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ABSTRACT 

Highway Safety has been identified as a significant problem worldwide. Crashes 

have been found as the second cause of death in the world according to the World 

Health Organization (2010). In fact, road crashes cost billions of dollars per year in the 

US alone. The US Department of Transportation has established highway safety as one 

of their main priorities in their Action Plan that mainly consists of establishing 

countermeasures and engineering strategies for the reduction of crashes. Several efforts 

are underway but most of the implemented strategies in many states and Puerto Rico 

have a reactive or a short-term planning approach. Such approaches have generated 

some improvements to the current system (Lovegrone, 2006). However, a proactive 

approach is necessary. This approach would require incorporating highway safety 

aspects in the decision making process from the beginning when planning alternatives 

are generated and crash data is unknown (de Leur, 2001).  

Currently, Safety Performance Functions (SPFs) are considered by many as the 

main tool in estimating a road’s safety and an integral part of decision making. SPFs are 

mathematical models that are statistically developed to conduct crash data analysis. The 

models attempt to explain crash occurrence on various road facilities types as a function 

of the traffic and geometric characteristics of these facilities. 

SPFs are not just valuable to the success of the reactive approach to dealing 

with road safety problems; they are of vital importance to the success of the proactive 

approach. The primary objective of the proactive approach is to ensure that road safety 

is an explicit priority in transportation planning policies. 
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Several crash prediction models have been developed for site or project analysis, 

but very few of them are for planning purposes. Strategic, mid and short-term planning 

models with a wide prediction range, due to a wide range of Average Annual Daily 

Traffic (AADT) measures, were not found in the researched literature. A model of this 

type could be used to calculate the number of average crashes per type of road while 

considering conceptual design aspects or design changes. They could also be used in 

the implementation of safety devices for the whole region. These types of models were 

developed in this research project. 

This research project utilized Generalized Linear Mixed Models (GLMM) so as to 

use them in the incorporation of highway safety into the strategic planning process. 

These models can be used to forecast the rate of crashes for different planning and 

conceptual design scenarios. These GLMM have several advantages, in terms of 

predicting crash rates, including the incorporation of not only a set of known explanatory 

variables, but also of random effects present in the system. As a result, the model 

explains possible temporal correlation and spatial effects in the data. Therefore, these 

types of models offer great versatility in the modeling of crash rates and its related 

factors. 

The research approach included the filtering of a crash database according to a 

set of identified explanatory variables, estimation of parameters in a set of candidate 

GLMM’s, evaluation of  the estimated models using several statistical tests and 

goodness of fit methods, and the selection of models that represent a better fit for the 

phenomena under study.  
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Once the models were obtained, a methodology for their incorporation into the 

strategic planning process was developed and reported. Therefore, the deliverables 

included are GLMM crash prediction models for municipalities and different types of 

segments on expressways-freeways and arterials (population average and specific 

subject models), along with a methodology for the incorporation of these models in 

safety analysis which is a vital part of the strategic planning process. 
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RESUMEN 

La seguridad vial ha sido identificada como un problema significativo a nivel 

mundial. Se ha encontrado que los choques son la segunda causa de muerte de 

acuerdo con la organización mundial de la salud (2010). De hecho, los choques cuestan 

billones de dólares por año en los Estados Unidos. El Departamento de Transportación 

de Estados Unidos ha establecido la seguridad vial como una de sus prioridades en su 

plan de acción, el cual consiste principalmente en el establecimiento de medidas de 

mitigación y estrategias de ingeniería para la reducción de choques. Varios esfuerzos se 

están llevando a cabo pero la mayoría de las estrategias implementadas  en muchos 

estados y en Puerto Rico tienen un enfoque reactivo de corto plazo. Estos enfoques han 

generado algunas mejoras al sistema actual (Lovegrone, 2006). Sin embargo, es 

necesario un enfoque proactivo. Este enfoque requeriría incorporar aspectos de 

seguridad vial desde el principio del proceso de toma de decisiones cuando se generan 

las alternativas y los datos de choques son desconocidos (de Leur, 2001). 

Actualmente, las Funciones de Desempeño en Seguridad (SPF’s por sus siglas 

en inglés), son consideradas por muchos como la herramienta principal en la estimación 

de la seguridad de una vía y parte integral de la toma de decisiones. Las funciones SPF 

son modelos matemáticos que se desarrollan con estadística para conducir análisis de 

datos de choques. Los modelos intentan explicar los choques que ocurren en varios 

tipos de  instalaciones viales como función de las características del tránsito y la 

geometría de estas instalaciones.  

Las SPF no son solo valiosas para el éxito del enfoque reactivo  para tratar con 

problemas de seguridad vial; son de vital importancia para el éxito del enfoque 
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proactivo. El objetivo principal del enfoque proactivo es asegurar que la seguridad vial 

es una prioridad explicita de las políticas de planificación estratégica del transporte.  

Varios modelos de predicción de choques han sido desarrollados para análisis 

de sitios o proyectos, pero pocos han sido desarrollados para propósitos de 

planificación. Modelos de planificación estratégica, a mediano y corto plazo por tipo de 

carretera y para un amplio rango de predicción, debido a un rango amplio de medidas 

de tráfico promedio diario anual (AADT, por sus siglas en inglés), no se encontraron en 

la literatura.  Un modelo de este tipo  puede ser usado para calcular el número promedio 

de choques por tipo de carretera, considerando aspectos de diseño conceptual o 

cambios en el diseño. También pueden ser usados en la implementación de dispositivos 

de seguridad para una región completa. Esos tipos de modelos fueron desarrollados en 

este proyecto.  

En este trabajo se ajustaron modelos lineales generalizados mixtos (GLMM) con 

el propósito de usarlos en la incorporación de la seguridad vial en el proceso de 

planificación estratégica y la planificación a mediano y corto plazo. Estos modelos 

pueden ser utilizados para predecir las tasas de choque para diferentes escenarios de 

planificación y diseño conceptual. Esos modelos GLMM tienen varias ventajas en 

términos de la predicción de tasas de choques incluyendo la incorporación no sólo de 

un grupo de variables conocidas, también permiten la inclusión de efectos aleatorios 

presentes en el sistema. Como resultado, el modelo explica la posible correlación 

temporal y los efectos espaciales en los datos. Por consiguiente, esos tipos de modelos 

ofrecen gran versatilidad en la modelación de tasas de choques y sus factores 

contribuyentes. 

VI 



El enfoque de esta investigación incluye filtrar los datos de choques de acuerdo 

a un conjunto de variables explicativas identificadas, la estimación de parámetros en un 

grupo de modelos GLMM candidatos, la evaluación de los modelos estimados utilizando 

varias pruebas estadísticas y métodos de bondad de ajuste, y la selección de los 

modelos que representan mejor el ajuste al fenómeno bajo estudio. 

Una vez obtenidos los modelos, se desarrolló una metodología que permite su 

incorporación dentro del proceso de planificación. Por lo tanto, los aportes de este 

trabajo incluyen modelos GLMM de predicción por municipios y para diferentes tipos de 

segmentos para autopistas y arterias (modelos promedio poblacional y sujeto 

específicos), junto con una metodología para incorporarlos en el análisis de seguridad 

vial que es una parte vital del proceso de planificación estratégica. 
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DISCLAIMER 

The data used in this research was obtained through multiple agencies in charge 

of the collection of data in their respective areas. The author does not take responsibility 

for the accuracy of the data used in the research. 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION  

Around the world the quantity of private vehicles on public roads has experienced 

a sustained increase since their invention. As a result, the number of collisions have also  

increased at a rapid pace. Highway safety has been one of the main concerns in urban 

transportation in the last two decades (Naderan and Shahi 2010) and is of the utmost 

importance today. To give an example of the scale of impact that this issue has, is the 

fact that collisions costs the United States approximately $230 billion per year 

(Cambridge Systematics Inc., 2008). 

Highway safety is not only a concern in the United States, it is also an important 

issue worldwide. The United Nations, private entities, and governments in more than 100 

countries have come together in a joint effort to improve highway safety through a 

project called “A Decade of Action for Road Safety”, which was released on May 11, 

2011. The goal of this project is to prevent five million deaths globally by 2020. The 

overall plan consists of the implementation of activities divided into five pillars: road 

safety management, safer roads and mobility, safer vehicles, safer road users, and post-

crash response.  

In the United States, the federal government has raised awareness on the 

importance of safety, embedding this issue at the core of the transportation law enacted 

in 2012 called "Moving Ahead for Progress in the 21st Century" (MAP-21). This 

transportation law establishes measures for the State Departments of Transportation 

(DOT's) to develop performance targets in conjunction with Metropolitan Planning 
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Organizations (MPO's) in order to considerably improve the safety of all transportation 

systems. The law stipulates that each state must make investments that are cost-

effective and resource efficient, enabling the achievement of the set objectives.  

One of the ways that states are working towards this goal is through the 

implementation of a Highway Safety Improvement Program (HSIP). These programs aim 

to reduce highway safety problems by focusing on the identification, diagnosis and 

remediation of hazardous sites in the short term (planning 3-5 years). These programs 

typically use crash prediction models at the microscopic level to identify, evaluate, and 

plan safety measures for each site. These models are designed to predict crashes on 

new sites, existing sites, or at the project level. These models use traffic volume as the 

independent variable, and as group characteristics, specific aspects such as the 

horizontal and vertical geometry of the road, and the operation type of the intersection. 

The results of these models enable agencies to identify and prioritize hazardous sites, 

and consequently lead to cost-effective mitigation measures and improvements to the 

sites. HSIP’s have served their purpose in terms of improving existing conditions. The 

strategic planning process however, lacks specific tools that could help planners focus 

on safety issues of the alternatives evaluated at the planning level.  

The current planning process in several states and Puerto Rico does take into 

account the mobility and environmental impacts of each of the alternative being 

considered; however, that is not the case with regards to safety. In Puerto Rico, a 

Strategic Highway Safety Plan (SHSP) is utilized during the planning process. This plan 

was developed by PRHTA and their main objective is that all safety initiatives are fully 

coordinated and developed based on current Puerto Rico trends and statistical 

evaluations. Unfortunately, there is no model suggested to perform this analysis. In 
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contrast, highway mobility is analyzed throughout the urban planning process. The 

typical result of an urban planning process includes long term demand predictions which 

helps generate alternative solutions or projects that would improve the highway mobility. 

Similarly, the environmental impacts of all the alternatives being considered are 

analyzed in detail. A similar approach should be implemented so as to consider 

estimated highway safety issues (e.g. expected amount of crashes and their severity) 

during the strategic planning process, in order to understand the safety impacts of each 

planning alternative and establish safety improvement strategies from day one. 

In order to establish a thorough safety approach appropriate prediction tools 

should be provided for each planning stage. Macro level models are needed for a whole 

city or region in order to identify existing and future potential safety problems. Typical 

independent variables used in long range planning macro models include socioeconomic 

and demographic variables of the areas of interest. The result of this type of model is the 

prediction of the number and severity of accidents, and not the explanation of their 

causes.  

A review of existing literature did not unearth any evidence of the development of 

prediction models in Puerto Rico that permit the implementation of a proactive approach 

during medium and long term planning. The Puerto Rico Transportation Plan for 2040 

indicates that safety is one of its main objectives, but it does not describe a methodology 

to use to integrate this topic long term, nor a manner in which to describe the possible 

results at a network level. The characteristics of a successful conceptual design or a 

map identifying road segments with the greatest safety problems are not provided. In 

other words, there are no projects or specific strategies to mitigate such situations in the 

long-term planning process. The development of more detailed studies of the zones 
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would make resource investment more cost-effective and the process more efficient for 

the agencies. 

Models by road and segment type are needed in order to identify existing and 

future potential safety problems and to identify where the regional problems are. The 

variables used in these models are related to geometric and operational characteristics. 

This investigation proposes the development of a methodology that allows for the 

incorporation of highway safety within planning procedures through the use of models in 

order to predict average crash rates by region, type of road, and road segment. The 

developed models will also allow an analysis at the network level. These models will be 

sensitive to improvements and management strategies of the mobility of the road 

network. In the models, the temporal correlation and spatial effects of the data will be 

considered, an aspect which is not considered in prediction models at the segment level 

found in the Highway Safety Manual (HSM, 2010). A planning process that integrates 

safety would allow the evaluation of multiple and large project alternatives. 

1.2 JUSTIFICATION 

Puerto Rico has faced highway safety problems similar to those of the United 

States.  There are various procedures in place for the regional planning of transportation 

systems that need to be revised in light of the research conducted in this thesis. 

Therefore, the results of this project have the potential to become an important and 

necessary part of the regional planning process in the near future. The application of the 

new models and methodologies will help in the implementation of safety features from 

the beginning of any transportation project plan and for the future needs of the system. 

4 



In terms of worldwide strategic goals safety, mobility, and the environment are taken into 

consideration so as to support the future benefits viewed in the implementation of the 

results of this research. 

1.3 SCOPE 

The scope of the present study is the development of statistical models specific 

to Puerto Rico, for municipalities, freeway-expressway, and arterial roadways for various 

crash severity types. These models will determine the relationship between crash 

frequency, crash rates, and roadway characteristics, and will predict crashes for use in 

short, mid and long term planning procedures (See Figure 1.1).  

 
Figure 1.1 The Commonwealth of Puerto Rico- the Area of study. 
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Due to the nature of safety data, which cannot be obtained in a controlled setting, 

observational studies have been selected as the most practical method to explore the 

relationships between crashes and their related factors. Controlled laboratory 

experiments would produce quicker and more accurate results because of the ability to 

control some factors, but these methods are not typically available in the safety analysis 

field due to variations in conditions and safety concerns (Hauer, 1997). In order to 

determine the contribution of a variety of accident prediction variables to the prediction of 

crashes, and to provide a more proactive model, a multivariate analysis of the 

independent variables has been developed. 

1.4 OBJECTIVES 

The main objective of this research work is the development of models that could 

be incorporated into the short, mid and  long-term  highway safety planning processes.  

The specific objectives that guide the research process are the following: 

i. Identify and describe the current procedures used by Puerto Rico address 

highway safety issues in the mid and long term planning process. 

ii. Identify highway safety predictive models used in mid and long range 

transportation plans in Puerto Rico and in the United States. 

iii. Evaluate the effectiveness and possible application of such models using a 

local test bed area by collecting information on transportation systems, population 

(census), accidents, and other relevant data. 
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iv. Develop and calibrate different types of highway safety predictive models. The 

models will be developed in two phases. The first phase involves the development of 

planning models that can be applied to the regional level. The second phase will develop 

planning models using local data by functional classification and road geometry (Safety 

Performance Functions, SPF). 

v. Incorporate the use of highway safety models into a methodology to be applied 

for the mid and long-term highway safety planning processes in Puerto Rico. 

1.5 RESEARCH APPROACH 

This section describes the proposed methodology for the development of 

highway safety prediction models appropriate for strategic planning, developed using 

Puerto Rico crash data as shown in Figure 1.2.  The Western Puerto Rico models were 

developed by region (Chapter 4) and use crash frequency as the dependent variable. 

