                
                
                
                %South Coefficient (AS) 
===========================================
                
                
                SS(1)=FS;
                
                SS(2)=(DS+0.5*FS);
                
                SS(3)=0;
                
                AS(I,J)=max(SS);
                
                
                
                %Bottom Coefficient (AB) 
==========================================
                
                
                BB(1)=FB;
                
                BB(2)=(DB+0.5*FB);
                
                BB(3)=0;
                
                AB(I,J)=max(BB);
                
                
                %Old Central Coefficient (AP0) ===============================
                
                AP0(I,J)=(1/FO(I,J))*(RHOd(I,J)*DV)/(DTd);
                
                %Central Coefficient (AP) 
=========================================
                
                DF=FN-FS+FT-FB;
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                AP(I,J)=-(AN(I,J)+AT(I,J)+AS(I,J)+AB(I,J)+AP0(I,J)+DF);
                
                
            end
            
        end
        
        %Energy Equation Boundary Conditions
        
        AP(1,:)=1; %Hot Surface
        
        SU(1,:)=Td(1,:);
        
        AP(2:end,1)=1; %R=0 wall (symmetry)
        
        AN(2:end,1)=-1;
        
        AP(2:end,N1)=1; %R=Rmax wall (symmetry)
        
        AS(2:end,N1)=-1;
        
        AP(N2,:)=1; %Z=Zmax (symmetry)
        
        AB(N2,:)=-1;
        
        
        KK=0;
        
        A_TEMP=zeros(N3,5);
        
        for I=1:N2;
            
            for J=1:N1;
                
                KK=KK+1;
                
                A_TEMP(KK,:)=[AB(I,J) AS(I,J) AP(I,J) AN(I,J) AT(I,J)];
                
            end
        end
        
        
        
        %Sparse from Pentadiagonals
        
        A_TEMP=spdiags(A_TEMP,D5,N3,N3);
        
        A_TEMP=full(A_TEMP');
        
        X=Td';
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        X=reshape(X,[N3,1]);
        
        Y=SU';
        
        Y=reshape(Y,[N3,1]);
        
        [X,flag]=bicgstab(A_TEMP,Y,[],1500,[],[],X);
        
        X=reshape(X,[N2,N1]);
        
        Td=X';
        
        
        
        %Boundary Conditions
        
        Td(:,1)=Td(:,2); %R=0
        
        Td(:,N1)=Td(:,N1-1); %R=Rmax
        
        Td(N2,:)=Td(N2-1,:); %Z=Zmax
        
        
        %Real Temperature Calculations
        
        T=Td*DT_MAX;
        
        %% VIII. PRESSURE
        
        %RH and Sat Pressure Files 
------------------------------------------------
        
        A1=A(1);
        
        B1=A(2);
        
        C1=A(3);
        
        A2=A(4);
        
        B2=A(5);
        
        C2=A(6);
        
        %-----------------------------------------------------------------
        
        I1=II(1);
        
        I2=II(2);
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        I3=II(3);
        
        I4=II(4);
        
        I5=II(5);
        
        I6=II(6);
        
        %-----------------------------------------------------------------
                
        O1=O(1);
        
        O2=O(2);
        
        O3=O(3);
        
        O4=O(4);
        
        O5=O(5);
        
        O6=O(6);
        
        
        %Calculations 
-------------------------------------------------------------
        
        
        ACC1=0;
        
        ACC2=0;
        
        
        for J=1,N1;
            
            I=1;
            
            ACC1=ACC1+T(I,J);
            
            I=N2;
            
            ACC1=ACC1+T(I,J);
            
        end
        
        TAVEI=ACC1/N1+273.15;
        
        TAVEO=ACC2/N2+273.15;
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        % 
=========================================================================
        
        
        PSI=(A1*exp(-(((TAVEI-B1)/C1))^2) + A2*exp(-(((TAVEI-
B2)/C2))^2))*1000;
        
        PSO=(A1*exp(-(((TAVEO-B1)/C1))^2) + A2*exp(-(((TAVEO-
B2)/C2))^2))*1000;
        
        RHIexp=I1+I2*TIME+I3*TIME^2+I4*TIME^3+I5*TIME^4+I6*TIME^5;
        
        RHOexp=O1+O2*TIME+O3*TIME^2+O4*TIME^3+O5*TIME^4+O6*TIME^5;
        
