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Microarrays allow researchers to simultaneously measure the expression of thou-

sands of genes. They give invaluable insight into the transcriptional state of biologi-

cal systems, and can be important in understanding physiological as well as diseased

conditions. However, the analysis of data from many thousands of genes, from only

a few replications is very difficult.

We have devised a novel method of correcting errors in microarray experiments,

that also clusters genes into groups, and categorizes their measurements into coarse

divisions, suitable for discrete techniques for reverse engineering. These techniques

are based on finite fields and algebraic coding theory. We test these new techniques

on a data set obtained from behavioral training experiments on rats, and identify

two novel genes that may be involved in learning and memory.

We extend this method to work with “probe level” microarray data, where each

gene is represented by multiple probes. We have applied the error correction proce-

dure to two data sets, one Affymetrix, one NimbleGen, having either 14 (Affymetrix)

or approximately 10 (NimbleNen) probes per gene, derived from an odor avoidance

ii



experiment on Drosophila. The experiment is designed to validate analysis proce-

dures by examining the degree of concordance the procedures produce across the

data sets.

For this data we devise a method to measure the concordance quantitatively.

We have developed a technique based on mutual information to compare results

obtained across the two data sets. Our results show that our error correction tech-

niques result in a greater amount of shared information between data sets than tra-

ditional approaches based on averaging of probes and gene expression levels across

repetitions.

We show how our results can be extended to sets with finer gradations in expres-

sion values, and present the analysis of the Drosophila data discretized to 5 separate

expression values. Finally, we present some future applications, such as using finite

fields to encode expression values, allowing us to use the algebraic properties of finite

fields to perform reverse engineering of gene regulatory networks.
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Microarreglos de material genetico permiten medir niveles de expresión de miles

de genes en un solo experimento. Presentan un cuadro de el estado transcripcional de

una muestra biológica, y pueden ser de gran valor en elucidar mecanismos de acción

de procesos fisiológicos o patológicos. El análisis de datos de estos experimentos,

sin embargo, se hace dif́ıcil por la gran cantidad de genes medidos, y la carencia de

replicados.

Hemos desarollado un método novedoso de analizar estos datos. Nuestra técnica

agrupa genes en categoŕıas gruesas, permite corregir errores experimentales, y sirve

para producir datos discretos de expresión para luego utilizar técnicas discretas

para más análisis. Nuestras técnicas se basan en representar valores de expresión

genéticas como elementos de cuerpos finitos, y utilizan propiedades algebraicas de

tales cuerpos. Hemos demostrado nuestras técnicas en un conjunto de datos prove-

nientes de un experimento conducual en ratas, e identificamos dos genes que parecen

estar involucrados en memoria y aprendizaje.
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Extendimos nuestras técnicas para trabajar con datos de sondas individuales,

donde multiples sondas de material genético diferentes miden la expresión de un

solo gen. Esta nueva técnica fue demostrada en dos conjuntos de datos provenientes

de experimentos iguales hechos en dos tecnologias de microarreglos distintos. El

experimento fue diseñado para probar y validar técnicas de análisis, midiendo el

grado de concordancia entre los dos tipos de microarreglos.

Para este experimento diseñamos una metodoloǵıa para cuantificar la concor-

dancia entre los resultados en ambos tipos de microarreglos. Esta metodoloǵıa

utiliza el concepto de información mutua para asignar un valor cuantitativo al grado

de concordancia. Nuestros resultados demuestran que nuestra metodoloǵıa de dis-

cretización y corrección de errores resulta en mayor concordancia, determinado por

un aumento en la información mutua, cuando la comparamos con las técnicas usuales

de análisis que promedian la información de las distintas sondas y de las repeticiones.

También aprovechamos modelos sobre conjuntos finitos para producir un mod-

elo con mayor número de niveles de expresión, que puede capturar diferencias más

sutiles entre los niveles de expresión de un gen. Por último, demostramos applica-

ciones futuras utilizando propiedades algebraicas de cuerpos finitos para encontrar

una solución algebraica a el problema de determinar una función que explique la

relación entre genes.
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CHAPTER 1

INTRODUCTION

1.1 A microarray primer

Microarrays are a technique for measuring the abundance of messenger RNA

from many thousands of genes simultaneously in an inexpensive experiment. They

are one of the first techniques in high throughput genomics, first described in [40].

They work by immobilizing short sequences of DNA, known as “probes” onto

known locations on some fixed substrate. The microarrays described in [40] used

full length cDNA clones spotted using hand tools onto nylon membranes. Further

refinements have included automated spotting using robotics, and direct synthesis

of short oligonucleotide probes onto glass slides using photolithography or ink-jet

technologies. Modern microarrays pack hundreds of thousands of probes onto a

single slide.

In an experiment, mRNA is extracted from a sample and reverse transcribed

in the presence of a labeling agent, producing labeled cDNA called the “target”.

Since spotted arrays have such great variability, many experiments measured relative

abundance of two targets labeled with different fluorescent dyes, in so called “two-

color” microarray experiments. Many microarray experiments are still performed in

this manner, although in situ synthesised arrays have a low slide to slide variation,

and can be hybridized with a single target in “single-color” experiments, such as

Affymetrix chips.

In the single color experiment, the labeled targets are hybridized to the im-

mobilized probes, and complementary molecules bind to one another. Unbound
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DNA is washed away, and the amount of bound target at each probe is measured

by scanning and image quantification. Each microarray is hybridized and scanned

separately, and the results combined.

Microarray images come from a variety of sources, from scanned autoradio-

graphs to confocal microscopes. The processing of these images is a complex process

in it’s own right, but for the most part, outside of the scope of the current thesis.

I would like to point out, however, that all these microarray images are digitized in

some manner or other prior to processing in the computer. In addition, the image

analysis is trying to count the number of hybridized targets on each probe. This is

also a fundamentally discrete process.

The analysis of microarray data, however, is a difficult task, proving a fruitful

area of research in numerous fields. An extensive review is available in [9]. This

section will attempt to review the literature most relevant to the proposed work.

1.2 Stages of microarray analysis

The analysis of microarray data is a complex, multi-stage process that typically

involves the following steps:

1. microarray image analysis

2. normalization

3. detection of differential expression

4. clustering

5. biological network analysis

1.3 Clustering

Clustering of gene expression measurements is an important step in many anal-

ysis, most early microarray work performed hierarchical clustering, where genes are

successively agglomerated into groups by selecting the two clusters whose average

expression values are closest [11]. It is typical to first cluster genes before trying

to determine the gene regulatory network by reverse engineering. Clustering helps
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reduce the computational resources required to analyze microarray data sets by

grouping together many separate genes that demonstrate similar patterns of expres-

sion [2]. It also can help in determining common functionality or common regulatory

elements of genes which cluster together [10].