The models developed by region (Chapter 5) uses crashes by region as the dependent 

variable. Segment length and population represent the offset variable, and road type 

(primary, secondary, tertiary) represent the independent variables. The models will also 

take into account the temporal correlation and spatial effects of the different regions and 

municipalities. This is due to unobserved spatial variables.  

The models developed by functional classification (Chapter 6) will use crashes by 

road type (freeways, arterials) as the dependent variable, and geometric characteristics 

as the independent variables. The model also takes into account temporal correlation 

due to repeated measures in time for the same segment. The spatial effects of the 

different regions and segments are also included in the models. 
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Figure 1.2 General Methodology. 
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The resulting models will be used to explore the relationship between crash rates 

and their severities with various variables that may serve as predictors. Possible 

predictors include traffic intensity, socioeconomic and demographic factors, traffic 

demand measures, and other geometric characteristics. Examples of geometric 

characteristics that were taken into consideration include the number of lanes, lane 

width, slope, curvature, etc. The rest of this section describes the general research 

approach and the methodology. 

For years a wide variety of methods have been implemented in order to deal with 

the methodological problems associated with accident frequency data. Otherwise, these 

problems can compromise the validity of the conclusions if not properly handled. 

Previous investigations have used various approaches for the aggregation and modeling 

of accidents based on the purpose of the study and the nature of the available data. 

Some of the approaches are: classical linear regression, Poisson models, negative 

binomial models, hierarchical Bayes models with spatial effects, and linear models with 

logarithmic transformations (Anastasopoulos,2009). The present study proposes to 

apply negative binomial generalized linear mixed models to crash rate data in order to 

incorporate variables at a segment level, which will allow the data to be temporally and 

spatially correlated. The models’ computations will be done with the Statistical Analysis 

System, SAS software (SAS Institute, Inc, 2013). 

The steps taken in order to estimate the regression parameters in a GLMM are 

the same regardless of the implemented model. What varies is the probability 

distribution, the explanatory variables to be used, and the assumptions made. The 

general procedure used to find the parameter estimates in a GLMM include collection 

and data preparation, the definition of distribution and the model structure (Negative 
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binomial distribution with random effects of segment and region in this case), estimation 

of parameters using the maximum likelihood method, model selection, and model 

integration into the planning process. In Chapters 4, 5 and 6 the corresponding statistical 

methodology is described in detail. 

1.6 ORGANIZATION 

This section describes the contents of each of the chapters: Chapter 1 contains 

an introduction to the highway safety topic, Chapter 2 contains a literature review of 

highway safety, Chapter 3 describes the elements currently employed in highway safety 

planning by Puerto Rico and in the United States, Chapter 4 presents the calibration and 

development of Puerto Rico western region planning models, Chapter 5 presents the 

development of all the Puerto Rico planning models by region, Chapter 6 describes the 

development of freeway-expressway and arterial planning models, Chapter 7 presents a 

framework that may be used to incorporate the developed models into the planning 

process, Chapter 8 contains the conclusions and Chapter 9 presents the 

recommendations. 
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CHAPTER 2: BACKGROUND REVIEW 

2.1 DEFINITION AND GENERAL ASPECTS OF A SAFETY 
MANAGEMENT SYSTEM 

This section reviews existing studies related to three main areas of highway 

safety namely: Safety management systems, high risk crash area identification, and 

macro level predictions models. The safety management system is presented as a 

concept first followed by the literature related to the identification of areas at high risk of 

crashes and, a series of papers that consider a macro level prediction model for a 

proactive approach to safety. 

The first of the three main areas of highway safety, safety management systems 

(SMS), was a requirement from each state under the "Intermodal Surface Transportation 

Efficiency Act of 1994" (ISTEA). The Safety Management System is a process by which 

diverse stakeholders establish strategies to reduce the quantity and severity of crashes 

(Depue et al., 2003). However, following the approval of the National Highway System 

Designation Act of 1995, the development and implementation of a highway safety 

system using the Safety Management System became optional.  

The "Safe, Accountable, Flexible and Efficient Transportation Equity Act- A 

Legacy for Users of 2005" (SAFETEA-LU) created the Highway Safety Improvement 

Program (HSIP) as a new source of funds in order to reduce traffic accidents and 

serious fatalities. States submit annual reports that identify the locations that have the 

highest safety needs and represent more than 5% of crashes in their areas in order to 

increase public awareness. As part of the MAP-21 Act signed in 2012, 25% of the state 

funds are invested in HSIP projects.  
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The Safety Management System is a process that must be carried out by 

coordinating the various agencies and individuals interested in the common goal of 

reducing the number of accidents and fatalities at the state and local level. In order for 

this to be achieved, cooperation between the different stakeholders is paramount. In the 

NCHRP Report 501 of 2003, the various components and communications between the 

stakeholders were defined in order to obtain an Integrated Safety Management System 

(Bahar et al. 2003). 

The NCHRP Report 501 of 2003 states that the components of integrated asset 

management are organizational structure, leadership, mission, vision, resources, 

integrated process management, and safety tools. The incorporation of the various 

components mentioned above will lead to improvements in safety requirements and 

alignment of responsibility for achieving safety with vision, goals, and strategies of 

support. Using this process, the state agencies can form an integrated organizational 

structure and can provide the necessary resources for the management and 

implementation of the integrated system. 

2.2 IDENTIFICATION OF AREAS AT HIGH RISK OF 
CRASHES “HSIP’ AND MICRO MODELS 

The localization of high risk sites is an important element of the integrated 

systems. There are two types of methods used to identify the location of high risk sites 

or “black spots”. One of them uses basic statistics and rates (frequency, rate, severity, 

confidence intervals, etc.). The other method is based on crash prediction models or 

Safety Performance Function (SPF) (Tarko and Kanodia, 2004). 
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The method of locating black spots in Puerto Rico is based on a weighted 

average of frequencies, rates, and crash severities similar to the method used in Iowa.  

Other states use prediction models similar to those presented in the HSM 2010. All of 

these models are used for the analysis of site or project highway safety at the micro 

level. Other tools that are used to perform analysis at the project level have been 

developed, such as in the state of Colorado where prediction models were developed in 

order to evaluate the impacts of multiple urban freeways design alternatives (Kononov et 

al., 2007).  

Two types of SPF’s are used to represent crash frequencies as a function of 

given variables. The first type of SPF is a Level I, or descriptive analysis model, which 

determines crash frequencies based only on traffic volumes (AADT). The level II SPF, 

classified as multivariate models or association models, incorporate a variety of 

variables other than just traffic volumes. In the level II SPF, variables such as weather 

conditions, roadway geometries, traffic data, and human factors are used to calculate 

crash frequencies (SafetyAnalyst, 2002). The additional variables that represent highway 

geometry, and human factors provide useful information when making future 

improvements to a given roadway. Taking into account the impacts of changing a given 

geometry allows engineers to make better safety judgments. The information provided 

by the additional variables also allows for benefits such as education and enforcement. 

Law enforcement officers and drivers can adopt safer driving practices by recognizing 

situations, habits, and other conditions that pose safety concerns. 

A significant number of studies have been performed in the development of SPFs 

by using data analysis and interventions on roadway segments over a specified period of 

time. SPF’s have been the most common approach in studying the factors that affect the 
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likelihood of accident occurrence. Models that look at the crash frequency are abundant 

in the literature review and encompass a wide variety of modeling approaches including 

(see Lord and Mannering (2010) for a complete review of this literature): Poisson models 

(Jovanis and Chang, 1989; Jones et al., 1991; Miaou, 1994; Shankar et al., 1995; Poch 

and Mannering, 1996; El-Basyouny and Sayed, 2006; Lord 2006; Kim and Washington, 

2006; Malyshkina and Mannering, 2010a); Poisson-log normal models (Lord and 

Miranda-Moreno, 2008); Zero inflated count models (Miaou, 1994; Shankar et al., 1997; 

Lee and Mannering, 2002; Lord et al. 2005, 2007; Malyshkina and Mannering 2010 b); 

Conway-Maxwell-Poisson models (Lord et al., 2008; Sellers and Shmueli, 2010); 

Gamma models (Oh et al., 2006; Daniels et al., 2010); Generalized estimating equation 

models (Wang and Abdel-Aty, 1996; Lord and Mahlawat, 2009); Generalized additive 

models (Xie and Zhang, 2008; Li et al., 2011); Random effect models (Shankar et al 

1998; Quddus, 2008; Sittikariya and Shankar, 2009; Guo and et al., 2010); Negative 

binomial models (Ulfarsson and Shankar, 2003; Caliendo et al., 2007); Random 

parameters count models (Anastasoupoulos and Mannering, 2009; El-Basyouny and 

Sayed, 2009,2010;  and Finite mixture and Markov switching models (Malyshkina et al., 

2009; Park and Lord, 2009; Malyshkina and Mannering 2010a; Park et al.; 2010) for 

various agencies across the United States and Canada. 

 In 2001, the Federal Highway Administration (FHWA) commissioned the 

development of software tools for safety management known as the SafetyAnalyst. Even 

though studies occurred before 2002, the development of this software spurred several 

explorations concerning the most appropriate method for analyzing highway safety and 

developing statistical models. Currently, the Safety Analyst program only supports Level 
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I SPF’s, but studies have looked into multivariate models to determine the impact other 

variables may have on the crash frequency for a given type of roadway.  

2.3 MACRO LEVEL PREDICTION MODELS FOR A 
PROACTIVE APPROACH TO SAFETY 

The need for planning models arose from legislation that requires explicit 

consideration of highway safety at the planning level. Both the "Transportation Equity Act 

of 1998" (TEA 21), and its reinforcement, Moving Ahead for Progress in the 21th century 

Act (MAP 21, 2012), require the consideration of safety analyses at all stages of the 

planning and design processes.  

Models that incorporate the analysis of highway safety from the planning stage 

have been developed for various levels of data aggregation: levels such as traffic 

analysis zones (TAZ). These models have incorporated several prediction variables in 

order to determine the number and severity of crashes. Typical explanatory variables 

include socioeconomic aspects, demographic aspects, and infrastructure characteristics. 

The following is a summary of relevant work found in the researched literature on this 

topic.   

Laumon Amoros (2003) compared the traffic safety in several French counties by 

taking different types of roads and socioeconomic characteristics into consideration. The 

authors found a significant relationship between the county and road type. Noland and 

Quddus (2004) analyzed data from crashes in England to different types of land use, 

road characteristic, and demographics. This study suggests that areas with high 

employment density have a higher accident rate. 
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Washington et al. (2006) developed nine crash prediction models at the planning 

level for TAZ 859 in Tucson, Arizona using demographic, socioeconomic and road 

characteristics as predictors. Noland and Oh (2004) examined the association between 

crashes in the counties of Illinois, with various road infrastructure networks, some 

socioeconomic, and demographic variables. They found that the number of lanes was a 

significant factor for the models. These did not vary significantly when demographic 

variables were included. 

Agüero and Jovanis (2006) investigated the crash risk in Pennsylvania counties 

using data from fatal and injury crashes with respect to socio-demographic 

characteristics, weather conditions, transport infrastructure, and the number of trips. Full 

hierarchical Bayes models were developed with spatial effects, temporal effects, and 

space-time interaction. The information was then compared with the traditional, negative 

binomial crash frequency at the county level. The authors concluded that the inclusion of 

the spatial correlation analysis is more important for crashes on road segments and 

intersections than for crashes at the county level because the spatial correlation is more 

pronounced in those cases. 

Hadayegui et al. (2006) examined the temporal transferability of accident 

prediction models for areas using appropriate evaluation measures of predictive 

performance so as to assess whether the relationship between the dependent and 

independent variables behave consistently over time. The results show that the models 

are not transferable in a strict statistical sense. However, measures of transferability 

indicate that the models provide useful information when transferred to the application 

context. Hadayeghi et al. (2007) developed 23 crash prediction models at the traffic 

analysis zones level in the City of Toronto, Canada that are consistent with conventional 
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models commonly used for urban transport planning. The authors used generalized 

linear regression models with the assumption of a negative binomial error structure in 

order to explore the relationship between frequency of crashes in a traffic analysis zone 

and predictive variables such as traffic intensity, demographic, socioeconomic, land use, 

and traffic demand measures. 

Lovegrone and Sayed (2007) investigated the use of predictive models in macro-

level driving studies of hazardous locations (traditional use) with 577 urban and rural 

neighborhoods across Greater Vancouver in British Columbia, Canada. Several areas 

with a high risk of accidents were identified and prioritized by diagnosis. Two areas were 

analyzed in detail, revealing several potential improvements to traditional methods. The 

study used 35 models, 16 for rural areas and 19 for urban areas. 

Wier et al. (2009) developed models of vehicle-pedestrian collisions with injuries 

for 176 census tracts in San Francisco, California, which were spatially disaggregated by 

counties. Simple regression models were developed to predict changes in vehicle 

collisions – based on pedestrian traffic volume change. It became clear from the study 

that traffic volume was the leading cause of pedestrian collision with injuries.  Huang et 

al. (2010) developed a Bayesian spatial model for Florida and concluded that the safety 

status is worse in areas with low income, low education and high unemployment 

compared to relatively prosperous areas. Also, counties with high traffic intensity, 

population density, and a high degree of urbanization are associated with higher crash 

risk. 

Naderan and Shahi (2010) developed crash prediction models based on the 

generation phase of the travel-demand modeling technique in four steps. Generalized 
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linear models were generated with the assumption of a negative binomial distribution. 

The developed models predicted crashes in areas of urban traffic. This analysis was 

based on the predicted number of trips generated by purpose. They can be used to 

evaluate the effect of the generation of future travel on the frequency of collisions for the 

use of comprehensive transportation planning studies. The models are an effective way 

of incorporating safety into the long term transportation plan by helping safety planners 

develop scenarios of demand management while simultaneously evaluating the 

perceived effects on the safety of urban areas.  

Abdel Aty et al. (2011) developed negative binomial models and investigated the 

association between crash frequency, various travel productions, and travel attractions 

combined with the road characteristics TAZ 1349 in the State of Florida. 

2.4 PLANNING FOR A PROACTIVE APPROACH TO BE 
IMPLEMENTED AT THE STATE LEVEL FOR THE 
SAFETY MANAGEMENT SYSTEM OF SOME STATES 

According to the Figure 2.1, Washington et al 2006 ( NCHRP 546) suggests that 

incorporating safety considerations into transportation planning, or daily activities of the 

agency, consists of the following steps: 

2.4.1 Step 1: Incorporating safety into the vision statement  

Transportation system planning begins with the creation of a vision. This vision, 

which is shared by many states, includes “safety” as a desired characteristic of the future 

travel experience and represents an important “point of departure” for the many planning 

activities that follow. 

18 



  
 

Figure 2.1 Incorporating Safety into the Planning Process. 
(Source: NCHRP 546). 