        DP=.01*RHOexp*PSO-.01*RHIexp*PSI;
        
        
        for I=1:N2
            
            for J=1:N1
                
                P_1(I,J)=PSI+I*(DP/(N2)); %Vapor Pressure Pa (N/m^2)
                
            end
            
        end
        
        
            %% IX. GAS MOTION
        
            %Pressure Gradient 
Calculations=====================================
        
            %Internal 
Nodes-----------------------------------------------------
        
            for J=2:N1-1;
        
                for I=2:N2-1;
        
        
                    P_R(I,J)=(0.5*(P_Y(I,J+1)+P_Y(I,J))- ...
                        0.5*(P_Y(I,J)+P_Y(I,J-1)))/DR;
        
        
                    P_Z(I,J)=(0.5*(P_Y(I+1,J)+P_Y(I,J))- ...
                        0.5*(P_Y(I,J)+P_Y(I-1,J)))/DZ;
        
                end
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            end
        
        
            %Top Surface (Pressure Relief) 
----------------------------------------
        
            for J=2:N1-1;
        
                I=N2;
        
                P_R(I,J)=P_R(I-1,J);
        
                P_Z(I,J)=P_Z(I-1,J);
        
            end
        
        
            % 
=====================================================================
        
        
            %Central Differences (gas dynamic pressure; relative)
        
            %At this moment the reference pressure P_SA is assumed to
            %be constant or uniform at the air inlet, therefore, the
            %gradient of P0 is 0. This will not be entirely true, since
            %there´s some back-pressure at the air inlet generated by the
            %coffee mass bed physical resistance.
        
        
            for J=2:N1-1;
        
                for I=2:N2-1;
        
                    %Porous Media Flow Parameter (OMEGA)
        
                    OMEGA_Y=-PERM_AIR(I,J)*EPS_Y(I,J)/(MU_AIR(I,J));
        
        
        
                    %Gas phase velocity in the radial direction 
-------------------
        
                    U_Y(I,J)=OMEGA_Y*P_R(I,J);
        
        
                    %Gas phase velocity in the vertical direction (*in the 
notes           this was define as V instead of W)
        
                    W_Y(I,J)=OMEGA_Y*((P_Z(I,J))-(RHO_AIR(I,J)+ ...
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                        RHO_AIR(I,J))*G);
        
        
                end
        
            end
            
            
            %Gas Motion Boundary Conditions
            
            W_Y(2:end,1)=0;
            
            W_Y(2:end,end)=0;
            
            W_Y(end,1:end)=W_Y(end-1,1:end);
            
            
            
            
            %% X. LIQUID MOTION
            
            T_REF=647.15;
            
            P1=235.8E-2;
            
            P2=1.256;
            
            P3=-0.625;
            
            
            %Central Differences 
==============================================
            
            %Internal Nodes 
---------------------------------------------------
            
            
            for J=2:N1-1;
                
                for I=2:N2-1;
                    
                    
                    T_R1(I,J)=(T(I,J)-(T(I,J)+T(I,J-1)))/DR;
                    
                    T_Z1(I,J)=(T(I,J)-T(I-1,J))/DZ;
                    
                    
                end
                
            end
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            %Bottom Surface 
---------------------------------------------------
            
            
            for J=2:N1-1;
                
                I=1;
                
                
                T_R1(I,J)=(0.5*(T(I,J+1)+T(I,J))-0.5*(T(I,J)+T(I,J-1)))/DR;
                
                T_Z1(I,J)=(T(I+1,J)-T(I,J))/DZ;
                
                
            end
            
            
            
            
            %Top Surface 
------------------------------------------------------
            
            
            for J=2:N1-1;
                
                I=N2;
                
                
                T_R1(I,J)=(0.5*(T(I,J+1)+T(I,J))-0.5*(T(I,J)+T(I,J-1)))/DR;
                
                T_Z1(I,J)=(T(I,J)-T(I-1,J))/DZ;
                
                
            end
            
            
            
            %*The _X1 symbol is read as ¨first derivative with respect to X¨
            
            
            
            for J=2:N1-1;
                
                for I=1:N2;
                    
                    
                    %Surface tension differential 
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---------------------------------
                    