1.4 Genetic network models

As early as 1969 Stuart A. Kauffman [21] (see [22] for a detailed review) pro-

posed the far-reaching and important idea of using Boolean logic, the logic of com-

puters, to produce and gain insight into the logic of genes. The invention of cDNA

microarrays brought a resurgence of interest in these Boolean genetic network mod-

els.

1.5 Boolean models and the reverse engineering problem

A series of papers in 1998, 1999 and 2000 defined Boolean network models,

reverse engineering, and proved interesting results on the number of experiments

required to completely define a Boolean network. Taking the model definition

from [17], for example, we can describe a genetic network as a directed graph consist-

ing of N nodes numbered 1, 2, . . . , N , such that for each node n there is an associated

Boolean function fn. An edge from a node to another represents an influence of the

first node on the expression of the second. We understand that the following is a

formalization of the model presented in [17].

Definition 1.5.1. A Boolean variable assumes the values 0,1.

Definition 1.5.2. A Boolean function is a function involving Boolean variables and

the operations ∧, ∨, ¬ with the following definitions:
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X Y X ∧ Y X ∨ Y ¬X

1 1 1 1 0

1 0 0 1 0

0 1 0 1 1

0 0 0 0 1

Definition 1.5.3. A dBnm with n genes G1, . . . , Gn is a set of n Boolean variables

(x1, . . . , xn), and a set of n Boolean functions (f1, . . . , fn). The Boolean variables

represent the current expression of each gene or stimuli, and the Boolean function

fi represents how the gene Gi is updated given the current values of all the other

genes.

Lemma 1. Given n Boolean variables (x1, . . . , xn) and define f(x1, . . . , xn) for all

possible values. Then there is a Boolean function that coincides with f as defined.

Proof: See any book on computer architecture (c. f. [36]) for realizing a Boolean

function as sums of products and products of sums.

We will additionally define:

An expression matrix is a set of measurements (such as those which result from

microarray experiments) over the genetic network. From this expression data, the

challenge is to reconstruct or reverse engineer the genetic network.

A gene perturbation experiment is an expression matrix where some entries

correspond to measurements taken when the value of one gene or more are forced

to a known state.

Akutsu et al. proved lower and upper bounds on the number of gene pertur-

bation experiments required to completely determine a gene network in [1]. The

results are discouraging, since in the general case, the problem is shown to be NP-

complete. However, in [32], an efficient algorithm for determining the gene network
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from a set of input-output pairs is developed, assuming that each gene has an in-

degree in the directed graph that is at most three. This restriction corresponds to

saying that at most three genes have an influence on the expression of the target

gene. Further research proceeds on the assumption that this indegree is bounded by

a small constant. In [2] it is shown that a gene network will be recovered with high

probability in only O(log n) experiments if the indegree is at most two. An iterative

procedure for selecting genes to perturb while determining a genetic network such

that the uncertainty in the specification of the model is reduced is described in [17].

After this series of papers, work on these Boolean models was mostly discontinued,

biologists objected to the simplicity of the Boolean representation of genes.

It is also important to note that all of these Boolean network papers leave

unspecified the manner in which gene expression measurements are converted to

Boolean values. For example, [17] simply says that gene values will be approximated

as high or low and represented by the values 1 or 0.

1.6 Partial enumeration

In the Boolean network models reverse engineering via partial enumeration of

functions as described in [1, 32] requires limiting the number of inputs to each genetic

function, usually assuming that between 2 to 4 genes affect the expression of a given

gene. This requirement for computational tractability directly conflicts with the

evidence that transcriptional networks for higher organisms are significantly more

complex [30, 34], with even yeast having up to 10 or more transcription factors

influencing the expression of a single gene [29].

1.7 Finite Dynamical Systems

Boolean networks thus have 2 limitations: they can only represent genes as

“on” or “off”, and they limit the nature of the gene interaction network to ensure

computational tractability.
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Finite dynamical systems (FDS) are a broad class of models that consist of a

pair (X, f). FDS represent the state of a system as a value over the finite set X, and

the state of the system evolves over time by iterating a fixed function f : X → X.

The function f applied to the current state yields the new state of the system.

A particular type of finite dynamical system where the set X is a finite field was

developed in [26] for the simulation of computer systems, and later adapted for

genetic regulatory networks [28].

These models allow for a richer variation of gene expression levels, and remove

the restrictions on the degree of the genes. Several alternative representations and

techniques for polynomial models over finite fields have been developed [3, 14, 35],

and [4] demonstrates that these polynomial models are equivalent to those described

in [26, 28].

This research lead to a series of techniques for error-correction, clustering for

any finite set, and reverse engineering [5] based on finite fields.

1.7.1 Finite fields

A finite field {F, +, ·} is a finite set F , and two operations + and · that satisfy

the following properties:

• ∀a, b ∈ F , a + b ∈ F , a · b ∈ F

• ∀a, b ∈ F , a + b = b + a, a · b = b · a

• ∀a, b, c ∈ F , a + (b + c) = (a + b) + c, (a · b) · c = a · (b · c)

• ∀a, b, c ∈ F , a · (b + c) = (a · b) + (a · c)

• ∃0, 1 ∈ F , a + 0 = 0 + a = a, a · 1 = 1 · a = a

• ∀a ∈ F , ∃(−a) ∈ F s.t. a + (−a) = (−a) + a = 0

∀a 6= 0 ∈ F,∃a−1 ∈ F s.t. a · a−1 = a−1 · a = 1

The field is closed under both operations, both operations are commutative and

associative, and the distributive law holds. There are additive and multiplicative

identities and inverses.
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The real and rational numbers are fields with an infinite number of elements.

A finite field has the same properties as the rational numbers, over a finite set. In

particular, we can add, subtract, multiply and divide any element by any other.

1.7.2 The world’s smallest finite field

The integers 0 and 1, with integer addition and multiplication modulo 2 form

the finite field Z2 = {{0, 1}, +, ·}.

The operators + and · are defined as follows:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

1.7.3 Boolean operators and Z2

We can realize any Boolean operator as an expression over Z2:

X ∧ Y = X · Y

X ∨ Y = X + Y + X · Y

¬X = 1 + X

Note that + corresponds to the exclusive or (xor) Boolean function, so all

Boolean operators can be realized with and and xor.