 

The following vision statement from the California statewide transportation-

planning process illustrates a state’s typical vision goal. California’s vision is to have: “a 

safe, sustainable transportation system that is environmentally sound, socially, equitably 

and economically viable, and developed through collaboration; it provides for the mobility 

and accessibility of people, goods, services, and information through an integrated, 

multimodal network.” [Caltrans, California Transportation Plan, 2025, Sacramento, CA, 

March 2004]. 
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2.4.2  Step 2: Incorporating safety into the set of goals and 
objectives 

The goals and objectives for a region are derived from the vision statement. The 

vision is typically accomplished through well defined goals and objectives. These serve 

as an assessment of the relative contributions that each possible alternative or strategy 

and directs the planning process towards its desired outcome. 

In metropolitan areas, safety goals and objectives can also be more specific and 

include targets such as: reducing fatal accidents in the region by 10% over the next 

three years and reducing fatal and serious injury accidents by drivers aged 16 to 23 by 

30%. Specific safety targets such as these may serve as a guidance and motivation to 

the engineers and planners in order to achieve regional safety goals. 

In order to achieve these safety goals, it is necessary to increase funding 

dedicated to reducing high accident levels in the region. These monies will then be used 

to undertake safety studies throughout the region, mitigate major accident hot spots at a 

cost of X million dollars, but with an annual benefit of Y million dollars, support traffic 

safety education and traffic enforcement efforts, and build an information system that will 

identify incidents on transportation facilities to continually support  these  strategic safety 

investments. 

2.4.3  Step 3: Incorporating safety into system performance 
measures 

The evaluation of system performance has traditionally relied on measures of 

congestion, travel delay, traffic volumes, and the infraestructure’s condition, such as 

pavement and bridge condition. The transportation system’s safety performance can be 

monitored as well. 
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Performance measures are used to monitor the characteristics of the system 

operation, and to determine the extent to which desired goals and objectives are being 

achieved. The use of performance measures is a relatively new trend in transportation-

planning, so there is little consistency from one jurisdiction to another on how safety 

monitoring practices are performed. 

The following is an example of the goals laid out in the Texan Comprehensive 

Safety Plan. This is an example of how performance measures can relate to specific 

goals. The first goal was to decrease traffic deaths and injuries, reduce vehicular traffic 

accident rate’s per100 million VMT, and traffic accident injury rate’s per 100 million VMT. 

The second goal was to stabilize the increase of the frequency and percentage of all 

speed related accidents. 

Another example of the role of safety performance measures in transportation 

planning is found in the Minnesota Statewide Transportation Plan. One policy is to, 

“increase the safety and security of transportation systems and users.” There are five 

specific measures that  define what is meant by increased safety: reducing the number 

of accidents per vehicle-mile traveled, reducing the number of general aviation 

accidents, reducing the number of accidents between cars and trains at railroad 

crossings, reducing the total number of roadway fatalities, and reducing the number of 

general aviation fatalities. The Minnesota DOT analyzed the impacts of different safety 

policies in achieving safety goals using a trend based projection. 

2.4.4  Step 4: Incorporating safety into technical analysis 

In this stage, transportation problems are broken down into components that are 

used to pinpoint the areas in need of improvement. In the technical analysis process 
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there are two aspects that merit special attention. When considering a closer integration 

of safety into system planning, it is important to focus on safety-related data and their 

use, and analysis models/tools.  

2.4.5  Step 5: Evaluating alternative projects and strategies 

The process of reviewing the worth of each of the alternatives presenting this 

information to decision makers in a comprehensive and useful form is called evaluation. 

Most safety-related evaluation efforts use one of three methods, 1) simply listing the 

evaluation criteria to show how the alternatives compare, 2) assigning weights or scores 

to the evaluation factors, or 3) conducting cost-benefit analysis.  

In some situations, funding programs are divided into specific categories. In 

these cases the effectiveness of each category can be measured with one evaluation 

criterion, (such as safety, air quality, economic development, etc.), and the selection of 

the “best” alternative becomes much easier. In comprehensive transportation planning, 

however, reducing project selection decisions to a single criterion seldom happens. 

This evaluation step leads to the incorporation of policies, operations strategies, 

infrastructure projects, studies, regulations, and education as well as awareness, 

financing strategies, partnerships and collaborative undertakings into the transportation 

plan. 
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2.4.6  Step 6 Developing the plan and program and Step 7 
Monitoring  system performance 

Step 6: Developing the plan and program  

It is important that both medium and long-term transportation plans include 

developed, safety-related projects based on the evaluation performed in the previous 

step. Examples of such projects are: increasing driver safety awareness, increasing 

safety belt use and child seats, increasing restraint usage, preventing drowsy and 

distracted driving, curbing high risk driving behaviors, making sure drivers are fully 

licensed, competent and insured, reducing impaired driving, creating more effective 

processes and Safety Management Systems, and developing and encouraging 

multidisciplinary safety teams. 

Step 7: Monitoring system performance  

System performance should be monitored to evaluate the effectiveness of the 

various strategies, programs, and policies that were implemented. 

2.5  EXAMPLE OF THE PHOENIX SAFETY 
MANAGEMENT SYSTEM 

Figure 2.2 shows the Safety Management System for Phoenix, Arizona. This 

system uses a safety goal and several safety performance measures to drive the 

collection of safety-related data, and the identification of projects and strategies. These 

projects and strategies reflect the planning, engineering, education, and enforcement 

aspect of the safety challenge in that metropolitan area. Many states have similar safety 

management systems, although they are not often tied to the transportation plan.  
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Figure 2.2 Phoenix Safety Management System. 
(Source: NCHRP 546) 

 

2.6 DISCUSSION 

Several models have been developed and have even been incorporated into the 

Highway Safety Manual in order to analyze highway safety at the site or project level. 

However, as indicated by Hadayeghi et al. (2005), highway safety models for the 

planning process are still under investigation. Additionally, the developed models are 

mainly Bayesian, binomial or generalized linear models, with few GLMM models. The 

idea of this research project is to explore Generalized Linear Mixed Models (GLMM), 

which allow the proper modeling of data sets in cases where the observations are not 

completely independent. GLMM have been widely used in other fields including 

economics, agriculture, and forestry. The modeling framework of GLMM is able to 

handle correlated data by incorporating random variables. Several modeling strategies 

under the same framework provide great flexibility in order to model the variability of 
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each of the variables involved in these types of models. Several benefits can be 

obtained by using mixed models. In some cases we obtain more accurate estimates, but 

in others, the structure of the model is more robust and the inference space is wider 

(Agresti 2003).  
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CHAPTER 3: TRANSPORTATION PLANNING 
AND HIGHWAY SAFETY IN 
PUERTO RICO AND GENERAL 
STATISTICS  

3.1 BACKGROUND 

There are 16,693 miles of roads in Puerto Rico. In 2010 there were 3,102,941 

licensed drivers and 3,020,455 registered vehicles. There are approximately 3.8 million 

citizens distributed over the 78 municipalities of Puerto Rico. This means that there are 

about 1,000 people per square mile, a ratio higher than any state within the United 

States. It also ranked among the world’s highest ratio. Of the total population, 

approximately 3.03 million are less than 55 years of age. This shows that Puerto Rico’s 

population is relatively young. Therefore, the tendency of most drivers is to have an 

active social life. Approximately 261,000 traffic crashes occur in Puerto Rico every year 

resulting in over 35,000 injuries and approximately 340 fatalities (SHSP, 2014). 

Traffic crash data have been reviewed by the Puerto Rico Traffic Safety 

Commission (PRTSC) staff throughout the years in order to identify problems that are 

unique to Puerto Rico. The primary and most reliable data source is FARS (Fatality 

Analysis Reporting System). Also, crash data are obtained from the Accident Information 

System of the Analysis of Accidents Office within the Department of Transportation and 

Public Works (DTPW). Data on licensed drivers, registered vehicles, and VMT are also 

obtained from the DTPW. 

In the transportation planning process of the Commonwealth of Puerto Rico, 

safety appears in the vision statement, and in the set of goals and objectives. However, 
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the road safety audit division is developing a Safety Management System that includes a 

HSIP related to planning, monitoring and performance measures of safety.  

HSIP comes from the SAFETEA-LU source of funds, and is continued by the 

MAP-21. With these funds, the Road Safety Audit Division in the office of traffic 

regulations is in the process of developing a HSIP. The HSIP will incorporate planning, 

evaluation and implementation of safety countermeasures. At the moment, they have a 

methodology for planning, used to identify black spot priorities similar to the 

methodology used in Iowa State that consisted of establishing a weighted average of the 

sites with higher frequencies, rates and crash severities. However, there is no 

methodology for evaluating design alternatives; a method to later identify the fulfillment 

of goals and objectives related to infrastructure improvements. The Road Safety Audit 

Division will apply the Highway Safety Manual’s Methodologies and  strategies and 

evaluate its implementation and subsequent monitoring.  

Additional federal requirements that are related to safety are incorporated into 23 

U.S.C. Section 402, as shown in figure 3.1. This requires the creation of the State 

Highway Safety Program (SHSP). This program, administered by the National Highway 

Traffic Safety Administration (NHTSA), requires that the state Governor be responsible 

for the administration of the State Highway Safety Program through a Governor’s 

Highway Safety office.  

The Puerto Rico Highways and Transportation Authority (PRHTA) has the 

responsibility of overseeing Puerto Rico’s network of roads and highways, and to 

enforce safety. As part of the Moving Ahead for Progress in the 21st Century Act (MAP-

21) requirements, the PRHTA shall develop its multi-annual Strategic Highway Safety 
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Plan (SHSP). This data driven plan shall include the input from other stakeholders that 

share the same objectives. 

 The main objective of the SHSP is that all safety initiatives toward reducing 

fatalities and injuries in highway accidents are fully coordinated and developed based on 

current Puerto Rico trends and statistical evaluation results. As such, the plan will 

include emphasis areas as well as strategies to reduce fatalities and injuries, based on 

Puerto Rico crash data. 

 
 

Figure 3.1 State highway safety program. 
(Source NCHRP 546) 

 

The majority of initiatives undertaken by the Governor’s Highway Safety office 

are directed towards encouraging the use of the passenger restraint system, minimizing 

dangers associated with individuals driving under influence of drugs and alcohol, and 

encouraging safe behavior in school and construction zones. While these activities are 

associated with the behavioral aspect of transportation usage, it is clear that the 
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substantive safety issues this programs seeks to address are of great interest to 

transportation planning efforts aimed toward increasing transportation system safety. 

The relationship between highway safety offices and their safety programs, as well as 

the planning efforts of transportation agencies, is an area that needs to be strengthened 

to include strategies to better integrate these processes.  

The Puerto Rico Traffic Safety Commission (PRTSC) is in charge of developing 

the Highway Safety Plan. The Executive Board includes representatives of the following 

agencies: DOTPW, Department of Health, Puerto Rico Police Department (PRPD), 

Department of Education, Department of Justice, Courts Administration, and 

representatives from Public Interest and  Youth Representative.The PRTSC lead the 

development of a comprehensive traffic safety program for Puerto Rico including 

strategies for Education, Enforcement, Engineering, and Emergency Medical Service to 

be implemented throughout the 2014-2018 time period. 

Several program areas were activated including the following: Traffic records and 

information systems, emergency medical response, occupant protection, alcohol 

impaired driving, aggressive driving, young drivers, vulnerable road users, roadway 

departure, and intersections.  Each one of these program areas have performance 

goals, performance measures, and strategies. 

In the traffic engineering program the elimination of hazards on the roadway that 

may cause or aggravate traffic crashes is one of the engineering strategies that can help 

improve traffic safety. The engineering component of hazard elimination requires a team 

of experienced professionals from the Puerto Rico Highway and Transportation 
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Authority’s (PRHTA) Road Safety Audit Division to attend to both the citizen’s requests 

as well as perform a proactive analysis of hazardous road segments and intersections. 

The team then provides in-house design for road safety improvements to be bid 

by the PRHTA. PRTSC provides funds for personnel, vehicle, and equipment as well as 

for the construction of road improvements through reimbursement. These funds are 

supplemented by Federal Safety Funds. However, there are some larger projects which 

cannot be designed in-house and present a challenge to the efforts of improving 

hazardous conditions on longer corridors or roads with high speeds and/or traffic 

volumes. Some performance goals for the Traffic Engineering program are: increasing 

the percent of hazard elimination construction funds liquidated, implementing roadside 

improvements (Impact Attenuators, NCHRP 350 upgrades), implementing island wide 

road departure countermeasures, and increasing the amount of projects completed by 

the Impact Team. The Traffic Engineering program created performance measures in 

order to achieve these goals 

3.2 THE LOCAL INCORPORATION OF SAFETY INTO 
THE PLANNING PROCESS AND ITS ASSEMENT 

In order to assess the planning process, current and former officials of the DTPW 

were interviewed. The questions asked in this interview were taken from the NHRP 546 

report. The questions were: 

• Does the vision statement for the planning process (transportation plan) include 

safety? 
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• Is there at least one planning goal and at least two objectives related to safety 

(transportation plan)? 

• Are safety-related performance measures a part of the plan being used by the 

agency?  

• Can safety performance measures link to the evaluation criteria that will be 

used later in the planning process to assess the relative benefits of one project or 

strategy over others? 

• Is safety-related data used in problem identification and for identifying potential 

solutions? 

• Are safety analysis tools used regularly to analyze the potential impacts of 

prospective strategies and actions? 

• Are evaluation criteria used for assessing the relative merits of different 

strategies and projects including safety-related issues in the area of 

programming and budget of the agency? 

• Do the products of the planning process include at least some actions that 

focus on transportation safety? 

• Is safety one of the main priorities to the extent that a prioritization scheme is 

used to develop a program of action for an agency?  

• Is there a systematic monitoring process that collects data on the safety-related 

characteristics of the transportation system performance, and feeds this 

information back into the planning and decision making process? 
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• Are all of the key safety stakeholders (Governor’s Office of Highway Safety, 

MPO, State Department of Transportation, local Departments of Transportation, 

Departments of Public Health, Departments of Public Safety, local police 

agencies, the Department of Education, Federal Highway Administration, Federal 

Transit Administration, American Automobile Association, etc) involved in the 

planning process? 

The answers for many of the interview questions were negative, indicating that 

there are still many opportunities for improvement in regards to  the integration of safety 

into the medium and long-term transportation plan. The most important issues found in 

the interview are as follows: 

• In the transportation planning process of the Commonwealth of Puerto Rico, 

safety appears in the vision statement and in the set of goals and objectives of 

LRTP.  

• There is no Safety Management System in place for planning and monitoring 

safety.  

• The Road Safety Audit Division in the Office of Traffic Regulations is in the 

process of developing a HSIP with the planning, evaluation and implementation 

of safety countermeasures. 

• Currently the Road Safety Audit Division have a methodology for identifying 

black spot priorities similar to the methodology applied in state of Iowa.  