                    SURF_T1=P1*P2*(((T_REF-T(I,J))/T_REF)^(P2-1))*(-1/T_REF)* 
...
                        (1+P3*((T_REF-T(I,J))/T_REF))+ ...
                        P1*(((T_REF-T(I,J))/T_REF)^(P2))*(-P3/T_REF);
                    
                    
                    %Porous Media Flow Parameter (OMEGA) 
--------------------------
                    
                    
                    OMEGA_B=-(4/R_CURV)*(EPS_B(I,J)*XI(I,J)*PERM_WAT(I,J))/ 
...
                        (MU_WAT(I,J));
                    
                    
                    
                    %Liquid phase velocity in the radial direction 
----------------
                    
                    
                    U_B(I,J)=OMEGA_B*SURF_T1*T_R1(I,J);
                    
                    
                    
                    %Liquid phase velocity in the vertical direction (*in the 
notes                I may have referred to this as V instead of W)
                    
                    
                    W_B(I,J)=OMEGA_B*SURF_T1*T_Z1(I,J);
                    
                    
                end
                
            end
 
        
       
        %% XII. LIQUID PHASE CONTINUITY (EPS_B CALCULATION)
       
        
        %Internal Nodes ===============================================
        
        AN(:,:)=0;
        AT(:,:)=0;
        AP(:,:)=0;
        AB(:,:)=0;
        AS(:,:)=0;
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        for J=2:N1-1;
            
            for I=2:N2-1;
                
                R=(J-1)*DRd;
                
                
                %Finite volume transfer areas
                
                
                %Cylindrical coordinates 
==========================================
                
                A_TB=0.5*((R+DRd)^2-(R-DRd)^2);
                
                A_N=(R+.5*DRd)*DZd;
                
                A_S=(R-.5*DRd)*DZd;
                
                
                %Cylindrical coordinates 
==========================================
                
                DN=0;
                
                DS=0;
                
                DT=0;
                
                DB=0;
                
                %Convention: T is the usual N, B is the usual S,
                %----------- N is the usual E, S is the usual W
                
                
                
                %Convective mass flux per unit area
                
                FT=0;
                
                FB=0;
                
                FN=0;
                
                FS=0;
                
                
                %Matrix coefficients
                
                %1) Source Term (SU) 
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==============================================
                
                
                %Differential volume (DV)
                
                DV=DRd*DZd; %Cylindrical
                
                
                
                %Central differences (FLOWGRAD)
                
                SU(I,J)=-(TIME_C/RHO_INF)*(MASS(I,J)/RHO_Bd(I,J))*DV-...
                    (EPS_B0(I,J)*DV)/(DTd);
                
                
                %North Coefficient (AN) 
===========================================
                
                
                NN(1)=-FN;
                
                NN(2)=(DN-0.5*FN);
                
                NN(3)=0;
                
                AN(I,J)=max(NN);
                
                
                %Top Coefficient (AT) 
=============================================
                
                
                TT(1)=-FT;
                
                TT(2)=(DT-0.5*FT);
                
                TT(3)=0;
                
                AT(I,J)=max(TT);
                
                
                
                %South Coefficient (AS) 
===========================================
                
                
                SS(1)=FS;
                
                SS(2)=(DS+0.5*FS);
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                SS(3)=0;
                
                AS(I,J)=max(SS);
                
                
                
                %Bottom Coefficient (AB) 
==========================================
                
                
                BB(1)=FB;
                
                BB(2)=(DB+0.5*FB);
                
                BB(3)=0;
                
                AB(I,J)=max(BB);
                
                
                %Old Central Coefficient (AP0) ===============================
                
                AP0(I,J)=(DV)/(DTd);
                
                
                %Central Coefficient (AP) 
=========================================
                
                DF=FN-FS+FT-FB;
                
                AP(I,J)=-(AN(I,J)+AT(I,J)+AS(I,J)+AB(I,J)+AP0(I,J)+DF);
                
                
            end
            
        end
        
        
        %Liquid Continuity Equation Boundary Conditions
        
        AP(1,:)=1; %Hot Surface
        
        SU(1,:)=EPS_B(1,:);
        
        AP(2:end,1)=1; %R=0 wall (symmetry)
        
        AN(2:N2-1,1)=-1;
        
        SU(2:end,1)=0;
        