CHAPTER 2

ERROR CORRECTION AND CLUSTERING

GENE EXPRESSION DATA USING

MAJORITY LOGIC DECODING

2.1 Introduction

2.1.1 Microarray experiments

The microarray studies described here focused on one cognitive task, condi-

tioned taste aversion (CTA), as a model system for gene expression profiling. CTA

is an associative aversive conditioning paradigm in which pairing gastrointestinal

malaise (induced by lithium chloride, LiCl, the unconditioned stimulus) with prior

exposure to a novel taste (the conditioned stimulus) may create a strong and long

lasting aversion to the novel taste.

CTA lends itself as an excellent model system to study the dynamics of gene

regulation in learning and memory because it is a single trial associative learning

paradigm, which involves discrete regions in the brain, including selected amygdala

nuclei [46, 47].

Behavioral training

Behavioral training of rats in the CTA task prior to collection of the microarray

data used for our experiments was done as described in [12].

Microarray measurements

The gene profiling experiment was replicated five times. Four animals were

used per condition for each replicate. Thus, a total of twenty rats were used per

condition. Animals were sacrificed by decapitation at 1, 3, 6, and 24 hours after

8
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conditioning and amygdala enriched tissue punches were obtained for RNA isolation.

Hybridization, image capture and analysis was similar to the procedures described

in [39]. The data set thus obtained (CTA data set) is described in [7]. In summary,

the data has two controls, the pre-treatment group and the one hour saline group,

and four time points, 1, 3, 6, and 24 hours after conditioning. Each array has 1185

genes, and we have 5 biological replicates of each array.

2.2 Methods

The methods described here were developed for the purpose of analyzing the

CTA data set, but are sufficiently general to analyze any equivalent data set.

2.2.1 Error correction and clustering

We have devised a scheme for detecting and correcting errors using discretized

data.

Here we apply our technique to data from gene A01a in the CTA data set

described in Section 2.1, to illustrate the method:

Pre Sal 1 h 3 h 6 h 24h

0.172 0.099 0.176 0.142 0.062 0.152

0.274 0.168 0.126 0.114 0.104 0.276

0.003 0.119 0.552 0.178 0.193 0.114

0.114 0.139 0.6 0.311 0.179 0.181

0.04 0.006 0.172 0.103 0.036 -0.047

Each row is a repetition of the microarray experiment. Columns represent the

measurements of the genes. Pre and Sal are the pretreatment (time 0) and injection

with saline solution controls.

2.2.2 Averaging

The first step in the analysis is to average the expression across repetitions.

average 0.12 0.11 0.32 0.17 0.12 0.13

We also average our control columns to obtain a control value of 0.115.
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We compute an epsilon value, such that either the 1 h or 24 h columns are

within the range of control +/- epsilon. In this case, the epsilon is 0.022.

2.2.3 Discretization

We proceed to discretize each repetition by comparing each column to the

control +/- epsilon. We illustrate for repetition 1:

Pre Sal 1 h 3 h 6 h 24h

0.172 0.099 0.176 0.142 0.062 0.152

The control for this repetition is (0.172 + 0.099)/2 = 0.1355, epsilon is fixed

for all our tests at 0.022. We now call a column “+” if its value is greater than the

control + epsilon, “-” if is is less than control - epsilon, and “0” otherwise.

Pre Sal 1 h 3 h 6 h 24h

+ - + 0 - 0

Repeating for the remaining repetitions yields;

Pre Sal 1 h 3 h 6 h 24h

+ - + 0 - 0

+ - - - - +

- + + + + +

0 0 + + + +

0 0 + + 0 -

2.2.4 Majority logic decoding

We now obtain a consensus for each column by majority logic decoding, 3

or more occurrences of the same symbol in a column indicate that symbol is the

consensus. If no consensus is obtained, we indicate “?”.

Pre Sal 1 h 3 h 6 h 24h

consensus ? ? + + ? +
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2.2.5 Discretizing against averaged controls

The above procedure is very sensitive to the value of the controls. Errors in

the controls can skew the entire set of calls. We devised an alternate method of dis-

cretization that replaces the control value for each row by the average of the control

value for all the rows. In our case this average control is 0.113. The discretization

of the repetitions using this average control yields the following values, which we

summarize with this consensus versus average control (cvac):

Pre Sal 1 h 3 h 6 h 24h

+ 0 + + - +

+ + 0 0 0 +

- 0 + + + 0

0 + + + + +

- - + 0 - -

cvac ? ? + + ? +

2.2.6 Discretizing the average

We also compute the discretization of the average values of each column, using

the control 0.113 and the epsilon 0.022:

Pre Sal 1 h 3 h 6 h 24h

average 0.12 0.11 0.32 0.17 0.12 0.14

calls 0 0 + + 0 0

2.2.7 Error correction

We now enter an error correction phase, we seek out outliers in the data of the

columns and remove them, and recompute the average, controls, and epsilon.
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Pre Sal 1 h 3 h 6 h 24h

— 0.099 0.176 0.142 — 0.152

— — 0.126 0.114 0.104 —

0.003 0.119 — — 0.193 0.114

0.114 0.139 — — 0.179 0.181

0.04 — 0.172 0.103 — —

With these outliers deleted from our data we now have new averages, control

and epsilon values:

Pre Sal 1 h 3 h 6 h 24h

average 0.052 0.119 0.158 0.12 0.159 0.149

control 0.086

epsilon 0.063

calls 0 0 + 0 + 0

2.2.8 Consistent calls

We are now ready to produce a consistent set of calls for the gene. A set of

calls is consistent if the following conditions are met:

1. at least two of the above set of calls agrees in the last 4 columns of data (1 h, 3 h,

6 h, and 24h)

2. either the 1 h or the 24 h columns is a “0”

3. across the last 4 columns of data, the column exhibits the consecutive zeros prop-

erty (i.e., values do not oscillate between “0” and “+” or “-”)

As an example, the set of calls for A01a are:

1 h 3 h 6 h 24h

consensus + + ? +

cvac + + ? +

average calls + + 0 0

new calls + 0 + 0
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These calls are not consistent, and this gene is removed from further exami-

nation. Together, the procedures we developed and the consistency criteria try to

capture biologist’s intuitions on the nature of gene expression changes.

2.3 Results

We have performed the analysis described above on the CTA data set described

in Section 2.1.1. In this data set, there are 127 consistent genes, which we divide into

clusters by grouping together the genes that have the same set of calls in the 1 hour

through 24 hour time points. This results in the 23 clusters shown in Table 2–1.