• Additional federal requirements related to safety are incorporated into 23 U.S.C. 

Section 402. This code requires the creation of a State Highway Safety Program 
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SHSP. A SHSP was developed in Puerto Rico for the 2014-2018 time period. 

However the planning process proposed by Washington et al. 2006 and shown in 

Chapter 2 Figure 2.1 is incomplete in Puerto Rico procedures. The central 

procedures in the flowchart, as indicated in the dashed area of Figure 2.1, have 

not been developed or can be improve in Puerto Rico. The performance 

measures skips the highlighted procedures and continues to plan and TIP. 

3.3 SUMMARY AND ANALYSIS OF CRASH STATISTICS 
IN THE WESTERN REGION, PER MUNICIPALITY 

Figures 3.2 through 3.6 present highways length, population density, population 

with ages between 16 to 64 in thousand, total population in thousands, and proportion of 

Interstates of the Western municipalities, respectively. 

Figures 3.7 to 3.9 present crash rate plots, due to crash frequencies alone are 

not comparable. Crash rate allow establishing a hierarchy of risk of crashes in the 

Western municipalities.  

  
 
 

Figure 3.2 Highway miles and kilometers in the western region year 2006 (HPMS database) 
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Figure 3.3 Population density in the western region year 2002 (Census estimates) 
 
 
 
 
 
 
 
 

 
 

Figure 3.4 Population 16-64 in the western region year 2002 (Census estimates) 
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Figure 3.5 Total population in the western region year 2002 (Census estimates) 
 

 
 

Figure 3.6 Proportion of Interstates in the western region year 2006 (HPMS database) 
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Figure 3.7 Crash rates in the western region (DTPW 2002-2006 database) standardized by 
length 

 
 
 

 
 

Figure 3.8 Crash rates in the western region (DTPW 2002-2006 database) standardized by 
population 
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Figure 3.9 Crash double rates in the western region (DTPW 2002-2006 database) 

 
As a summary of the plots, Figure 3.2 shows that Cabo Rojo and Mayagüez are 

the municipalities with the highest number of kilometers of builded highways. Figure 3.3 

shows that Aguadilla and Hormigueros are the municipalities with the greatest 

population density.  Figure 3.4 shows that Mayaguez is the municipality with a higher  

population of persons within the ages of 16 to 64.   Figure 3.5 shows that Mayaguez is 

the municipality with the most habitants. Figure 3.6 shows that Isabela is the municipality 

with the highest  proportion of interstate highways.  Figure 3.7 shows that Isabela is the 

municipality with the greatest number of crashes per mile. Figure 3.8 shows that 

Aguadilla and Moca are the municipalities with most crashes per one thousand people.  

Figure 3.9 shows that  Isabela  is the municipality with the highest number of crashes 

per mile per one thousand people followed by Rincon. 
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CHAPTER 4: CALIBRATION OF MACRO 
MODELS FOR HIGHWAY SAFETY 
PLANNING 

4.1 DETAILED METHODOLOGY 

The methodology of this study consists of six basic steps: a literature review, the  

identification of existing models and procedures used in Puerto Rico, the collection and 

preparation of data, the calibration and application of existing models, the identification 

of independent variables to be used in the mode, and finally, the development of crash 

prediction models for Puerto Rico. The scheme of the general methodology is shown in 

Figure 4.1. 

This chapter’s main goal is to recommend a model for safety planning that can 

be applied in Puerto Rico, and that can guide the planning department’s decision 

making. The resulting model will be used in the exploration of the relationship between 

crash frequencies in the municipalities and some variables that may be predictive. These 

variables include traffic intensity, socioeconomic and demographic factors, types of land 

use, and traffic demand measures, and other geometric characteristics. The following 

figure describes each one of the methodology steps in more detail. 
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Figure 4.1 Methodology for the  calibration of Arizona Models and the development of 
Western Puerto Rico Models. 
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4.2 LITERATURE REVIEW AND IDENTIFICATION OF 
EXISTING MODELS 

In this section, the safety management systems of a few states were analyzed  

where safety was incorporated into the mid and long- term transportation planning 

process. Additionally, existing models found in the literature were reviewed. This part of 

the report is included in Chapter 2- Section 2.3. 

4.3  PROCEDURES USED IN PUERTO RICO 

It was necessary to carry out interviews with transportation agency officials who 

were responsible for highway safety and with transportation consultants. The 

Transportation Plan 2040 of Puerto Rico should find ways to include procedures to 

incorporate safety into mid and long-term transportation plans in Puerto Rico. This was 

discussed further in Chapter 3. 

4.4 COLLECTING DATA AND PREPARATION 

The collection of data from the western municipalities (planning level) for the 

application of the Tucson, Arizona prediction model for safety, requires the cooperation 

between different traffic agencies in the region. Data are collected at different levels and 

sharing them between agencies can be difficult. It is necessary to have the support of 

the ACT (Highways and Transportation Authority) from the initial stage of the data 

collection process. Data should be collected from the ACT, state and, in some cases, 

metropolitan planning agencies. The crashes database was obtained through the 

Division of Safety Audits in the Traffic Regulations Office. The socioeconomic and 

40 



demographic information was obtained from the American Fact Finder website   

http://factfinder2.census.gov, and the traffic and geometric characteristics were obtained 

by using the Office of Highway Performance Monitoring Systems database. 

Preparing a dataset by municipality consisted of developing a joint database with 

crash frequency data, census data, and geometric data, among others. The variables 

needed to run and calibrate the Arizona models were: number of crashes per 

municipality, population density, population within the ages 16-64, miles of the roads 

built, number of intersections per mile, total miles of rural and urban interstate highways 

as a proportion of total miles, total miles of freeways and expressways as proportion of 

total miles, population within the ages 0-15, the total number of minorities, total miles of 

roads in the municipality, total miles of main roads and rural and portion of total miles in 

the municipality, among others. Some of this data is collected using GIS tools such as 

dynamic segmentation and spatial joining. 

The detailed steps followed to obtain the data were: 

i. Filtering crash database 

The DTOP crash database in Microsoft Access was filtered by municipality to 

obtain the total number of crashes for each municipality. 

ii. Filtering of the file PRM-EST00INT-AGESEX-5YR  

The database of the American Fact Finder web page PRM-EST00INT-AGESEX-

5YR was used to obtain the population per municipality and year. 
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iii. Filtering of miles per municipality  

The total road miles per municipality and per road type were obtained using the 

HPMS GIS shape files and database, and the Arc GIS 9.3 tools were ‘selected by’: 

municipality, road type, etc. 

The summary of the joint data is presented in tables 4.1 to 4.4. 

Table 4.1 Data for the total crashes model for the western region year 2002 (DTPW and 
HPMS database). 

MUNICIPALITY TOTAL CRASHES TOT_MILE POP_PAC POP16_64 

Aguada 2286 262.49 2.145 28490 

Aguadilla 3243 219.06 2.751 42410 

Añasco 1206 272.07 1.144 18980 

Cabo Rojo 1703 397.36 1.070 30969 

Guanica 665 187.39 0.907 13755 

Hormigueros 820 300.36 2.330 11026 

Isabela 2082 80.11 1.273 29414 

Lajas 1032 274.53 0.789 16996 

Las Marias 370 238.42 0.469 7139 

Maricao 174 156.12 0.276 4215 

Mayagüez 6282 394.58 1.957 64653 

Moca 1979 327.68 1.248 26559 

Rincon 621 110.94 1.638 9779 

Sabana Grande 862 191.34 1.131 16747 

San German 1670 324.97 1.062 23998 

 

In Tables 4.1 and 4.2 the variable POP_PAC represents the Population density 

(population estimates from U.S. Census SF1) in persons per acre. The variable 

POP16_64 is the total population of ages between 16 to 64 (from U.S. Census SF1), 

and TOT_MILE is the total mileage of all functional classes of roads. 
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Table 4.2 Data for the total crashes model for the western region year 2006 (DTPW  and 
HPMS database) 

MUNICIPALITY TOTAL CRASHES TOT_MILE POP_PAC POP16_64 

Aguada 2404 262.49 2.15 28975 

Aguadilla 3394 219.06 2.70 41458 

Añasco 1329 272.07 1.16 19390 

Cabo Rojo 1999 397.36 1.11 31980 

Guanica 800 187.39 0.87 13205 

Hormigueros 921 300.36 2.37 30067 

Isabela 2739 80.11 1.29 16948 

Lajas 996 274.53 0.79 16948 

Las Marias 333 238.42 0.45 6929 

Maricao 212 156.12 0.27 4210 

Mayagüez 6282 394.58 1.88 62131 

Moca 2096 327.68 1.26 26982 

Rincon 727 110.94 1.66 9838 

Sabana Grande 940 191.34 1.12 16602 

San German 1923 324.97 1.05 23547 

 
 

Table 4.3 Data for the fatal crashes model for the western region year 2002 
(DOTPW  and HPMS database) 

MUNICIPALITY FATAL CRASHES INT_PMI PNF_0111 PNF_0512 POPMIN 
Aguada 7 0.12 0.03 0.00 0.13 
Aguadilla 12 0.09 0.09 0.07 0.17 
Añasco 5 0.08 0.08 0.02 0.19 
Cabo Rojo 5 0.05 0.05 0.00 0.17 
Guanica 0 0.1 0.04 0.00 0.2 
Hormigueros 4 0.04 0.03 0.00 0.19 
Isabela 7 0.35 0.17 0 0.17 
Lajas 2 0.1 0.03 0 0.2 
Las Marias 0 0.08 0.00 0.00 0.14 
Maricao 0 0.08 0.00 0.00 0.11 
Mayagüez 9 0.1 0.05 0.00 0.22 
Moca 7 0.09 0.00 0.00 0.11 
Rincon 1 0.06 0.00 0.00 0.14 
Sabana Grande 2 0.07 0.04 0.00 0.15 
San German 5 0.11 0.06 0.00 0.17 
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In Table 4.3, the variable INT_PMI represents the number of intersections per 

mile (using total mileage in the municipality). The variable PNF_0111 is total 

mileage of urban and rural interstates as a proportion of the total mileage (federal 

functional classifications 01 and 11), while PNF_0512 is the total mileage of other 

freeways and expressways (i.e., not interstate and also not principal arterials) as 

a portion of the total mileage. POP00_15  represents the total population of ages 

0 to 15 (from U.S. Census SF1), and PPOPMIN is the total number of minorities 

(from U.S. Census SF1) as a proportion of the total population. 

Table 4.4 Data for the fatal crashes model for the western region year 2006 (DOTPW  and 

HPMS database) 

MUNICIPALITY FATAL CRASHES INT_PMI PNF_0111 PNF_0512 POPMIN 

Aguada 6 0.12 0.03 0.00 0.134 

Aguadilla 14 0.09 0.09 0.07 0.17 

Añasco 3 0.08 0.08 0.02 0.194 

Cabo Rojo 4 0.05 0.05 0.00 0.168 

Guanica 4 0.10 0.04 0.00 0.201 

Hormigueros 1 0.04 0.03 0.00 0.192 

Isabela 6 0.35 0.17 0.00 0.166 

Lajas 8 0.10 0.03 0.00 0.2 

Las Marias 3 0.08 0.00 0.00 0.143 

Maricao 0 0.08 0.00 0.00 0.113 

Mayagüez 9 0.10 0.05 0.00 0.22 

Moca 3 0.09 0.00 0.00 0.105 

Rincon 2 0.06 0.00 0.00 0.143 

Sabana Grande 6 0.07 0.04 0.00 0.151 

San German 1 0.11 0.06 0.00 0.172 
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4.5 CALIBRATION AND APPLICATION OF MODELS 
FOUND IN THE LITERATURE 

This section investigates the potential of using the models and safety planning 

characteristics found in the literature review in western Puerto Rico. This model is 

calibrated with correction factors in order to apply it to the Western area of Puerto Rico 

and to analyze if the characteristics are suitable.  

The models in this section were developed by Washington et al. (2006) for the 

City of Tucson, Arizona, using the total frequency of crashes and fatal crashes. In these 

models the dependent variable is transformed and is analyzed using log-linear 

regression with the ordinary least squares method to calculate estimates of the 

parameters. In this model, the dependent variable is assumed to be continuous, with a 

normal distribution and homogeneity of the variance. The mathematical forms of the 

models are the following: 

Total Crash Frequency Model 
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Fatal Crash Frequency Model 
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The assessment of the adequacy of these models required several steps. 

4.5.1 Generation of the expected crash counts in Excel  

The model inputs are crash counts by municipality, independent variables for the 

base year 2002, and the independent variables estimated for  four years later, the 2006 

scenario. 

4.5.2  Calculation of correction factors for the base year 

The correction factor is calculated using the average observed frequency of 

crashes divided by the average estimated frequencies. It is an essential component of 

the analysis because it corrects the differences between the safety model fitted to a 

region, and the region or state to be used. The BCF is used to evaluate the goodness of 

fit of the model. 

 1 1
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where Oi is the observed crash frequency for municipality i, Pi is the estimated crash 

frequency by the model for municipality i, N is the number of municipalities. 

To evaluate the goodness of fit, the BCF should be calculated for each 

municipality using 
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i

i
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P
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where Oi is the observed crash frequency for municipality i, Pi is the predicted frequency 

using the model for municipality i. 

The next step is to compute the average BCF through all municipalities using 
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The standard deviation and coefficient of variation of individual BCF’s are 

computed as follows: 
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and.  

 ,BCF
BCF

average

SDCV
BCF

=  (4-7) 

where SD is the standard deviation, and CV is the coefficient of variation. 

The standard deviation is the standard deviation of the population of the 

correction factors of the municipality, and the coefficient of variation is the standard 

deviation divided by the average. Those are calculated to compare the goodness of fit of 

the models. 

47 



4.5.3 Prediction of crashes with models found in the literature 

The data from the 2002 base year for the  region of interest is used to calculate 

the correction factors described in step 3. The model is then used with the independent 

variables estimated for the year of interest of (2006) to predict future collisions. Model 

predictions for all municipalities are multiplied by the correction factor previously 

computed to obtain the corrected estimate of crashes in the future scenario. These 

prediction models are thus adjusted for local conditions. 

4.5.4 Comparison of the coefficients of variation of the 
correction factors to observe if the data fits the model 

The coefficient of variation, CV is a measure of unexplained variation in the crash 

model. A CV near zero indicates that the model fits the observed data well. A CV equal 

to one suggests that the standard deviation is the same as the average. A CV greater 

than one suggests that there are significant unexplained variations in local models, 

indicating a lack of fit to the model. Thus, values less than one are preferred. 