        AP(2:end,N1)=1; %R=Rmax wall (symmetry)
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        AS(2:N2-1,N1)=-1;
        
        SU(2:end,N1)=0;
        
        AP(N2,:)=1; %Z=Zmax (symmetry)
        
        AB(N2,:)=-1;
        
        SU(N2,:)=0;
        
        
        
        KK=0;
        
        A_EPSB=zeros(N3,5);
        
        
        for I=1:N2;
            
            for J=1:N1;
                
                KK=KK+1;
                
               %Pentadiagonals builiding 
                
                A_EPSB(KK,:)=[AB(I,J) AS(I,J) AP(I,J) AN(I,J) AT(I,J)];
                
                
            end
        end
        
        
        
        %Sparse from Pentadiagonals
        
        A_EPSB=spdiags(A_EPSB,D5,N3,N3);
        
        A_EPSB=full(A_EPSB');
        
        X=EPS_B';
        
        X=reshape(X,[N3,1]);
        
        Y=SU';
        
        Y=reshape(Y,[N3,1]);
        
        
        for KK=1:N3;
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            X(KK)=Y(KK)/A_EPSB(KK,KK);
            
        end
        
        X=reshape(X,[N2,N1]);
        
        EPS_B=X';
        
        EPS_B(2:end,1)=EPS_B(2:end,2);
        
        EPS_B(2:end,end)=EPS_B(2:end,end-1);
        
        EPS_B(end,1:end)=EPS_B(end-1,1:end);
        
        
        %% XIII. VOLUME FRACTIONS AND M.C.(%W.B.)
        
        acc_mass1=0;
        
        acc_mass2=0;
        
        for J=1:N1;
            
            for I=2:N2;
                
                
                EPS_Y(I,J)=1-EPS_S(I,J)-EPS_B(I,J);
                
                acc_mass1=EPS_B(I,J)+acc_mass1;
               
                acc_mass2=EPS_S(I,J)+acc_mass2;
                
                
            end
            
        end
        
        M(:,:)=M_0*(acc_mass1/(N1*N2-N1))/(1-acc_mass2/(N1*N2-N1));
        
            
            
        %% XII. GAS PHASE CONTINUITY (DENSITY CALCULATION)
        
        %W_Y(:,:)=.0018; can be use for verification purposes ....
        
        %Internal Nodes ===============================================
        
        AN(:,:)=0;
        AT(:,:)=0;
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        AP(:,:)=0;
        AB(:,:)=0;
        AS(:,:)=0;
        
        for J=2:N1-1;
            
            for I=2:N2-1;
                
                R=(J-1)*DRd;
                
                
                %Finite volume transfer areas
                
                
                %Cylindrical coordinates 
==========================================
                
                A_TB=0.5*((R+DRd)^2-(R-DRd)^2);
                
                A_N=(R+.5*DRd)*DZd;
                
                A_S=(R-.5*DRd)*DZd;
                
                
                %Cylindrical coordinates 
==========================================
                
                DN=0;
                
                DS=0;
                
                DT=0;
                
                DB=0;
                
                %Convention: T is the usual N, B is the usual S,
                %----------- N is the usual E, S is the usual W
                
                
                
                %Convective mass flux per unit area
                
                FT=0;
                
                FB=0;
                
                FN=0;
                
                FS=0;
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                %Matrix coefficients
                
                %1) Source Term (SU) 
==============================================
                
                
                %Differential volume (DV)
                
                DV=DRd*DZd; %Cylindrical
                
                
                
                %Central differences (FLOWGRAD)
                
                SU(I,J)=(TIME_C/RHO_INF)*MASS(I,J)*DV- ...
                    (EPS_Y0(I,J)*RHO_Y012d(I,J)*DV)/(DTd);
                
                
                %North Coefficient (AN) 
===========================================
                
                
                NN(1)=-FN;
                
                NN(2)=(DN-0.5*FN);
                
                NN(3)=0;
                
                AN(I,J)=max(NN);
                
                
                %Top Coefficient (AT) 
=============================================
                
                
                TT(1)=-FT;
                
                TT(2)=(DT-0.5*FT);
                
                TT(3)=0;
                
                AT(I,J)=max(TT);
                
                
                
                %South Coefficient (AS) 
===========================================
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                SS(1)=FS;
                