Table 2–1: Consistent genes clustered by the error correction procedure.
Cluster Gene coordinate

- 0 0 0 A05f, A12k, A14g, B07m, B07n
0 + + + B01n, B04i, B05l, B06j, B06l, C10l, D01j, D10l, E01k, E03j, E09c, E10e,

E13i, E13l, F01e
+ 0 0 0 B07e, D04f, D09l
- - 0 0 A02m, A14e, B03i, C08i, F08c, F13e
- - + 0 C14k, E03l
0 0 + + B13n, D14g, E06i, E10m, E11l, E13e, E14d
- + + 0 B06m, E02i
0 0 - - A05n, D02a, F12e
0 - + + B04j, E10l, F11j
+ - - 0 C01f, F01a
0 - + - A11d, C09m
- + - 0 D12a
0 + - + D09i
- - - 0 A02l, A03h, A09c, B10l, C02m, C04d, C04f, C06e, D02b, F02b, F03c, F09n,

F11e
+ - + 0 B13a, F02a
0 0 0 - A10l, C08a, C14g, C14l, D13e
+ + 0 0 A08l, B08b, C08j, F11k
+ + - 0 D04l
0 0 0 + A07i, B09h, C10c, D08n, E03m, E04i, E13h, E14f
0 - - + C01e, F12j
0 - - - B05b, C13a, C13i, C14n, E02e, F04l, F06a, F11l
- + 0 0 A12m
+ + + 0 B01i, B07f, B10c, B10d, B14h, D08f, D09e, E03i, E14k, F02n, F05k, G15

A particular focus of interest in our studies was the identification of genes

regulated by the transcription factor CREB (cAMP Responsive Element Binding

protein), which is known to play important roles in memory formation [25]. We
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Table 2–2: Genes that bind CRE.
Coord. Accession Description
A05h U38938 activating transcription factor 2 (ATF2); cAMP response

element DNA-binding protein 1 (CREBP1)
A05l X14788 cAMP-responsive element-binding protein 1 (CREB1)

focused on the expression of both CREB and other genes with similar patterns of

expression in order to detect changes in gene expression paralleling CREB’s expres-

sion. CREB binds to a DNA element called cAMP-response element (CRE) in the

promoter region of its target genes, and in conjunction with a co-activator promotes

the initiation of their transcription [33].

There are two genes in our data set that bind CRE, A05h and A05l, these genes

are described in Table 2–2. The coordinate column is a unique identifier for the spot

on the Clontech arrays, the accession number is Clontech’s assignment of a gene in

the Genbank nucleotide database to this entry. Of the two CREB genes on the

arrays, the gene most associated with learning and memory processes is A05l, or

Creb1. The discretization of the average expression of A05l yields “000+”, therefore

we focused on the cluster labeled “000+”. The calls for these genes represents no

change over the 1, 3, and 6 hour time points, followed by upregulation at the 24 hour

time point. This cluster consists of genes whose expression most closely matches the

expression profile of Creb1. We investigated the genes in this cluster in depth,

retrieving the gene information and sequence from the Ensembl Genome Browser

version 32 [16].

From Ensembl we obtained genomic sequence for each of these genes, 1020

base pairs starting 800 base pairs upstream of the transcription start site. These

sequences were then submitted to TESS [41] to search for transcription factor bind-

ing sites. We look for the CRE element, a DNA sequence that is the target site

for CREB. Genes that have CRE in their upstream region are potential targets of

regulation by CREB.
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Table 2–3: Members of the gene cluster 000+.
Coord. Accession Description
A07i L24388 galactosyltransferase-associated protein kinase (GTA);

CDC2-related protein kinase (CDC2L1)
B09h L10362 synaptic vesicle protein 2B
C10c L33869 ceruloplasmin (CERP; CP); ferroxidase
D08n X63255 N-methyl-D-aspartate receptor subtype 1 (NMDAR1;

NR1); glutamate receptor subunit zeta 1 (GRIN1)
E03m M29712 melanin-concentrating hormone (PMCH; MCH)
E04i V01228 calcitonin
E13h M20713 guanine nucleotide-binding protein G(K) alpha 3 subunit

(G(I) alpha 3 (GNAI3)
E14f X06890 ras-related protein RAB4A

Based on our findings we focused on two specific genes: E03m or Pmch (pro-

melanin-concentrating hormone) and E04i or Calca (calcitonin/calcitonin-related

polypeptide, alpha). Both genes have CRE elements in their upstream regions.

According to the Rat Genome Database [38], Pmch is a cyclic neuropeptide that

induces hippocampal synaptic transmission. Pmch also seems to have an effect on

appetite or metabolism [37] and anxiety [23], and promotes synaptic transmission

in the hippocampus [45]. Calca is principally a vasodilator, but seems to have a role

in axonal regeneration or synaptogenesis [31]. Thus, these genes exhibit a pattern

of expression consistent with the expression of Creb1, have CRE elements upstream

of their transcription start site, and seem to have a role in strengthening or creating

new synapses.

2.4 Discussion

We have developed a method for error correction of microarray experiments.

The technique produces a clustering of genes and describes each gene as unchanged,

upregulated, or downregulated, in accordance to biologists natural description of

expression levels. We applied these techniques to a microarray data set derived from

a CTA experiment in rats, looking for genes that may be important in learning and

memory processes. We found two genes, Pmch and Calca, that share an expression



16

pattern with CREB, contain CRE in their upstream regions, and have demonstrated

function related to synaptic plasticity. Pmch and Calca are strongly implicated

as important genes for the formation of memories. We are now actively seeking

confirmation of these genes’ role in CTA and of their regulation by CREB as a

result of CTA training.



CHAPTER 3

MAJORITY LOGIC DECODING FOR

PROBE-LEVEL MICROARRAY DATA

3.1 Introduction

In Chapter 2 we described a method for error correction of microarray data.

That method produces a coarse characterization of gene expression levels, based

on majority logic decoding of thresholded genes from multiple repetitions. Many

microarray experiments use multiple probes per gene. This is typical of Affymetrix

style gene chips, but is also seen on oligonucleotide arrays. In the analysis such

data, a probe summarization step is performed. There exists a great variety of

probe summarization techniques, many are compared in [8, 20].

Section 3.2.2 describes an extension of our discretization and error correction

procedure to deal with multiple probes per gene. Section 3.2.3 describes our principal

contribution, a technique based on mutual information to compare the degree of

concordance of results obtained from two data sets. Mutual information had been

used previously to perform reverse engineering of gene expression networks from

microarray data [32] or cluster microarray data [6], but not to measure correlation

across two data sets. Section 3.2.1 describes two data sets, obtained on two different

microarray technologies that we use to validate our analysis procedures.