All steps mentioned above were programmed into an Excel spreadsheet, as 

summarized in Tables 4.5 and 4.6. The total crash model presents a CV greater than 

one, which may suggest that there are significant unexplained variations in local models, 

and indicates a lack of fit to the model. 
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Table 4.5 Total crashes spreadsheet 
BASE YEAR 2002 

MUNICIPALITY Oi POP_PAC POP16_64 TOT_MILE Pi (Ln Y) BCF 
Aguada 2286 2.14 28490 262.49 11.10 29.01 
Aguadilla 3243 2.75 42410 219.06 13.79 301.65 
Añasco 1206 1.14 18980 272.07 9.21 8.25 
Cabo Rojo 1703 1.07 30969 397.36 11.74 73.74 
Guánica 665 0.91 13755 187.39 8.04 4.67 
Hormigueros 820 2.33 11026 300.36 7.75 2.82 
Isabela 2082 1.27 29414 80.11 10.97 27.81 
Lajas 1032 0.79 16996 274.53 8.80 6.45 
Las Marías 370 0.47 7139 238.42 6.80 2.43 
Maricao 174 0.28 4215 156.12 6.09 2.55 
Mayagüez 6282 1.96 64653 394.58 5.05 0.02 
Moca 1979 1.25 26559 327.68 10.78 24.27 
Rincón 621 1.64 9779 110.94 7.18 2.12 
Sabana Grande 862 1.13 16747 191.34 8.64 6.59 
San Germán 1670 1.06 23998 324.97 10.26 17.19 
Totals 24995       136.21   

         Unbiased BCF 183.5 
     Average BCF 34.0 
     Std.dev.BCF 73.9 
         CV BCF 2.2 

PREDICTION YEAR 2006 
Oi POP_PAC POP16_64 TOT_MILE Pi (Ln Y) BCF ADJUSTED Pi 

2404 2.15 28975 262.49 11.20 183.5 2055 
3394 2.70 41458 219.06 13.60 183.5 2496 
1329 1.16 19390 272.07 9.29 183.5 1704 
1999 1.11 31980 397.36 11.94 183.5 2191 
800 0.87 13205 187.39 7.93 183.5 1456 
921 2.37 10968 300.36 7.74 183.5 1420 
2739 1.29 30067 80.11 11.10 183.5 2036 
996 0.79 16948 274.53 8.79 183.5 1614 
333 0.45 6929 238.42 6.76 183.5 1240 
212 0.27 4210 156.12 6.09 183.5 1118 
6282 1.88 62131 394.58 17.88 183.5 3282 
2096 1.26 26982 327.68 10.86 183.5 1993 
727 1.66 9838 110.94 7.19 183.5 1320 
940 1.12 16602 191.34 8.62 183.5 1581 
1923 1.05 23547 324.97 10.18 183.5 1867 
 

 

49 



Table 4.6 Fatal crashes spreadsheet 
BASE YEAR 2002 

MUNICIPALITY Oi INT_PMI PNF_0111 PNF_0512 POP00_15 POPMIN Pi (Ln Y) BCF 
Aguada  7 0.12 0.03 0.000 9979 0.13 3.37 2.08 
Aguadilla  12 0.09 0.07 0.000 14089 0.17 4.53 2.65 
Añasco 5 0.08 0.02 0.000 6578 0.19 2.48 2.02 
Cabo Rojo  5 0.05 0.05 0.000 10242 0.17 3.48 1.43 
Guánica 0 0.10 0.04 0.000 5191 0.20 2.14 0.00 
Hormigueros 4 0.04 0.03 0.000 3245 0.19 1.62 2.46 
Isabela  7 0.35 0.17 0.000 10161 0.17 3.64 1.92 
Lajas  2 0.10 0.03 0.000 5818 0.20 2.29 0.87 
Las Marías  0 0.08 0.00 0.000 2627 0.14 1.38 0.00 
Maricao  0 0.08 0.00 0.000 1612 0.11 1.10 0.00 
Mayagüez 9 0.10 0.05 0.004 18781 0.22 5.75 1.57 
Moca  7 0.09 0.00 0.000 9872 0.11 3.27 2.14 
Rincón  1 0.06 0.00 0.000 3193 0.14 1.53 0.65 
Sabana 
Grande  2 0.07 0.04 0.000 6011 0.15 2.35 0.85 
San Germán  5 0.11 0.06 0.000 7870 0.17 2.87 1.74 
Total 66           42   

        
Unbiased 

BCF 1.58 

        
Average 

BCF 1.36 
        Std.dev.BCF 0.88 
              CV BCF 0.64 

PREDICTION YEAR 2006 

Oi INT_PMI PNF_0111 PNF_0512 POP00_15 POPMIN Pi (Ln Y) BCF 
ADJ 
Pi 

6 0.12 0.03 0.00 9020 0.13 3.12 1.58 4.92 

14 0.09 0.07 0.00 13055 0.17 4.26 1.58 6.72 

3 0.08 0.02 0.00 6167 0.19 2.37 1.58 3.74 

4 0.05 0.05 0.00 10102 0.17 3.45 1.58 5.44 

4 0.10 0.04 0.00 4569 0.20 1.98 1.58 3.12 

1 0.04 0.03 0.00 3161 0.19 1.60 1.58 2.53 

6 0.35 0.17 0.00 9613 0.17 3.50 1.58 5.52 

8 0.10 0.03 0.00 5329 0.20 2.17 1.58 3.42 

3 0.08 0.00 0.00 2304 0.14 1.30 1.58 2.05 

0 0.08 0.00 0.00 1450 0.11 1.06 1.58 1.68 

1 0.10 0.05 0.00 16795 0.22 5.23 1.58 8.25 

3 0.09 0.00 0.00 9309 0.11 3.13 1.58 4.93 

2 0.06 0.00 0.00 3037 0.14 1.49 1.58 2.35 

6 0.07 0.04 0.00 5600 0.15 2.24 1.58 3.53 

1 0.11 0.06 0.00 7248 0.17 2.70 1.58 4.27 
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The fatal crash model presents a CV less than one. However, it must be noted 

that the prediction Pi is to be back transformed in order to be expressed in the original 

scale, and hence the variability will increase. Therefore the Arizona models were not 

able to explain the phenomena very well. This can be attributed to the variation of 

geographical and human behavior between states. 

4.5.5 Identification of independent variables used in the western 
region model of Puerto Rico 

Due to Arizona model’s lack of fit to Puerto Rico’s characteristics, a decision was 

made to find new explanatory variables and develop a western region model with the 

data of the 15 municipalities that form this region. Road network characteristics, socio-

economic and demographics were utilized as possible independent variables. The 

frequency of crashes by municipality was the dependent variable. 

Prior to modeling, all of the variables were examined individually to determine 

whether the variables were logical. Checks for reasonableness include computing 

means, medians, modes, maxima, and minima for all the variables in the database. 

Often times, coding and transcription errors are detected during this process. This 

helped to eliminate atypical data values on the model on the modeling results. 

A descriptive analysis of the different explanatory variables was performed and 

several graphs were plotted in order to better understand the data (Section 3.3). In 

addition to the model variables used in the evaluated literature, the number of miles in 

primary, secondary, tertiary, municipal, and state roads were also considered. This 

division is more common on the roads of Puerto Rico than the division made according 
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to functional classification adopted in existing models (for more details see Appendix 

Table 1, chapter 4). 

4.5.6  Development of the Puerto Rican highway crash 
prediction model and the selection of the best model 

This section consists of developing an initial model using a set of independent 

variables generated in section 4.5.5. Stepwise, forward and backward analyses for a 

0.15 level of significance were realized. These procedures were applied with the 

purpose of reducing the group of variables during a preliminary analysis for variable 

selection. After these analyses were performed, few variables were found to be 

statistically significant or had a logical interpretation. The initial model was a linear 

regression with the logarithmic transformation of the dependent count variable, similar to 

the model done by Washington et al. which utilized the ordinary least squares method. 

The steps followed for the development of the Puerto Rican binomial negative 

macro models were: data collection and analysis of significant variables, the definition of 

the distribution and model structure, the estimation of the parameters, and model 

selection  (McCullagh et al., 1989). This methodology is described in more detail in 

chapters 5 and 6 section 2. However a brief description is also provided in this section. 

4.5.6.1  Data collection and analysis of significant variables 
 

The stepwise, forward and backward process was repeated several times and a 

number of candidate models were estimated by used variations of variables and adding, 

maintaining or dropping variables at a 0.15 level of significance. 
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4.5.6.2  Defining distribution and model structure 
 

The number of collisions are nonnegative and discrete in nature. Therefore, 

Poisson and Negative Binomial models were developed. In this case, negative binomial 

models presented the best fit due to the over dispersion parameter (variances of counts 

are greater than means). 

4.5.6.3  Estimation using the Maximum Likelihood (ML) Method 

and model selection 

The maximum likelihood method was used for parameter estimation. And the 

Newton Raphson method is used as the optimization technique. 

The Negative Binomial models presented the best fit due to the over dispersion 

parameter (variances are greater than the means). The best of the Negative Binomial 

models were selected using the Akaike’s Information Criterion (AIC). 

4.5.6.4  Models for total crashes  
 

The resulting model for total crashes after taking the log transformation is the 

following log-normal model.  

 _( 1) 5.84 0.03 /1000,Ln crashes Population+ = + ×  (4-8) 

The coefficient of determination, R2 ,  is equal to 0.84, indicating that 84% of the 

variability of the dependent variable is explained by the model predictor. 
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The resulting log - linear negative binomial model where the mean is not directly 

related to the variable, if not by a logarithmic link function is the following  

 }{ 2ˆ ( ) 4.5972 0.5098 10 _

0.6432 _ 9.316 ,

Ln E crashes Highway miles

POP PAC Interstates

−= + × ×

+ × × ×
 (4-9) 

In equation 4.9, highway miles represent the total miles of highways, POP_PAC 

is the population density (population estimates from U.S. Census SF1) in 

persons per acre, and INTERSTATES is the proportion of interstate highways. 

The fit of the model is analyzed using Pearson Chi Square/DF method. 

This resulted in a value of 1.15, is close to 1, indicating good fit of the model to 

the data. 

4.5.6.5  Models for fatal crashes  
 

The resulting model for fatal crashes after taking the log transformation is log-

transformation is the following log-normal model. In this equation, municipal roads 

represents the miles of municipal roads as a proportion of total miles of roads.  

 
_( _ 1) 0.01 0.02

_ ,
Ln fatal crashes

Municipality roads
+ = +

×
 (4-10) 

The coefficient of determination R2 , is 0.31, indicating that 31% of the 

variability of the dependent variable is explained by the model predictor. 
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4.5.6.6  Models for injury crashes  
 

The resulting model for injury crashes after taking the log transformation, is the 

following log-normal model  

 
_( _ 1) 2.54 0.97 _

0.03 _ ,
Ln Injury crashes POP PAC

Tertiary roads
+ = + ×

+ ×
 (4-11) 

The coefficient of determination R2 is 0.80, indicating that 80% of the variability of 

the dependent variable is explained by the model predictors. 

Log linear-Negative Binomial Model 

 }{ ˆ ( ) 2.74 0.88 _ 2.57

0.003 _ ,

Ln E crashe s POP PAC

Interstates Tertiary roads

= + × +

× + ×
 (4-12) 

In equation 4.12 POP_PAC represents the population density (population 

estimates from U.S. Census SF1) in persons per acre, interstate is the proportion of 

interstate roads, tertiary_ road is the miles of tertiary roads as a proportion of the total 

road mileage. 

The fit of the model was analyzed by using of the Pearson Chi-Square/DF 

method which resulted in a value of 1.35. The result is near to 1, indicating that the 

model describes the data adequately (Values below 2 are considered good fit of data to 

the model). 
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4.6 RESULTS AND DISCUSSION 

The objective of this section is to compare the log normal and log linear negative 

binomial models in order to determine which one offers a better prediction. The Tables 

4.7 and 4.8 present the results for the prediction of crashes in the municipalities of the 

western region for the year 2006,  by lognormal and log linear negative binomial models 

respectively. First, the models are fit and then the number of crashes are predicted. The 

best prediction was obtained using negative binomial models because the model yielded 

more accurate predictions. Table 4.7 presents the log- normal model and Table 4.8 

presents the results for the log-linear negative binomial model. 

Table 4.7 Log-normal total crash model prediction analysis 
  YEAR 2002   YEAR 2006 
MUNICIPALITY Oi Population/1000 Pi  BCF Oi Population/1000 Pi 
Aguada  2286 42.46 1533.64 1.49 2404 42.57 1539.89 
Aguadilla  3243 64.41 3311.69 0.98 3394 63.13 3166.03 
Añasco  1206 28.76 948.69 1.27 1329 29.27 965.84 
Cabo Rojo  1703 48.19 1875.07 0.91 1999 50.01 1998.41 
Guánica  665 21.54 736.61 0.90 800 20.62 713.35 
Hormigueros  820 16.88 625.66 1.31 921 17.19 632.37 
Isabela  2082 45.11 1683.49 1.24 2739 45.77 1722.90 
Lajas  1032 26.39 873.20 1.18 996 26.28 869.87 
Las Marías  370 10.89 507.17 0.73 333 10.46 499.56 
Maricao  174 6.46 434.21 0.40 212 6.43 433.68 
Mayagüez  6282 97.22 10462.66 0.60 6282 93.60 9214.61 
Moca  1979 40.18 1416.02 1.40 2096 40.51 1432.60 
Rincón  621 14.98 585.36 1.06 727 15.21 590.10 
Sabana 
Grande  862 25.98 860.68 1.00 940 25.84 856.40 
San Germán  1670 37.03 1268.14 1.32 1923 36.52 1245.45 
      BCFaverage 1.05       
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Table 4.8 Log linear- negative binomial total crash model prediction analysis 
YEAR 2002 

MUNICIPALITY Oi Highway_miles POP_PAC Interstates Pi BCF 
Aguada  2286 262.49 2.14 0.03 2060.56 1.11 
Aguadilla  3243 219.06 2.75 0.07 3481.14 0.93 
Añasco  1206 272.07 1.14 0.02 1021.48 1.18 
Cabo Rojo  1703 397.36 1.07 0.05 2412.59 0.71 
Guánica  665 187.39 0.91 0.04 659.36 1.01 
Hormigueros  820 300.36 2.33 0.03 2833.73 0.29 
Isabela  2082 80.11 1.27 0.17 1649.66 1.26 
Lajas  1032 274.53 0.79 0.03 903.27 1.14 
Las Marías  370 238.42 0.47 0.00 452.41 0.82 
Maricao  174 156.12 0.28 0.00 262.55 0.66 
Mayagüez  6282 394.58 1.96 0.05 4260.30 1.47 
Moca  1979 327.68 1.25 0.00 1176.93 1.68 
Rincón  621 110.94 1.64 0.00 500.99 1.24 
Sabana Grande  862 191.34 1.13 0.04 800.11 1.08 
San Germán  1670 324.97 1.06 0.06 1749.40 0.95 
          BCFaverage 1.04 

 
YEAR 2006 

Oi Highway_miles POP_PAC Interstates Pi 
2404 262.49 2.15 0.03 2068.35 

3394 219.06 2.70 0.07 3360.60 

1329 272.07 1.16 0.02 1034.93 

1999 397.36 1.11 0.05 2476.04 

800 187.39 0.87 0.04 643.22 

921 300.36 2.37 0.03 2911.26 

2739 80.11 1.29 0.17 1669.55 

996 274.53 0.79 0.03 901.38 

333 238.42 0.45 0.00 447.04 

212 156.12 0.27 0.00 262.30 

6282 394.58 1.88 0.05 4065.09 

2096 327.68 1.26 0.00 1184.77 

727 110.94 1.66 0.00 509.16 

940 191.34 1.12 0.04 796.93 

1923 324.97 1.05 0.06 1732.86 
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A summary of the principal insights from the crash models of western region 

areas is presented here. 