                SS(2)=(DS+0.5*FS);
                
                SS(3)=0;
                
                AS(I,J)=max(SS);
                
                
                
                %Bottom Coefficient (AB) 
==========================================
                
                
                BB(1)=FB;
                
                BB(2)=(DB+0.5*FB);
                
                BB(3)=0;
                
                AB(I,J)=max(BB);
                
                
                %Old Central Coefficient (AP0) ===============================
                
                AP0(I,J)=(EPS_Y(I,J)*DV)/(DTd);
                
                
                %Central Coefficient (AP) 
=========================================
                
                DF=FN-FS+FT-FB;
                
                AP(I,J)=-(AN(I,J)+AT(I,J)+AS(I,J)+AB(I,J)+AP0(I,J)+DF);
                
                
            end
            
        end
        
        
        %Gas Continuity Equation Boundary Conditions
        
        AP(1,:)=1; %Hot Surface
        
        SU(1,:)=RHO_Y12d(1,:);
        
        AP(2:end,1)=1; %R=0 wall (symmetry)
        
        AN(2:N2-1,1)=-1;
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        SU(2:end,1)=0;
        
        AP(2:end,N1)=1; %R=Rmax wall (symmetry)
        
        AS(2:N2-1,N1)=-1;
        
        SU(2:end,N1)=0;
        
        AP(N2,:)=1; %Z=Zmax (symmetry)
        
        AB(N2,:)=-1;
        
        SU(N2,:)=0;
        
        KK=0;
        
        A_RHOY=zeros(N3,5);
        
        
        for I=1:N2;
            
            for J=1:N1;
                
                KK=KK+1;
                
                A_RHOY(KK,:)=[AB(I,J) AS(I,J) AP(I,J) AN(I,J) AT(I,J)];
                
            end
        end
        
        
        
        %Sparse from Pentadiagonals
        
        A_RHOY=spdiags(A_RHOY,D5,N3,N3);
        
        A_RHOY=full(A_RHOY');
        
        X=RHO_Y12d';
        
        X=reshape(X,[N3,1]);
        
        Y=SU';
        
        Y=reshape(Y,[N3,1]);
        
          
        for KK=1:N3;
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            X(KK)=Y(KK)/A_RHOY(KK,KK);
            
        end
        
        X=reshape(X,[N2,N1]);
        
      
        RHO_Y12d=X';
        
        RHO_Y12d(2:end,1)=RHO_Y12d(2:end,2);
        
        RHO_Y12d(2:end,end)=RHO_Y12d(2:end,end-1);
        
        RHO_Y12d(end,1:end)=RHO_Y12d(end-1,1:end);
               
        RHO_Y12=RHO_Y12d*RHO_INF;
        
        
        
        
       %% XIII. PHASE DENSITIES AND PHASE PRESSURE
            
       for J=1:N1;
           
           for I=1:N2;
               
               RHO_1(I,J)=P_1(I,J)/(R_VAP*TK(I,J));
               
               RHO_2(I,J)=RHO_Y12(I,J)-RHO_1(I,J);
               
               P_2(I,J)=RHO_2(I,J)*R_AIR*TK(I,J);
               
               P_Y(I,J)=P_1(I,J)+P_2(I,J);
               
           end
           
       end
       
        
                  
    end
    
    
    %%IX. OUTPUT FILES  -------------------------------------------------
    
    
   
    T_test(K+1)=T(ceil(N2/2),ceil(N1/2));
    
    time_test(K+1)=TIME;
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    m_test(K+1)=mean(mean(MASS));
    
    MC_test(K+1)=100*mean(mean(M)); 
    
 
    if K < 10
 
        filename1 = ['CB1/FIELD/T_000' num2str(K) '.txt'];
 
        filename2 = ['CB1/FIELD/U_Y_000' num2str(K) '.txt'];
 
        filename3 = ['CB1/FIELD/W_Y_000' num2str(K) '.txt'];
 
        filename4 = ['CB1/FIELD/U_B_000' num2str(K) '.txt'];
 
        filename5 = ['CB1/FIELD/W_B_000' num2str(K) '.txt'];
 
        filename6 = ['CB1/FIELD/EPS_Y_000' num2str(K) '.txt'];
 
        filename7 = ['CB1/FIELD/EPS_B_000' num2str(K) '.txt'];
 