We have applied the discretization and error correction procedure to two Dro-

sophila data sets described in Section 3.2.1, one Affymetrix and one NimbleGen,

having multiple probes per gene. The experimental technique is designed to com-

pare analysis procedures by measuring the degree of concordance in the two separate

17
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data sets. Analysis procedures that produce good concordance across the data sets

are thus validated empirically. Our results show that our new technique results

in a greater amount of shared information between data sets than traditional ap-

proaches based on averaging of probes and gene expression levels across repetitions

(Section 3.3). We find much more correlation between the data sets than that de-

tected by earlier techniques. This increased concordance is principally due to the

recovery of many false negatives eliminated by the prior analysis techniques.

3.2 Methods

3.2.1 Microarray data

The data sets were produced in experiments comparing gene expression levels

at different times after odor avoidance training of Drosophila melanogaster [44, 48].

The experiments were run on drosgenome1 chips from Affymetrix (Santa Clara, CA,

USA), and a set of custom arrays from NimbleGen (Madison, WI, USA). A data set

consists of 10 repetitions of each condition (massed training, spaced training) at 3

separate time points, 0 (no training), 6, and 24 hours after training. The Affymetrix

arrays have 14 probes for each gene, and 14010 probe sets, including controls. The

NimbleGen arrays have a set of probes with around 10 probes for each probe set,

and 12240 probe sets, including controls.

These experiments were designed to test the degree of concordance between

genes produced by different analysis techniques. Analyses that produce the same

results across the two data sets should be detecting some ground truth of the bio-

logical system, and are less likely to be detecting spurious signal from the particular

experimental technique.

3.2.2 Error correction of probe-level data

Chapter 2 described an error correction method for replicate microarray data

sets. We assumed each gene was represented by a single probe, as is typical of cDNA

arrays. To extend our method to multiple probes, we first run our prior method on
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the data, treating each probe as a separate entity. This summarizes the repetitions,

resulting in a set of calls for each probe. A call is “+” if a probe is upregulated

compared to the control, “-” if the probe is downregulated compared to the control,

“0” if the probe is within epsilon of the control, and “?” if the results are ambiguous.

We then perform majority logic decoding on the set of probes corresponding to each

gene as described in Section 2.2.4. Briefly, in the Affymetrix data set, each gene is

represented by 14 probes. If a set of probes has more than 7 symbols in agreement,

we use that consensus symbol, otherwise we use “?” to denote an ambiguous call.

Figure 3–1 illustrates the majority logic decoding results for an example probe set

in the Affymetrix data. There are 14 rows and 4 columns, and in the result each

column is set to the symbol occurring more than 7 times in the data.

[[’0’, ’-’, ’0’, ’+’],

[’0’, ’-’, ’+’, ’+’],

[’0’, ’-’, ’0’, ’+’],

[’0’, ’-’, ’+’, ’+’],

[’0’, ’-’, ’+’, ’+’],

[’-’, ’-’, ’0’, ’0’],

[’0’, ’-’, ’0’, ’+’],

[’0’, ’-’, ’0’, ’+’],

[’-’, ’-’, ’-’, ’0’],

[’0’, ’-’, ’0’, ’+’],

[’-’, ’-’, ’0’, ’0’],

[’0’, ’-’, ’0’, ’+’],

[’0’, ’-’, ’0’, ’+’],

[’0’, ’-’, ’+’, ’+’]]

’mld’: [’0’, ’-’, ’0’, ’+’]

Figure 3–1: Majority logic decoding of an example probe set.

3.2.3 Sorting genes by weighted mutual information

Because we have two experiments performed on different microarray technolo-

gies, we wish to discover which genes demonstrate the same patterns of expressions

in the two data sets. We developed a program to compare the expression in the
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two data sets using weighted mutual information. Mutual information can mea-

sure positive (same expression patterns) and negative (inverted expression patterns)

correlation, but in our case, we want to select genes that show only very similar

patterns of expression, not opposite patterns. Thus, we use a weighted variant of

mutual information [15].

I(X, Y ) =
∑
y∈Y

∑
x∈X

w(x, y)p(x, y) log

(
p(x, y)

p(x)p(y)

)
Where w(x, y) is the weight assigned to the combination of symbol x and y,

described below, p(x, y) is the probability of the combination of symbol x and y,

and p(x) is the frequency of symbol x in the sequence X.

We set the weights such that similar patterns of expression are given higher

weights, and opposite expression is given lower weight:

w(x, y) =


1.0 if x = y, x, y 6= ?

0.5 if x = ? or y = ?

0.1 otherwise

Ambiguous calls are given an intermediate weight.

Figure 3–2 illustrates the calls in each of the data sets for the example probe set.

Equation (3.1) shows the computation of the weighted mutual information (WMI)

for these two sequences.

ac = [’0’, ’-’, ’0’, ’+’]

nc = [’0’, ’-’, ’-’, ’-’]

Figure 3–2: Example calls for a single probe set in both data sets.
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I(ac, nc) = w(-, -)p(-, -) log

(
p(-, -)

p(-)p(-)

)
+ (3.1)

w(0, -)p(0, -) log

(
p(0, -)

p(0)p(-)

)
+

w(+, -)p(+, -) log

(
p(+, -)

p(+)p(-)

)
+

w(0, 0)p(0, 0) log

(
p(0, 0)

p(0)p(0)

)
= 1 · 1/4 · log

(
1/4

1/4 · 3/4

)
+ 0.1 · 1/4 · log

(
1/4

2/4 · 3/4

)
+

0.1 · 1/4 · log

(
1/4

1/4 · 3/4

)
+ 1 · 1/4 · log

(
1/4

2/4 · 1/4

)
= 0.35

We obtained from Affymetrix a file with the sequence annotations for every

probe on the drosgenome1 chips, DrosGenome1.na21.annot.csv. We used the

“Probe Set ID” and “Ensembl” columns to construct a map from the ID used by

Affymetrix to the IDs used in the NimbleGen arrays. Several Affymetrix Probe Set

ID have more than one Ensembl ID listed. Because of this we average the WMI for

all NimbleGen probe sets that map to the same Affymetrix probe set.

We sum the average WMI over all Affymetrix probe sets, and obtain a sin-

gle score for a particular analysis method, the summed weighted averaged mutual

information or SWAMI.

With the SWAMI score, we can perform many analyses, and compare the

SWAMI score obtained to determine which analysis technique produces the best

agreement between the two data sets.