 
• Trial and error is used to derive meaningful and useful models. Knowledge of 

transportation safety is used to derive a model that is consistent and in 

agreement with current knowledge of motor vehicle crashes and safety. 

• The models developed in this work provide a tool for that can be used by traffic 

planners. This tool can be used to set targets for meeting safety objectives and 

performance milestones, and for providing feedback on development and/or 

growth scenarios 

• The focus of macro-level models is prediction.  The goal of these models are to 

inform the analyst  what problems can occur in the future. 

• The safety analysis of a particular project will be able to predict the expected  

number of crashes and consider them as an explanatory statement regarding 

safety,  and not as a defining statement. It would represent the injury severity risk 

expected by changes in the number of intersections, residential development, 

road mileage, and local population. 

• Although valid explanations are provided for the predictor variables in the 

models, the models are not mainly used to gain insight about variables related to 

crashes. Instead, the main goal is predicting crash outcomes by municipality. 

This restriction is not too dissimilar from the restriction placed on travel demand 

models, whose primary purpose is to predict demand for roadway space of motor 

vehicles in hypothetical or future scenarios. 
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• One should simply use the model to forecast possible crash problems that may 

happen in the future or during a given hypothetical growth scenario. Once these 

possible outcomes are known, plans can be implemented to remediate these 

crashes using specific countermeasures, as required by the local conditions. 

• The developed models in this chapter have limitations and assumptions.  An 

important assumption of the models is that ‘new’ safety countermeasures such 

as rumble strips, crash cushions, etc. are not applied in future scenarios. In other 

words, the ‘average’ set of design standards with respect to safety are assumed 

to exist in the future, Innovative, newly adopted, or progressive safety 

countermeasure investments are analyzed independently using another model or 

research study. 

• The appropriate use of the developed models fall in the planning, prediction, or 

forecasting domains, and not for the traffic and safety engineering domains. 

• The next step would be to examine design policies and safety investments to 

ensure the regional safety goals are met. 

• It is necessary to develop models that include public transit  and others modes 

of transport as an independent variable in order to capture its effect on safety. 

• It is necessary to develop a complete HSIP which monitors and evaluates such 

as changes in infrastructure, enforcement, education and medical emergencies.  

• It is necessary to improve the current system and the collecting data in order to 

obtain better data quality that would produce better models. 
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• Transportation planning often focuses on infrastructure-related solutions. A 

much broader perspective on how the planning process can affect the safety of 

the transportation system would include recommended policies, processes, 

studies, and budget priorities. 

• It is important that the long-range transportation plan include safety education 

on topics such as:  use safety publicity, bicyclist and pedestrian, work zone, 

education policy, elderly driver evaluation, mature driver education. 

• It is also important to include the following engineering and operation topics in 

the long-term transportation plan: traffic management safety audits of existing, 

rehabilitated and new roadways, traffic safety studies, and traffic safety 

measures in construction zones. 
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CHAPTER 5: DEVELOPING MACRO MODELS 

5.1 INTRODUCTION 

Urban transportation planning focuses on mitigating congestion and mobility in a 

proactive way. Large projects are developed in response to the results from the 

modeling processes. Then the most favorable alternatives are proposed in the long-term 

transportation plan recommendations.  

Meanwhile, safety has received little attention during the strategic planning 

process. Highway safety is mostly assessed when the facility has been built, and the 

problems are evident or, as a recent practice, during the design stage. Incorporating 

safety in a comprehensive way has surged into the initial planning stage as a strategy to 

improve highway safety and achieve the zero crashes objective. 

Many studies have been developed to predict the crashes since the early 

planning stages through the use of macro regional models. Some examples of these 

models are: Laumon Amoros (2003), Noland and Quddus (2004), Washington et al. 

(2006), Noland and Oh (2004), Agüero and Jovanis (2006), Hadayegui et al. (2006), 

Hadayegui et al. (2007), Lovegrone and Sayed (2007), Wier et al. (2009), Naderan and 

Shani (2010), and Abdel Aty et al. (2010) (See details in chapter 2). Macro models are 

used to predict the aggregated number of global crashes for a region (TAZ, county, 

municipality, etc) with the objective of comparing different planning alternatives. These 

models consider the population as an exposition measure and infrastructure, 

socioeconomic, and socio demographic aspects as independent variables. These 

models, however, are not sensitive to improvements in the highway system. 
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In Chapter 4, models for the western region of Puerto Rico were developed. 

These models had no good fit. 

This chapter describes the GLMM models developed for the island, and the 

infrastructure variables employed for data fit.  Section 5.1 presents an introduction to the 

importance of the topic strategic planning with regional models. Section 5.2 describes 

the methodology implemented for the development of the models, while Section 5.3 

shows the results of regional generalized linear model with length as offset (APKPY-

crash rate). Section 5.4 shows the regional models generalized linear mixed models with 

length and inhabitants as offset (APIPKPY- crash double rate) and region and 

municipality as random effects. 

5.2 DETAILED METHODOLOGY 

The steps followed for the development of generalized linear mixed binomial 

negative macro models are: data collection and analysis of significant variables, the 

definition of the distribution and model structure, the estimation of the parameters, model 

selection, and integration into the planning process (McCullagh et al.,1989). Figure 5.1 

shows a flowchart with the methodology of this chapter. 

5.2.1 Data collection and analysis of significant variables 

The data used in this chapter were factors related to the design of highways and 

the population. The crash data was obtained from the transit regulation office in the 

safety auditory division of the Highway Transportation Authority from 2002 to 2004, the 

years in which PDO crashes were available. The population was obtained from 

American Fact Finder website http://factfinder2.census.gov from 2002 to 2004. Both 
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databases were joined in Excel. The database was filtered by crash severity, including 

PDO crashes and by municipality. 

 
 

  
Figure 5.1 Methodology for all Puerto Rico municipality models. 
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Stepwise analysis was realized with the purpose of finding the significant 

variables for the models.  The significant variables were the proportion of secondary and 

tertiary roads, and as an offset the number kilometers of highways and the population 

were used. 

5.2.2 Defining the model distribution and structure 

The macro region models have been developed considering that crashes are not 

negative and discrete in nature. As a result, the Poisson and Negative Binomial Models 

were analyzed. However, due to the dispersion of the data, the Negative Binomial with 

random effects model, which are called mixed binomial negative models were adjusted. 

This section is to establish the conditional distribution of the response vector ‘y’ 

(crash counts) given the random effects ‘u, representing, in this chapter, the municipality 

and regional effects. The length of the municipality highways, and length per population 

were considered as offset variables for modeling crash rates (i.e., number of 

crashes/length and number of crashes/length*inhabitant). 

5.2.3  Estimation using the Maximum Likelihood (ML) method 

The estimation of the model parameters was performed using the maximum 

likelihood method. In order to maximize the approximation of the likelihood function, the 

Laplace Method was used. The default optimization technique in this procedure was the 

dual quasi-Newton method. The results are the parameter estimates with their 

respective standard errors and the information criteria (AIC, BIC) used to compare 

different models (Litell et al.,2006).  
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5.2.4  Model selection 

Based on the results of each model specification and considering the included 

explanatory variables, a series of tests and criteria were applied in order to compare the 

models, verify their goodness of fit, and choose the model that represents the best fit for 

the data under study. Some of the tests and criteria typically used are: likelihood ratio 

tests, conditional Pearson Chi-Square tests, AIC and BIC ,(Agresti, 2003). 

5.2.5  Model integration into the planning process 

A methodological framework was developed with the purpose of integrating the 

developed models into the strategic planning process activities. These models can be 

used to obtain a baseline condition (current circumstances) and to determine what would 

happen, in terms of crash rates, under various planning scenarios. One possible way to 

analyze the impact of the incorporation of safety devices is to create accident risk maps 

for each alternative scenario. Then, determine what would happen with the 

implementation of regional mitigation measurements or safety improvements. Another 

important impact that can be studied is the economic analysis, considering the direct and 

indirect costs of accidents in relation to the required strategic investments.  

At the end of the planning process, the zones at greater risk of accidents should 

be included in the transportation plan for the development of more detailed analyses and 

the implementation of safety projects. Afterwards, those high risk zones should be 

followed up throughout the planning process to verify whether after the implementation 

of the countermeasures, there truly was a reduction in the accident rate as a result of the 

implemented projects. 
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Furthermore, the results of the model can provide planners with information 

about the safety data expected in the future. In order to do this, however one must 

assume that design standards in the future will be similar to those used in the present. 

Afterwards, planners could prepare new safety plans that would implement new system-

wide safety initiatives. These safety initiatives would improve safety in the future and 

calculate the Crash Modification Factors (CMF’s) accordingly. In this way, the planner 

can estimate the resources required to meet the objectives in regional safety. 

Town expansion can affect the population, the number of miles on the roads, 

intersections density, etc. A point of interest here is that a statewide or regional safety 

objective predicting an X percent reduction in fatal crashes does not necessarily 

guarantee the reduction of the current level of total or fatal crashes. This is due to the 

possibility of population growth and other factors that will most likely increase the 

number of crashes. Therefore the crash models can become a tool for planning by 

helping them set targets in order to meet safety objectives and performance milestones. 

5.3 RESULTS AND DISCUSSION OF APKPY MODELS 

In this section, the models are standardizing by segment length. Models with 

crash frequency as dependent variable do not allow for a direct comparison between 

municipalities to be conducted. The models of crash frequency are not standardized by 

the total number of kilometers and the number of inhabitants. In contrast, crash 

prediction models standardized by length, allow the comparison of different 

municipalities that have a similar population so as to identify the most hazardous 

municipalities. This is done by using logarithm total kilometers as an offset. 
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In the modeling of municipalities, only the primary road, secondary road, tertiary 

road and population variables were found to be significant. 

5.3.1 Model with rate (APKPY) as the dependent variable 

The conditional Pearson/DF criterion was used in order to verify the fit of the 

model. Table 5.1 presents the goodness of fit and the comparison criteria for total crash 

prediction models with APKPY as the dependent variable.  The response was assumed 

to have a negative binomial distribution.  

Table 5.1 GLM Model comparison of freeways with APKPY as the dependent variable  

#  

Dependent 
variable  
(APKPY 
severity)  

Explanatory Variables 
(X’s)  AIC  BIC  -2log-

likelihood  
Conditional  
Pearson  

Conditional  
Pearson/DF  

1  Total 
PDO 
Injury 
Fatal 

Propredprim,propredsec, 
propredter  
Years(2002 to 2004)  

1634  
1552  
1292  
 688  

1645  
1563  
1304  
 700  

1624  
1542  
1282  
  678  

387  
195  
190  
229  

5.23  
2.82  
2.75  
3.32  

APKPY: Accidents by kilometer per year (rate) 
*pvalue <0.05 
 

In Table 5.1 and 5.2 the variables propredprim represents the proportion of 

primary roads, propredsec represents is the proportion of secondary roads, and 

propredter represent the proportion of tertiary roads. 

5.3.2 Estimated parameters for APKPY models and 
interpretation 

The maximum likelihood method was employed to estimate the parameters of 

the proposed models. The interpretation of the parameters was done by using the 

67 



concept of elasticity, which is a general concept used to quantify the response of one 

variable when another variable changes. 

Tables 5.2 presents the results of the goodness of fit using the different degrees 

of crash severities APKPY as the dependent variable.  

Table 5.2 Estimated solutions for all severities model 1 
Effect  total crashes 

Estimate 
(SE)  
 

PDO 
crashes 
Estimate  
(SE) 
  

Injury 
crashes 
Estimate  
(SE) 
  

fatal crashes 
Estimate  
(SE)                 

Intercept  -41.7947 * 
(0.7572) 

-42.4928 * 
(0.7666) 

-44.1607 * 
(0.7575) 

-50.5197 * 
(1.2658) 

propredprim  18.2144 * 
(11.4789) 

26.5290* 
(11.26) 

22.0113* 
(10.8849) 

23.6483* 
(14.1222) 

propredsec  16.9455* 
(6.1884) 

21.4822* 
(6.6245) 

21.4077* 
(6.7755) 

20.6861* 
(8.1292) 

propredter  10.1253* 
(3.9344) 

10.0348* 
(3.7355) 

10.2377* 
(3.7373) 

23.1328* 
(4.5024) 

Scale  3.5614 
(0.4523) 

3.5262 
(0.4590) 

3.5374* 
(0.4611) 

3.3447 
(0.4680) 

   APKPY Accidents by kilometer per year 
   *p-value<0.05 
 

The model in Table 5.2  has a specification log-level. A model with specification 

log-level represents a link function that related the mean with the explanatory variables. 

The interpretation of β  is based on the concept of elasticity, and is expressed as:  

{ ( )} ,i iLog E Y xα β= +  (5-1) 
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The value β *100 can be interpreted as the relative change (%) of the expected 

response by one unit of increase in the explanatory variable. For a detailed derivation 

see the Appendix, Chapter 5. 

5.4 RESULTS AND DISCUSSION OF APIPKPY MODELS 

In this section the models are standardized by segment length and population. 

Some models found in the literature employed the frequency, or crash rate per kilometer, 

as a dependent variable in the data analysis. However, to perform a direct comparison 

between different municipalities, obtain a hierarchy for hazardous municipalities, and 

know how the conceptual designs of the road types affect safety, while keeping the 

exposure level constant, it is necessary to employ length and population standardization.  

In the modeling of municipalities, only the primary road, secondary road, tertiary road 

and population variables were found to be significant as regresors. 

5.4.1 Comparison of models with double rate (APIPKPY) as the 
dependent variable 

The conditional Pearson/DF criterion was employed in order to determine the 

modeling fit and a different criterion was used for comparing the developed models. 

Table 5.3 presents the three total crash prediction models with APIPKPY as the 

dependent variable, and the comparison criteria for the models. The selection of the best 

model was conducted using the Bayesian Information Criterion, which has a penalty for 

degree of freedom and is useful for non-nested models. 
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Table 5.3 GLMM comparison of freeways with APIPKPY as the dependent variable. 