        filename8 = ['CB1/FIELD/MASS_000' num2str(K) '.txt'];     
 
        filename9 = ['CB1/FIELD/RHO_Y12_000' num2str(K) '.txt'];   
    
    elseif K >= 10 &&  K<100
 
        filename1 = ['CB1/FIELD/T_00' num2str(K) '.txt'];
 
        filename2 = ['CB1/FIELD/U_Y_00' num2str(K) '.txt'];
 
        filename3 = ['CB1/FIELD/W_Y_00' num2str(K) '.txt'];
 
        filename4 = ['CB1/FIELD/U_B_00' num2str(K) '.txt'];
 
        filename5 = ['CB1/FIELD/W_B_00' num2str(K) '.txt'];
 
        filename6 = ['CB1/FIELD/EPS_Y_00' num2str(K) '.txt'];
        
        filename7 = ['CB1/FIELD/EPS_B_00' num2str(K) '.txt'];
 
        filename8 = ['CB1/FIELD/MASS_00' num2str(K) '.txt'];
        
        filename9 = ['CB1/FIELD/RHO_Y12_00' num2str(K) '.txt'];
 
 
    elseif K >= 100
 
        filename1 = ['CB1/FIELD/T_0' num2str(K) '.txt'];
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        filename2 = ['CB1/FIELD/U_Y_0' num2str(K) '.txt'];
 
        filename3 = ['CB1/FIELD/W_Y_0' num2str(K) '.txt'];
 
        filename4 = ['CB1/FIELD/U_B_0' num2str(K) '.txt'];
 
        filename5 = ['CB1/FIELD/W_B_0' num2str(K) '.txt'];
 
        filename6 = ['CB1/FIELD/EPS_Y_0' num2str(K) '.txt'];
 
        filename7 = ['CB1/FIELD/EPS_B_0' num2str(K) '.txt'];
 
        filename8 = ['CB1/FIELD/MASS_0' num2str(K) '.txt'];
        
        filename9 = ['CB1/FIELD/RHO_Y12_0' num2str(K) '.txt'];
 
 
    end
    
    
    %Writing the output text files
    
    dlmwrite(filename1,T);
    
    dlmwrite(filename2,U_Y);
    
    dlmwrite(filename3,W_Y); 
    
    dlmwrite(filename4,U_B);
    
    dlmwrite(filename5,W_B);
    
    dlmwrite(filename6,EPS_Y);
    
    dlmwrite(filename7,EPS_B);
    
    dlmwrite(filename8,MASS);
    
    dlmwrite(filename9,RHO_Y12);
    
    
    
end
 
 
 
R=zeros(N2,N1);
 
Z=zeros(N2,N1);



156

 
 
for J=1:N1;
    
    for I=1:N2;
   
        R(I,J)=J*DR;
        
        Z(I,J)=I*DZ;
        
    end
    
end
 
dlmwrite('CB1/FIELD/R.txt',R);
 
dlmwrite('CB1/FIELD/Z.txt',Z);
 
dlmwrite('CB1/FIELD/TIME.txt',time_test);
 
dlmwrite('CB1/FIELD/m.txt',m_test);
 
dlmwrite('CB1/FIELD/MC.txt',MC_test);
 
dlmwrite('CB1/FIELD/T_test.txt',T_test);
 
dlmwrite('CB1/FIELD/TSTEP.txt',KTOTAL

Appendix II: Post-processing Code

%Statistical Analysis of Parchment Coffee Model for Heat and Mass Transf.
 
%Research: Simultaneous Heat and Mass Transfer in the Dehydration
%          of Parchment Coffee C.Arabica
%
%Author: Moises Y. Ocasio
 

clear all
close all
clc
close all hidden
 
 
% Changing directory to Experimental Data Directory
 
 
cd('/home/myobhel/Desktop/Research/MATLAB Code/CB1');
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%% I. Plotting profiles
 
T=importdata('FIELD/T_test.txt');
 
MC=importdata('FIELD/MC.txt');
 
TIME=importdata('FIELD/TIME.txt');
 
MC_EXP=importdata('MOIST.txt');
 
T_EXP=importdata('MASS.txt');
 
 
 
 
plot(TIME,T,'bo',T_EXP(:,1),T_EXP(:,2),'bs',TIME,MC,'rd',MC_EXP(:,1),MC_EXP(:,
2),'rs');
 