In addition, we sort the probe set list by the weighted averaged mutual infor-

mation, this produces a list of probe sets ranked according to how informative and

how similar they are between data sets.



22

3.2.4 Normalization and summarization tests

We set up a series of analyses to test the effect of different transformations and

summarization algorithms on the concordance between the two data sets, as mea-

sured by the SWAMI score. We use the affyPLM package from BioConductor [13].

We set up a comparison of “log2”, “sqrt” and “cuberoot” transformations on the

expression values, and “Huber” “fair” and “Cauchy” methods of robust regression

of the probe values. Once we produce the summarized data, we use the limma

package from bioconductor to produce a discretization using the decideTests func-

tion [42, 43]. These discretizations are compared between the two data sets using

the SWAMI score, just as we compared the error correction methods above. We also

ran our error correction and clustering procedures on the data summarized using

the rma command from BioConductor [18].

3.3 Results

Table 3–1 summarizes the total SWAMI scores obtained for several different

transformation and regression methods on the Drosophila data. The defaults for

affyPLM are log2 transformation and Huber regression, but sqrt transformation and

fair regression yielded much better SWAMI scores on our data.

Table 3–1: SWAMI scores for several transformation and regression methods.
Transformation Regression SWAMI
log2 Huber 182
log2 fair 186
log2 Cauchy 169
sqrt Huber 212
sqrt fair 230
sqrt Cauchy 200
cuberoot Huber 207
cuberoot fair 216
cuberoot Cauchy 202

Table 3–2 presents the SWAMI scores for our error correction techniques on

the Drosophila data. All these scores are more than an order of magnitude higher
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than the scores for the affyPLM based methods. The highest score is the “trimmed

mean” method, which discards repetitions which deviate most from the mean. In

our case we discard 2 and keep 8 repetitions for each probe.

Table 3–2: SWAMI scores for error correction methods.
Method SWAMI
trimmed mean 3657
mean 2535
consensus 3058
consensus vs mean control 1525

For comparison, Table 3–3 presents the SWAMI scores for our prior error cor-

rection scheme, using standard RMA to summarize probes [18]. The additional level

of error correction afforded by the probes results in an increase of the SWAMI score.

Figures 3–3 and 3–4 show the frequency of the individual WMI scores per probe

set for two representative methods, the sqrt-fair method, which obtained the best

SWAMI score in Table 3–1, and the trimmed mean, the best performer in Table 3–

2. The error correction methods show a wider distribution, whereas the affyPLM

methods are very narrowly distributed around 0.

Figures 3–5 and 3–6 illustrate the distribution of nonzero calls in each probe set

in the data. In binary vectors this would be called the “weight” of the vector. The

sqrt-fair method produces calls distributed normally with mean around 5, whereas

the trimmed mean method produces calls with nearly all entries nonzero.

3.4 Discussion

We have presented a novel method of error correction for probe-level microarray

data, such as that generated by Affymetrix chips. We have also developed a novel

Table 3–3: SWAMI scores for RMA summarized data for several methods.
Method SWAMI
trimmed mean 2753
mean 2610
consensus 1920
consensus vs mean control 1888
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Figure 3–3: Distribution of weighted mutual information scores for individual probe
sets in the sqrt-fair method.

scoring method for measuring the degree of agreement between two independent

data sets representing the same or similar genes. The SWAMI score measures mutual

information between data sets, but is weighted by a score to produce biologically

meaningful correlation, two sequences cannot be inversely correlated and still have

a high SWAMI score.

We have applied our methodology to a large data set obtained from an odor-

avoidance training experiment with Drosophila melanogaster. This experiment was

designed to test different data analysis techniques by measuring concordance be-

tween the results on both data sets. The results indicate that our error correction

procedure results in much higher SWAMI scores between two different data sets

than other more common analysis techniques (Tables 3–1 and 3–2). The first reason
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Figure 3–4: Distribution of WMI scores for individual probe sets in the trimmed
mean method.

is that the set of calls produced by the other techniques have more “0” calls, no sig-

nificant change in expression, as seen in Figure 3–5 where the weight peaks around

5. The majority logic decoding results in calls with more “+” and “-” values, the

weight illustrated in Figure 3–6 is much higher. If these calls were not in agree-

ment between data sets, however, the SWAMI scores would not be high. Thus the

second improvement is that the error correction procedure increases the degree of

concordance between the data sets, as measured by the SWAMI score. Prior studies

of concordance across microarray technologies have demonstrated poor results, the

authors concluded diverse array technologies cannot be compared [24]. However,

newer studies have shown large variability between labs, and that the best labs have

low variability, even using different technologies[19].
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Figure 3–5: Distribution of nonzero calls for individual probe sets in the sqrt-fair
method.

The SWAMI score leads to a list of probe sets that in some sense optimize two

biologically relevant criteria: the probe sets must be informative in the sense that

they take on a range of values, and the probe sets must be consistent between the

two data sets. These are precisely the kind of genes we seek to understand the

molecular changes underlying the conditions we are studying.

The error correction and SWAMI procedures produce a list of probe sets sorted

by the WMI score, there are a small number of probe sets with maximal scores.

Future work should include examining these candidate probe sets to confirm their

role in learning and memory processes.
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Figure 3–6: Distribution of nonzero calls for individual probe sets in the trimmed
mean method.



CHAPTER 4

DISCRETE METHODS IN MICROARRAY

ANALYSIS

4.1 Introduction

We previously described finite models of gene expression networks, and devel-

oped techniques to discretize gene expression measurements. We illustrated these

techniques on data sets from rats and fruit flies, using a model with 3 expression

values for each gene, X(3) = {0, +, -} representing genes unchanged, upregulated

or downregulated.

This chapter extends our discretization and error correction methods to sets

with more elements, while preserving useful qualities of the data, such as the SWAMI

score.

4.2 Methods

4.2.1 Discretizing to a set with more elements

We have modified our procedure for error correction on probe level data to

produce gene expression levels in a set with 5 elements. We label these expression

levels as X(5) = {*, +, 0, -, =} with the same meaning as before, adding * for

highly upregulated genes (two + symbols), and = for strongly downregulated genes

(two - symbols).

The procedure for discretizing to the set with 5 elements is as follows: let x

be the expression of gene minus control and ε be the discretization threshold as in

Section 3.2.2.