# 

Dependent 
variable  

(APIPKPY 
severity) 

Variables (X’s) AIC BIC 
-

2loglikelihood 
Conditional 

Pearson 
Conditional 
Pearson/DF 

2 Total 

PDO 

Injury 

Fatal 

Propredsec, 

propredter 

Random (Region) 

Years(2002 to 2004) 

3879 

3721 

2915 

1165 

3878 

3721 

2915 

1165 

3869 

3711 

2905 

1155 

124 

125 

145 

690 

0.53 

0.55 

0.64 

3.07 

3 Total 
PDO 

Injury 
Fatal 

Propredsec, 
propredter 
Random 
(Municipality) 
Years(2002 to 2004) 

3792 
3664 
2854 
1101 

3806 
3678 
2868 
1115 

3780 
3652 
2842 
1089 

46 
42 
63 

159 

0.20 
0.19 
0.28 
0.71 

4 Total 
PDO 
Injury 
Fatal* 

Propredsec, 
propredter 
Random (Region-
Municipality) 
Years(2002 to 2004) 

3783 
3656 
2849 
1102 

3783 
3656 
2849 
1102 

3769 
3642 
2835 
1088 

46 
42 
63 

159 

0.20 
0.19 
0.28 
0.71 

   APIPKPY: Accidents by inhabitant by kilometer per year (double rate).  
  * Matrix G is not positively defined 
 

In Table 5.3 the variable propredsec represents the proportion of secondary 

roads, and propredter is the proportion of tertiary roads. 

In order to compare between models 3, 4 and 5, the criteria for non nested 

models was used. The fit of the models was verified by using the Pearson/DF criterion. 

According to the BIC and fit, 4 was the best model for all four responses. 

5.4.2 Estimated parameters for APIPKPY the models and 
interpretation 

Tables 5.4, 5.5, and 5.6 present the results goodness of the fit of the model for 

total crashes by inhabitant by kilometer per year as the dependent variable. 
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Table 5.4 Estimated solutions for all severities model 3 (Random-Region) 
Effect Total crashes 

Estimate (SE)   
PDOl crashes 
Estimate (SE)  

Injury crashes 
Estimate (SE)  

fatal crashes 
Estimate (SE)     

Intercept -9.9205* 
(0.2617) 

-10.0141* 
(0.2510) 

-11.6668* 
(0.2382) 

-16.4401* 
(0.3845) 

Propredsec 4.1814* 
(1.7186) 

3.8786* 
(1.6429) 

4.1620* 
(1.5618) 

1.9562 
(2.2289) 

Propredter 4.1525* 
(1.5324) 

3.9187* 
(1.4677) 

2.9438* 
(1.4110) 

8.1348* 
(2.0921) 

           APIPKPY: Accidents by inhabitant by kilometer per year (double rate).            
          *p-value<0.05 
                                                                               

 
Table 5.5 Estimated solutions for all severities model 4 (Random- Municipality) 

Effect Total crashes                   

Estimate (SE)      

PDO crashes 

Estimate (SE)  

Injury crashes  

Estimate (SE)  

fatal crashes 

Estimate (SE)  
Intercept -10.8515* 

(0.6019) 
-10.9148* 
(0.5894) 

-12.5923* 
(0.4945) 

-16.5444* 
(0.3982) 

Propredsec 12.9289* 
(3.9342) 

12.5620* 
(3.8465) 

10.8263* 
(3.2099) 

3.6217 
(2.6388) 

Propredter 4.6365 
(3.8420) 

4.2401 
(3.7531) 

4.5872 
(3.1356) 

6.3135* 
(2.4945) 

         APIPKPY: Accidents by inhabitant by kilometer per year (double rate). 
        *p-value<0.05 

 
 

Table 5.6 Estimated parameters for arterial models for all severities model 5 (Random-
Region and Municipality) 

Effect Total crashes 
Estimate (SE)  

PDO crashes 
Estimate (SE)  

Injury crashes 
Estimate (SE)  

fatal crashes 
Estimate (SE)  

Intercept -10.5873* 
(0.6219) 

-10.67981* 
(0.6111) 

-12.3461* 
(0.5212) 

-16.5444* 
(0.6594) 

Propredsec 9.0160* 
(3.8292) 

8.9258* 
(3.7733) 

8.3557* 
(3.2178) 

3.6217** 
(2.9322) 

Propredter 4.5945 
(3.6444) 

4.2639 
(3.5935) 

3.9782 
(3.0923) 

6.3133* 
(3.8795) 

         APIPKPY: Accidents by inhabitant by kilometer per year (double rate). 
          *p-value<0.05 
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The interpretation is based on the concept of elasticity for a generalized linear 

mixed model with specification log-level, expressed as: 

 { ( | )} ( ) ,ij i i ilog E Y U x Uα β= + +  (5-2) 

The value of β *100 can be interpreted as the relative change (%) of the 

expected response with one unit of increase for the explicative variable, for any given 

value of the random effect. A detailed derivation is found in the appendix, Chapter 5. 
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CHAPTER 6: DEVELOPMENT OF FREEWAY-
EXPRESSWAY AND ARTERIAL 
MODELS 

6.1 INTRODUCTION 

Different micro models have been developed in order to predict the number of 

crashes in an intersection, highway segment or on the project level with different 

geometric characteristics. This was done by taking the AADT as an exposure measure, 

and by using the road geometry and the operational characteristics as independent 

variables. Some models were developed in AASTHO’s HSM in order to analyze the 

safety of arterials and two way highways. The models can be currently used in a reactive 

manner or in the proactive analysis of new highway designs, but should not be used 

during the early strategic planning stages due to detailed design and operational 

requirements. 

The general goal of this study is to develop tools in order to improve the decision 

making process related to safety planning. However, unlike the macro models, the micro 

models are difficult to use during the early stages of the planning process. Macro models 

are used to obtain global predictions at a regional scale while micro models are used at 

a smaller scale, focusing on specific sites, project design or existing networks. 

This chapter’s main objective consists of the development of generalized linear 

mixed models that can be used in the strategic planning or long-term planning process. 

These models are versatile with a wide inference space, which means that they can 

represent the big picture big picture for any particular functional classifications such as 

freeways and arterials. Also this means that the forecast can be performed for any 
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segment type of the population of segments and not only for a pre- determined level or 

type of segment. These models consider spatial effects while using innovative 

methodologies that improve the efficiency of the estimators, and require a relatively low 

sample size when compared to GLM. The proposed models will help obtain crash 

estimates for each segment and highway type. These models are also used to divide 

crashes in a region by type of highway. 

The models developed can be divided into specific subject models and by 

population average. The specific subject models are those that improve the reliability of 

the estimation at the site level by using EB correction by means of the random effect of 

the site and can be used in the short-term planning. The population average models are 

those that can be used in the general strategic planning process in the mid and long- 

term. 

GLMMs are used to incorporate safety into the strategic planning process. These 

models allow  for the incorporation of random variables that may exist in the system but 

are not observed. Therefore, they offer versatility in crash rate modeling and its related 

factors. 

The general methodological approach used for this research includes the 

filtration of the acquired crash data by way of segment analysis and crash severity. The 

Highway Performance Monitoring System (HPMS) database was filtered in accordance 

to the segments and the independent variables that were selected to be analyzed. 

Afterwards, the roads geometry data and the crash databases were incorporated. Next, 

the model structure was defined; the parameters of a group of candidate GLMMs were 

defined using the maximum likelihood method. The estimated models were assessed 
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using the significance tests and goodness of fit methods. Then the models that best 

fitted the studied phenomena were selected. SAS software was used to perform the 

calculations for the model.  

This chapter describes the GLMM models developed for the island and the 

infrastructure variables employed for data fit.  The Section 6.1 presents an introduction 

to the importance of the topic of strategic planning with freeway and arterial models. 

Section 6.2 describes the methodology implemented for the development of the models. 

Section 6.3 shows the results of generalized linear mixed models for freeways and 

arterials. The models used length as the offset (APKPY-crash rate), and segment type 

as a random effect.   

6.2 DETAILED METHODOLOGY 

This section describes the methodology developed with the data available in 

Puerto Rico that could be used for the development of highway safety prediction models 

and would be appropriate for strategic planning. The models were developed and 

classified by road type while considering the possibility of data correlation. These models 

were used to explore the relationship between crash rates by crash severity, and various 

variables such as traffic intensity (AADT), and geometric characteristics. Crash 

severities are defined as crashes that result in a fatality, an injury or property damage 

only. Traffic intensity refers to the average annual daily traffic .Geometric characteristics 

describes the number of lanes, their width, slope, curvature, etc. The rest of this section 

describes the general research approach and the methodological steps followed. Figure 

6.1 shows a flowchart with the methodology of this chapter. 

75 



 
 
 

Figure 6.1 Methodology for Puerto Rico freeway and arterial models. 
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A wide variety of methods have been implemented in the past years. In order to 

deal with the problems regarding the methodology and the data associated with accident 

frequency. If not handled correctly, they can compromise the statistical validity of the 

analysis. Previous studies have used various approaches for the aggregation and 

modeling of accidents depending on the purpose of the study and the nature of the 

available data. The most common approaches include lineal regression, Poisson 

models, the Negative Binomial model, the Full Bayes hierarchical model with spatial 

effects, and linear models with logarithmic transformations. The present study developed 

a statistical modeling approach using GLMM with mixed negative binomial distribution. 

Much like a classical linear regression, a GLMM includes a set of variables that would be 

used to explain the mean crash rates. However, the GLMM also includes random effect 

terms in order to incorporate the correlation between observed crash rates in the same 

segment. The estimation of the parameters in the GLMMs were done using SAS 

software (SAS V.9.3 Institute Inc.,2013). 

Some of the advantages of using a GLMM to model the relationship between 

crash rates, their severity, and several explanatory variables include: the proper handling 

of crash rates through the specification of a probability distribution for the number of 

crashes, and the ability to use the length and AADT of the segments as offsets 

variables. Different patterns in data variability were modeled by changing the probability 

distributions for the number of crashes. Additionally, random terms were incorporated 

into the model in order to account for the correlation between crash rates in the same 

segment and its spatial effects. The expected crash rates are related to possible 

predictors by using an appropriate link function that preserves their rate scale (i.e., 

positive numbers), and the GLMMs allow flexibility when building the model. This is 
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important since GLMM’s embrace a big family of models (for instance, classical linear 

models become a special case of a GLMM). 

For the non-Bayesian models proposed in this work, the estimation of the 

regression parameters was performed by using the same inferential methods. What 

varied was the probability distribution for the number of crashes at a given segment and 

the link function used to relate the number of crashes to potential predictors. The general 

procedure used to estimate the parameters in a GLMM includes the following (Agresti, 

2003). 

The steps followed for the development of generalized linear mixed binomial 

negative models are: data collection and analysis of significant variables, the definition of 

the distribution and model structure, the estimation of the parameters, model selection, 

and integration into the planning process (McCullagh et al.,1989).  

6.2.1 Data collection and analysis 

The data used in this study are associated with a variety of factors related to the 

freeways and arterials in Puerto Rico, such as the number of crashes and the geometric 

and operational characteristics of the highways from 2004 to 2009. The crash data was 

obtained from the Transit Regulation Office in the Safety Auditory Division of the 

Highway Transportation Authority. The various highway geometric characteristics were 

obtained from the Highway Performance Monitoring System database. The HPMS office 

manages a database as part of a federal program that requires an inventory of 

geometric and operational variables. The inventory contains a random and 

representative sample of highway segments from the main functional classification 

system. The geometric and operational variables are taken into consideration for each of 
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the segments in the random sample. A segment is defined as a highway section of 

varied length that has similar geometric and operational characteristics. The random 

sample used in this study was provided by the HPMS office. 

The analyzed database contained 98 variables pertaining to the horizontal and 

vertical geometry of the segments, as well as their operational characteristics. The 

preliminary analysis of the data utilized the 14 variables found to be significant in the  

literature review. These variables were: type of terrain, grade of curvature, design speed, 

speed limit, region, type of shoulder, type of median, AADT, width of lane, width of right 

shoulder, width of left shoulder, proportion of signalized intersections, proportion of stop 

intersections, other intersections and proportion of ramps. However, only 5 variables 

were found to be truly significant after further analysis. 

The database was filtered by crash severity, and segments were discarded if 

they were found to have significant changes in the geometry or in the implementation of 

countermeasures between 2004 and 2009. 

Tables 6.1 and 6.2 show the definition of the significant variables in freeways and 

arterials, respectively. The municipalities within each region are defined in the Appendix, 

Chapter 6. 
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Table 6.1 Descriptive statistics of significant variables for freeways  
Definition of variables N(%) 

Sample size 
Mean (SD) 

APKPY or AADT 
[Minimum, Maximum] 

APKPY or AADT 
Region (categorical) 
01-San Juan -  (population- 1,070,609) 
 
02-Arecibo  -    (population- 628,745) 
 
03-Aguadilla -  (population - 380,002) 
  
04-Mayaguez-  (population- 366,967) 
 
05-Ponce  -      (population- 411,596) 
 
06-Guayama -  (population- 311,781) 
 
07-Humacao-   (population- 568,651) 
 

 
228 (29.92%) 

 
114 (14.96%) 

 
6 (0.79%) 

 
66 (8.66%) 

 
108 (14.17%) 

 
24 (3.15%) 

 
216 (28.35%) 

 

 
17.68 (14.01) 

 
6.71 (3.68) 

 
2.81 (0.32) 

 
4.38 (2.53) 

 
7.27 (5.14) 

 
5.85 (2.32) 

 
9.19 (7.98) 

 
 
 
 
 
 

 
[0, 77.78] 

 
[0.71, 21.27] 

 
[2.37, 3.16] 

 
[0.74, 11.90] 

 
[0, 21.67] 

 
[1.95, 13.17] 

 
[0, 36.73] 

AADT (Covariate) 
Annual Average Daily Traffic 
 

 
762 (100%) 

 
77880.31(57411.10) 

 

 
[10400, 290000] 

Type of shoulder (Categorical) 
1-None 
 
2-Surfaced  
 
3-Stabilized  
 
4-Combined 
 
 

 
12 (1.57%) 

 
702 (92.13%) 

 
12 (1.57%) 

 
36 (4.72%) 

 
 

 
12.64 (7.29) 

 
9.76 (9.93) 

 
18.01 (3.78) 

 
21.93 (12.78) 

 
 
 
 

 
[5, 26.88] 

 
[0, 77.78] 

 
[12.5, 25] 

 
[0.57, 52.31] 

 
 
 
 
 

 

In Table 6.1 and 6.2, N (%) represents the sample size of segments (%), the 

Mean represents the mean of APKPY, SD represent the standard Deviation of APKPY, 

the Minimum represent the minimum value of APKPY, AADT or signalized intersections 

by kilometer, respectively. The Maximum represents the maximum value of APKPY, 

AADT or signalized intersections by kilometer, respectively. 