 
 
title('Parchment Coffee Dehydration Dynamics 
OB2','FontSize',17,'FontWeight','Bold');
 
xlabel('Time (hrs)','FontSize',16);
 
h=legend('Mass Temp Model({^o}C)','Exp. Mass Temp({^o}C)','M.C.(%.w.b.)','Exp. 
M.C.(%.w.b.)');
 
set(h,'FontSize',12)
 
set(gca,'FontSize',12,'FontWeight','Bold')
 
ylim([20,70]);
 
xlim([0,9]);
 
grid on
 
saveas(gcf,'expcomp.png','png')
 
pause
 
%% II. Calculating Statistics
 
DTIME1=TIME(2)-TIME(1);
 
DTIME2=MC_EXP(2,1)-MC_EXP(1,1);
 
DTIME3=T_EXP(2,1)-T_EXP(1,1);



158

 
DT12=round(DTIME2/DTIME1);
 
DT13=round(DTIME1/DTIME3);
 
N=length(nonzeros(T));
 
M=length(T_EXP(:,1));
 
P=length(MC_EXP(:,1));
 
T=nonzeros(T);
 
MC=nonzeros(MC);
 
TIME(2:end)=nonzeros(TIME(2:end));
 
 
%MC Comparison Set of Data ===============================================
 
 
acc=0;
 
MC_NEW=zeros(P,1);
 
MC_NEW=MC_EXP(:,1);
 
for i=1:DT12:N;
 
    acc=acc+1;
    
    MC_NEW(acc)=MC(i);
    
end
 
 
%T Comparison Set of Data ================================================
 
 
acc2=0;
 
T_NEW=zeros(N,2);
 
T_NEW(:,2)=T;
 
for j=1:DT13:M;
 
    acc2=acc2+1;
    
    T_NEW(acc2,1)=T_EXP(j,1);
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    T_NEW(acc2,2)=T_EXP(j,2);
 
end
 
%% Calculating the percentage error
 
% Temperature error
 
e_T=zeros(N,1);
 
for i=1:N;
    
    e_T(i)=100*abs(T_NEW(i,2)-T(i))/(.5*(T_NEW(i,2)+T(i)));
    
end
 
 
% M.C. error
 
e_M=zeros(P,1);
 
for j=1:P;
   
    e_M(j)=100*abs(MC_EXP(j,2)-MC_NEW(j))/(0.5*(MC_EXP(j,2)+MC_NEW(j)));
    
end
 
 
%Calculating Frequencies
 
[REP1,error_T]=hist(e_T,5);
 
[REP2,error_M]=hist(e_M,5);
 
 
%Moisture Plots 
 
subplot(2,1,1);
 
plot(MC_EXP(:,1),e_M,'bs-','MarkerSize',6)
 
xlim([0,9]);
 
grid on
 
title('M.C.(%w.b.) % of Difference - OB2','FontSize',16,'FontWeight','Bold');
 
xlabel('time (hrs)','FontSize',15)
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ylabel('% of difference','FontSize',15)
 
subplot(2,1,2);
 
bar(error_M,REP2/N);
 
grid on
 
xlabel('% of difference','FontSize',15)
 
ylabel('Relative Frequency','FontSize',15)
 
saveas(gcf,'MC_error.png','png')
 
pause
 
 
%Temperature Plots 
 
subplot(2,1,1);
 
plot(TIME,e_T,'bs-','MarkerSize',6)
 
grid on
 
title('Temperature % of Difference - OB2','FontSize',16,'FontWeight','Bold');
 
set(gca,'FontSize',12,'FontWeight','Bold')
 
xlabel('time (hrs)','FontSize',15)
 
ylabel('% of difference','FontSize',15)
 
xlim([0,9])
 
subplot(2,1,2);
 
bar(error_T,REP1/N);
 
grid on
 
set(gca,'FontSize',12,'FontWeight','Bold')
 
xlabel('% of difference','FontSize',15)
 
ylabel('Relative Frequency','FontSize',15)
 
Te_ave=mean(e_T)
 
Te_std=std(e_T)
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MCe_ave=mean(e_M)
 
MCe_std=std(e_M)
 
 
 
saveas(gcf,'T_error.png','png')
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