• if x > 2ε encode as +2 (*)

28
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• if 1ε < x ≤ 2ε encode as +1 (+)

• if −1ε ≤ x ≤ 1ε encode as 0

• if −2ε ≤ x < −1ε encode as -1 (-)

• if x < 2ε encode as -2 (=)

4.2.2 Selecting consistent genes

In this section, we again devise a new test for consistency. Our concern is that

genes discretized to the set with 5 elements should agree with those already chosen

for the set with 3 elements.

• Rank genes by WMI score for X(3) and X(5)

• Pick top 1000 genes from each method

• Take intersection of top genes from both methods

4.2.3 Searching for a better epsilon

The mutual information for a sequence depends on ε: if epsilon is too high,

all calls are 0, which would give good concordance, but low informativeness. At

the other extreme, if epsilon is too low, all calls are double negative =, or double

positive *, yielding a high information content, but low concordance between the

experiments. We examine the relationship between ε and the SWAMI score by

choosing ε, and testing SWAMI score for different multipliers, to see effect of changes

in the discretization threshold on the mutual information.

4.3 Results

4.3.1 Clusters

Table 4–1 presents the clusters formed by discretizing to X(3), the set with 3

elements, and the clusters into which those genes fall when discretized to the new

set with 5 elements X(5). The 21 clusters formed by discretizing genes to X(3) are

split into 72 clusters when discretizing genes to X(5)
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Table 4–1: Gene clusters resulting from discretization to the set with 3 or 5 elements.
X(3) X(5)
+++0 ***0 *++0 +**0 +*+0 +++0

++-0 **=0 ++=0

++0+ **0* **0+ *+0+ +*0+ ++0+

+-+0 *=*0

+0++ *0** *0++ +0** +0*+ +0+* +0++

+0-- *0== +0=- +0==

-++0 =+*0

-+-0 =*=0 =+-0 =+=0

-+0- =*0=

--+0 -=*0 ==*0

---0 ---0 --=0 -=-0 -==0 =--0 ==-0 ===0

--0+ =-0+ ==0* ==0+

--0- --0- --0= -=0- =-0- ==0=

-0++ -0** =0** =0++

-0-+ =0=*

-0-- -0-- -0-= -0=- -0== =0-- =0==

0+++ 0*** 0*+* 0*++ 0+** 0+*+ 0++* 0+++

0++- 0*+=

0+-- 0*== 0+==

0-++ 0=++

0--- 0--- 0-=- 0-== 0=-- 0=-= 0==- 0===
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Table 4–2: SWAMI scores for genes discretized to sets with 3 and 5 elements.
Method GF(3) GF(5)
trimmed mean 2753 3229
mean 2610 3226
consensus 1920 1876
consensus vs mean control 1888 1996

4.3.2 SWAMI scores for discretizing to a set with 5 elements

Table 4–2 presents the SWAMI scores for our discretization methods producing

calls with 3 or 5 elements on the Drosophila data. Discretizing to the set with 5

elements yields better SWMI scores except in the case of the consensus calls.

Figure 4–1 shows the effect of the size of epsilon, the discretization thresh-

old, on the SWAMI scores for error correction and summarization methods on the

Drosophila data discretized according to the procedure described in Section 4.2.1.

4.4 Discussion

This chapter presented some results that use sets with more elements to repre-

sent finer distinctions in gene expression levels. We applied these techniques to the

Drosophila data sets.

Discretizing to the set with 5 elements yields a slight improvement in the

SWAMI scores for the data, except for the consensus method, which showed a small

decrease. This method uses majority logic decoding to produce a call, and the in-

creased input symbols resulting from the chage to the set with 5 elements may be

causing the majority logic decoding to produce different calls in the two experiments

(i.e. produce a + in one experiment and a ++ in the other), thus decreasing the con-

sistency and the SWAMI score. Revising the weighting function to give a higher

score to -, = and +, * pairs may result in better scores.

Our results show that these techniques can provide insight into biological data

sets, using terminology familiar to the biologist, an important consideration in multi-

disciplinary research environments.
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Figure 4–1: SWAMI score for several methods as a function of epsilon. The SWAMI
score is plotted for our error correction techniques using summarized probes.



CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Summary

We have presented several new techniques for the analysis of microarray data.

These techniques group gene expression values into coarse descriptions, similar to

those used by biologists when describing gene expression changes (“upregulated”,

“downregulated”, “unchanged”). We encode these coarse characterizations into sym-

bols, and can then use techniques such as majority logic decoding to perform error

correction on multiple repetitions of microarray experiments.

We applied these techniques to a time-course experiment performed on rats

trained in a conditioned test aversion task. The error correction and clustering

technique produced 23 clusters of genes in this task, and we selected candidate genes

from a cluster containing the transcription factor CREB, known to be required for

learning of this task.

Sequence analysis and a literature search of the candidate genes strongly suggest

that two genes, Pmch and Calca play an active role in learning and memory in this

task. Research into their role in CTA is still ongoing.

We also extended our error correction technique to microarray data where each

gene has more than one probe on the array, called a probe set. Examples of these

arrays include Affymetrix arrays, widely used in human and animal research.

We obtained from our collaborators a unique data set from odor avoidance

training experiments on fruit flies. The data set contains multiple replicates of a

time course done under two different training conditions on two different microarray
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technologies. We extended our error correction and clustering technique to work

with the multiple probe data for each probe set. We also devised a new technique,

the SWAMI score, based on mutual information, to measure concordance between

genes on the different microarray technologies.

We applied this mutual information technique to validate different microarray

analysis techniques by measuring the concordance between the two microarray tech-

nologies of the results of several different analysis techniques. We include in the

comparison traditional microarray analysis techniques such as ’affyPLM’ and our

own error correction and clustering techniques.

The results clearly indicate that our error correction and clustering technique

results in a much higher SWAMI score than the other analysis techniques tested. In

addition, the use of probe-level data in a probe set increased the SWAMI score as

well.

The Drosophila microarray experiment was designed as an empirical test of

different analysis techniques, that our technique produced the highest SWAMI score

demonstrates the validity of the methodology.

The discretization procedures developed in Chapters 2 and 3 result in clusters

of genes with expression values in the set {-, 0, +}. In Chapter 4 we show how we

ca construct finite fields with 3 or 5 elements, and use algebraic properties of finite

fields to reverse engineer a genetic network for the CTA data.

5.2 Future studies

Future experimental work includes experimental validation of the role of Pmch

and Calca in learning and memory. These experiments are being carried out in

collaboration with the laboratory of Dr. Sandra Peña de Ortiz (UPR-RRP). In

addition, Dr. Tim Tully of Dart Neuroscience LLC has expressed an interest in

confirming results of the Drosophila analysis using other biological experiments.



35

On the algorithmic side, we are most interested in exploring if multiple probes

can offset the need for multiple repetitions. We have seen that probe-level infor-

mation can increase SWAMI scores in microarray experiments, if the number of

repetitions can be decreased while preserving the SWAMI scores, we may be able to

dramatically decrease the cost of microarray experiments.

Another area of interest is augmenting or annotating gene expression data with

partial information on gene regulation. As more sequence and functional information

is deposited in repositories of biological data, it is important to incorporate this

information in the analysis of expression data.

5.2.1 Interpolation

Another example of future work involves exploiting algebraic structure in gene

nwtwork models. One such example is reverse engineering gene networks when genes

take values from a finite field. This is a special case of our discrete genetic network

models.

For a network of n genes, each having values in GF(p), measured at k time

points. A time series S = S1, S2, ..., Sk, where Si = (si1, si2, ..., sin), and sij ∈ GF(p)

is the expression of the jth gene at time i.

The approach taken in [27] for the reverse engineering problem is to give a

procedure using Gröbner basis to find all functions f such that given a time series

S1, S2, . . . , Sk, the function f has the property that f(S1) = S2, f(f(S1)) = S3, and

so on. In general, f i−1(S1) = Si.

We will give an alternative procedure to do this using univariate polynomials

over GF(pn).

The Lagrange Interpolation Formula says that for n ≥ 0, let a0, . . . , an be n+1

distinct elements of a finite field F , and let b0, . . . , bn be n + 1 arbitrary elements of

F . Then there exists exactly one polynomial f ∈ F [x] of degree d ≤ n such that
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f(ai) = bi for i = 0, . . . , n. This polynomial is given by

f(x) =
n∑

i=0

bi

n∏
k=0,k 6=i

(ai − ak)
−1(x− ak).

Using this we can therefore give a closed-form solution for the reverse engineer-

ing problem as follows:

If we want to find the network function f for a gene network with time series

S1, S2, . . . , Si then f is given by:

f =
i∑

j=2

Sj

i−1∏
k=1,k 6=j

(Sj − Sk)
−1(x− Sk).

Proof: We use Lagrange interpolation with a0 = S1, a1 = S2, . . . , ai−2 = Si−1

and b0 = S2, b1 = S3, . . . , bi−1 = Si, obtaining:

f =
i∑

j=2

Sj

i−1∏
k=1,k 6=j

(Sj − Sk)
−1(x− Sk).

5.2.2 Preliminary results

Table 2–1 presented 23 clusters of genes using a ternary model of expression.

We can treat these expression values as values in GF (3). Reading down each column

of the table, we can assign a value to the four time points as follows:
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S1 = −a0 + a2 − a3 − a4 − a6 + a9 − a11

−a13 + a14 + a16 + a17 − a21 + a22

S2 = a− a3 − a4 + a6 − a8 − a9 − a10 + a11

+a12 − a13 − a14 + a16 + a17 − a19 − a20 + a21 + a22

S3 = a + a4 + a5 + a6 − a7 + a8 − a9 + a10 − a11

−a12 − a13 + a14 − a17 − a19 − a20 + a22

S4 = a + a5 − a7 + a8 − a10

+a12 − a15 + a18 + a19 − a20

The top row of the table - 0 0 0 represents the coefficients of the a0’th com-

ponent of the field, where a is the generator of the field GF(323), thus the first time

point S1 starts with −1 · a0, and the time points S2, S3, S4 start with 0 · a0. Reading

the remaining rows of the table gives us successively the coefficients of larger terms.

Using the Lagrange interpolation, we can then define a function that interpo-

lates the values in the above time series:

f(x) = (−a22 + a21 − a20 − a18 + a17 + a16 + a15 + a14 − a13 + a12 − a11 − a10

+a8 − a7 − a6 − a5 + a2 − a− 1)x2

+(a20 + a18 − a16 − a15 − a14 + a13 + a12 − a11 + a10

+a9 + a8 + a7 − a5 + a4 − a3 − a2 + a)x

−a22 − a21 − a19 − a18 + a16 − a15 + a14 − a11

−a6 + a3 + a2 − 1



CHAPTER 6

ETHICAL ISSUES

Our expectation is that this research will yield generally positive ethical out-

comes. The purpose of the research is to develop tools for extracting biological

insight, such as knowledge of transcriptional regulatory networks from microarray

experiments. Better knowledge of transcriptional proceses and memory formation

will help us understand the molecular mechanisms underlying learning and memory,

and help combat disease and psychiatric disorders.

One of the experiments described in this proposal rely on a data set derived

from experiments on rats, and will likely involve further experiments prior to publi-

cation of a peer reviewed paper in the area. Some people consider experimentation

on animals to be unethical. The performed and proposed experiments follow the

established protocols for ethical use of the animal subjects, and the experiments are

designed to eliminate unncessesary suffering and pain for the animals. Biological

systems are extremely complex, and no other way of obtaining the understanding

of the biological processes underlying memory and learning disorders exists, except

for animal experimentation.

The second experiment, performed on fruit flies, is less troublesome, since the

animals involved are invertebrates, but good laboratory practices were also em-

ployed.

In any case, accurate models of transcriptional processes, such as we wish to

construct using the methods developed in this thesis proposal, could eventually allow

in-silico simulations of complete experiments, reducing the number of real animals
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used in research. Note that this simulation technique is already utilized to perform

nuclear arms testing, so it is not as infeasible as it sounds at first blush.

Two additional controversial topics related to the research above are genetic

testing and genetic engineering. Microarrays are already used or proposed to diag-

nose certain conditions. The accumulation of more microarray data and advances in

analysis techniques would allow for screening for susceptibility to certain conditions.

Access to private genetic information needs to be strictly protected, and analysis

routines have to be designed to neither cause undue distress through false positives,

nor a false sense of security due to false negative results. The reverse engineering

problem in microarrays intends to allow us to model cell processes leading to a condi-

tion. This knowledge could be used to target specific points in a regulatory network

to prevent disease, or to produce a desired outcome including inducing disease or

death.

The other major ethical issue is that efficient algorithms for reverse engineer-

ing genetic networks would likely be equally efficient at reverse engineering binary

networks. Thus reverse engineering digital hardware or “black-box” software could

be sped up by using our techniques. Similarly, many cryptographic protocols such

as those protecting online commercial transactions are based on the difficulty of

determining a specific key used in a cryptographic function to transform inputs

into outputs. An efficient reverse engineering algorithm could be used to decrypt

sensitive communications.
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