In Table 6.1 the sample size N 762 is, corresponding to a random sample of 146 

segments of freeways and 6 years of crash analyses. 
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Table 6.2 Descriptive statistics of significant variables for Arterials  
Definition de variables N(%) 

Sample size 
Mean (SD) 

APKPY, AADT or int/kil 
[Minimum, maximum] 

APKPY, AADT or int/kil 
 

Region (categorical) 
01-San Juan-  (population- 1,070,609) 
 
02-Arecibo -    (population- 628,745) 
 
03-Aguadilla -  (population - 380,002) 
 
04-Mayaguez  (population- 366,967) 
 
05-Ponce        (population- 411,596) 

 
06-Guayama   (population- 311,781) 

 
07-Humacao   (population- 568,651) 

 

 
 

155 (25.41%) 
 

72 (11.8%) 
 

120 (19.67%) 
 

90 (14.75%) 
 

53 (8.69%) 
 
- 
 

120 (19.67%) 
 
 

 
 

8.02 (10.55) 
 

2.20 (3.54) 
 

16.72 (14.76) 
 

12.05 (6.85) 
 

0.67  (1.08) 
 
- 
 

16.37 (14.65) 
 

 
 

[0, 57.14] 
 

[0, 14.44] 
 

[0, 84.62] 
 

[0, 40] 
 

[0, 4.85] 
 
- 
 

[0, 76.67] 
 AADT (Covariate) 

Annual Average Daily Traffic 
 

595 (100%) 44678.32 (24882.16) [600, 126300] 
 

Group of signalized intersections 
(categorical) 
A- 0 to 0.53 
 
B-0.54 to 1.36 
 
C- 1.37+ 

 
 

298 (48.85%) 
 

156 (25.57%) 
 

156 (25.57%) 
 
 
 

 
 

7.83 (9.90) 
 

11.37 (8.43) 
 

15.29 (17.56) 
 

 
 

[0, 76.67] 
 

[0, 40.67] 
 

[0, 84.61] 
 Signalized intersections by kilometer 

(continuous) 
 

595 (100%) 0.98 (1.38) 
 

[0, 10] 
 

 

In Table 6.2 the sample size N is 595, which consists of 107 random arterial 

segments of arterials and 6 years of crash analyses. 

6.2.2  Defining the distribution and model structure 

The freeway and arterial models have been developed considering that crashes 

are not negative and discrete in nature. Therefore, the Poisson and Negative Binomial 

distribution were analyzed. However, due to the dispersion of the data, Negative 

Binomial with random effects model, which are called mixed negative binomial models 

were adjusted. 

The purpose of this section is to establish the conditional distribution of the 

response vector ‘y’ (crash counts) given the random effects ‘u’, representing, in this 
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case, the road segments effect. The length and AADT of the segments are considered 

as offset variables for modeling crash rates (i.e., number of crashes/length and number 

of crashes/length*AADT). In a classical GLMM, the random terms in ‘u’ are usually 

assumed to have a normal distribution. A set of potential predictors for crash rates needs 

to be included in the model’s formulation. This allows us to explain mean crash rates as 

a function of the predictors. We fit the GLMMs using link functions that are considered 

natural for the distribution of the response (McCullagh and Nelder, 1989). The logit link 

function serves as an example when the proportion of crashes are modeled as a 

Binomial distribution, and the log link function can also be used as an example when the 

number of crashes are modeled as a Poisson or Negative Binomial distribution and is 

considered instead.  

6.2.3  Estimation using the Maximum Likelihood (ML) Method  

The estimation of the parameters in a GLMM is often performed using the ML 

method based on a Laplace approximation of the marginal distribution of the response 

variable. The maximization of the likelihood function is achieved using the dual quasi-

Newton method. These computational tasks have already been implemented in existing 

statistical software such as SAS. Other estimation techniques can be considered  

depending on the complexity of the model. An advantage of using the ML method is that 

some of the traditional model selection methods are directly applied to our problem. 

Moreover, the inference process on the parameters in the model is supported by the ML 

theory (Agresti, 2003). 

The Maximum Likelihood Estimation in this work is based on the Laplace 

Approximation. The idea is to approximate the integral by using a square approximation 

around the point in which the integrand takes its maximum (Demidenko, 2004).  
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These days, this method is widely regarded as the most useful one. The 

approximation can be found implemented in the procedure glimmix of SAS using the 

Laplace option, which indicates an approximation of first order with a point of quadrature. 

6.2.4 Model selection  

Based on the results of each model specification, and considering the included 

variables, a series of tests were done in order to compare candidate models, verify their 

goodness of fit, and define the model that represents the best fit for the phenomena 

under study. For instance, likelihood ratio tests were used to compare models that nest 

with one another. Alternatively, we relied on model selection criteria such as AIC, BIC or 

HQ to compare models with the same distribution for the variable response and link 

function. 

6.2.5 Work plan and tasks 

The following tasks were conducted in this research project: 

i. The literature review consisted of identifying existing models for accident 

forecasting at the planning stage, and identifying methodologies that were to be used for 

model estimation. Additionally, interviews were conducted at PRHTA and PRDOT to 

determine the current approach used in Puerto Rico for the inclusion of safety at the 

planning stage. The procedures used to consider highway safety issues in the mid-term 

and long term planning processes in Puerto Rico were identified and described. 

ii. Data was gathered from several sources such as the Traffic Safety 

Commission (CST, for its acronym in Spanish), the safety office of the Puerto Rico 

Highway and Transportation Authority (PRHTA), the Puerto Rico Department of 
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Transportation and Public Works (PRDOT), and the Census databases. The highway 

safety predictive models used in the Puerto Rico at mid and long term in the 

transportation plans were identified. 

iii. An accident database was organized and filtered by accident type, functional 

classification, and geometric and operational characteristics. The database was 

separated by each group of homogeneous characteristics, while considering the 

segments reported by the PRHTA for the Highway Performance Monitoring System 

(HPMS) required by the FHWA. 

iv. The list of potential variables that were to be included in the planning models 

were identified. These variables were selected and tested in the databases, to verify 

their significance in terms of the number and quality of the data available. At this point, 

the data was reviewed to ensure the variables were the most representative and 

appropriate for the model. 

v. Typical models that were used in the studied literature to model the highway 

safety phenomena as part of the planning process were verified. Generalized linear 

mixed models were used in this project. The model parameters were estimated using 

traditional inferential methods already implemented in existing statistical analysis 

software. Models were developed according to their highway functional classification 

with various segment characteristics. 

vi. The significance and importance of each variable included in these models 

was tested. Goodness of fit tests were also performed in order to make sure that the 

developed models best represented the modeled phenomena. It is not uncommon that 

this process the initial models needed some adjustment. During this process the number 
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of variables or the model form were continually adjusted. Therefore, the process was 

repeated from Task 5 to Task 7, until a good set of models were obtained. 

viii. An integrated highway safety strategic planning process was proposed in 

Chapter 7 considering the methodologies already proposed in the reviewed literature 

and the unique characteristics of the strategic planning process in Puerto Rico. The 

developed models were incorporated in the selected methodology and presented to 

DOT officials for their consideration and to help them comply with the federal 

requirements by law. 

6.3 RESULTS AND DISCUSSION OF FREEWAYS AND 
ARTERIALS (APKPY) MODELS 

In this section the models were standardized by length of segment only. The 

freeway model included 12 variables, but only region, type of shoulder, number of lanes 

and AADT were significant. Six planning models were found to consider the number of 

accidents by kilometer by year and the number of accidents by millions of vehicle- miles 

traveled by year as dependent variables. 

Arterial modeling included 14 variables, but only region, groups of intersections, 

proportion of signalized intersections, and AADT were found to be significant. Three 

planning models were found by considering accidents per kilometer per year and 

accidents per million vehicle-miles traveled by year as dependent variables. Table 6.3 

and Table 6.4 presents freeway and arterial models that can be used to incorporate 

safety into the early stage of planning. The goodness of fit and the information criteria for 

the comparison of the models are also shown. 
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6.3.1 Comparison of freeway and arterial models with rate 
(APKPY) as the dependent variable 

A freeway is defined as a major divided highway designed for high-speed travel, 

having few or no intersections. Also called freeway, limited access highway 

superhighway, and thruway. Meanwhile an arterial is defined as an arterial road, or 

arterial thoroughfare, is a high-capacity urban road. The primary function of an arterial 

road is to deliver traffic from collector roads to freeways or expressways, and between 

urban centers at the highest level service possible. As such, many arteries are limited- 

access roads or feature restrictions on private access. Frequency models do not allow 

for a comparison directly between the sites to be conducted. Therefore, the standardized 

crash prediction models by length, allow for the comparison of different segments with 

the same AADT so as to identify the most hazardous sites or characteristics. Information 

criterion was used for nested models and non nested models when comparing models. 

The fit of the models were verified by the conditional Pearson/DF criterion. 

6.3.1.1  Comparison of significant freeway models 
 

Table 6.3 presents the six predictive models of the total crash rates, the 

goodness of fit, and the comparison criteria for the freeway models.  

The selection of the best models was done with the Bayesian Information 

Criterion (BIC), which has a penalty related to the degrees of freedom and is used for 

non nested models and likelihood ratios (LRT) for nested models. 

According to the BIC, models 1, 2, 5 and 6 have the best fit. From the 

planification’s point of view, the number of crashes when using the same design or 

functional classification varies according to the location of the highway segment and its 
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intricate characteristics. Therefore, the likelihood ratio is used between full model 5 and 

reduced model 6 in order to verify if the region contributes to the prediction of the 

model’s variability. According to the LRT, model 6 is preferred (X2=10, critical X2=12.59, 

df=6). The significance of this is that, the model including only logAADT is preferred to 

predict crash rate for freeways. Also LRT is used between full model 2 and reduced 

model 1 in order to verify whether the number of lanes contributes to the prediction of 

the model’s variability.  According to the LRT, model 1 is preferred (X2=6, critical 

X2=5.99, df=2). 

Table 6.3 GLMM Model comparison of freeways with APKPY as the dependent variable  

# 
Dependent 

variable 
(Severity) 

Variables AIC BIC -2log-likelihood  Conditional 
Pearson 

Conditional 
Pearson/DF 

1 Total 
Injury 
Fatal 

Lanes, type of 
shoulder, 
logAADT 
Random  
(segment) 

5066 
5065 
1022 

5091 
5091 
1048 

5048 
5047 
1004 

638 
642 
850 

0.84 
0.85 
1.12 

2 Total 
Injury 
Fatal 

Type of 
shoulder, 
logAADT 
Random 
(segment) 

5068 
5067 
1024 

5088 
5087 
1044 

5054 
5053 
1010 

633 
637 
818 

0.83 
0.84 
1.08 

3 Total 
Injury 
Fatal* 

Region, lanes, 
type shoulder, 
logAADT 
Random 
(segment) 

5064 
5063 
1024 

5106 
5105 
1063 

5034 
5033 
996 

643 
646 
924 

0.85 
0.85 
1.22 

4 Total 
Injury 
Fatal* 

Region, type 
shoulder, 
logAADT 
Random 
(segment) 

5066 
5065 
1024 

5103 
5102 
1059 

5040 
5039 
1000 

637 
640 
925 

0.84 
0.84 
1.22 

5 Total 
Injury 
Fatal* 

Region,  
logAADT 
Random 
(segment) 

5074 
5073 
1019 

 

5103 
5101 
1045 

 

5054 
5053 
1001 

 

635 
638 
932 

 

0.84 
0.84 
1.23 

 
6 Total 

Injury 
Fatal 

LogAADT 
Random: 
(segment) 

5072 
5072 
1018 

5084 
5083 
1030 

5064 
5064 
1010 

633 
636 
826 

0.83 
0.84 
1.09 

7 Total 
Injury 
Fatal 

LogAADT, 
Speed limit, 
Design speed, 
Region 

5047 
5045 
1021 

5098 
5096 
1046 

5011 
5009 
1003 

647 
651 
811 

0.85 
0.86 
1.07 

   APKPY: Accidents by kilometer per year (rate) 

*Matrix G is not positively defined 
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6.3.1.2  Comparison of significant arterials models 
 

Table 6.4 shows the four models used for the prediction of total crashes by 

kilometer by year, the goodness of fit, and the comparison criteria of the arterial models. 

Table 6.4 Model comparison for arterials with APKPY as the dependent variable  

# 
Dependent 

variable 
(Severity) 

Variables AIC BIC -2log-
likelihood 

Conditional 
Pearson 

Conditional 
Pearson/DF 

1 Total 
Injury 
Fatal 

Region, LogAADT, 
group of 
intersections by 
kilometer 
Random: segment 

3483 
3455 
716 

3512 
3484 
744 

3461 
3433 
694 

575 
580 
485 

0.99 
1.00 
0.83 

2 Total 
Injury 
Fatal 

Region, log AADT 
Random: segment 

3485 
3457 
716 

3508 
3480 
740 

3467 
3439 
698 

573 
578 
483 

0.98 
0.99 
0.83 

3 Total 
Injury 
Fatal 

Region, LogAADT,  
signalized 
intersections by 
kilometer 
Random: segment 

3481 
3453 
713 

3507 
3479 
739 

3461 
3433 
693 

575 
579 
454 

0.99 
0.99 
0.78 

4 Total 
Injury 
Fatal 

LogAADT,  
signalized 
intersections by 
Kilometer 
Random: segment 

3527 
3500 
716 

3540 
3513 
729 

 
 

3517 
3490 
706 

545 
548 
456 

0.93 
0.94 
0.78 

   APKPY: Accidents per kilometer per year (rate) 

The best models were found to be 2 and 3 according to the BIC. The number of 

crashes when using the same design or functional classification varied by highway 

segment location and its implicit characteristics. Therefore, the likelihood rate is used 

between models 2 and 3 to check if the region provided additional predictability to the 

variability of the model.  According to the LRT, model 3 is preferred (X2=6, critical 

X2=3.84, df=1). Which means, the model including region, logAADT and signalized 

intersections by kilometer is preferred to predict arterial APKPY.  
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6.3.2 Estimated parameters of APKPY models and interpretation 
for freeways and arterials 

The maximum likelihood was employed to estimate the parameters. The 

interpretation of the parameters is done through the concept of elasticity. 

a. Estimated parameters to freeways  
 

Tables 6.5 to 6.7 present the parameter estimates for the six freeway models of 

total injury and fatal crashes, in which the significant variables are region, number of 

lanes, type of shoulder and logAADT. 

Table 6.5 Estimated parameters for total freeway crash models with APKPY as the  
dependent variable 

   Ref= Reference level  
   **p-value<0.05 
   *p-value<0.1 

 M1 M2 M3 M4 M5 M6 
Effect Estimate 

(SE) 
Estimate (SE) Estimate 

(SE) 
Estimate (SE) Estimate 

 (SE) 
Estimate 

(SE) 
Intercept -8.0560** 

(1.1920) 
-7.5270** 
(0.7565) 

-9.3641** 
(1.2235) 

-8.7580** 
(0.8333) 

-9.1392** 
(0.8581) 

-8.7114** 
(0.8501) 

logAADT 0.9575** 
(0.09841) 

0.9177** 
(0.06369) 

1.0921** 
(0.1010) 

1.0549** 
(0.07685) 

1.0219** 
(0.07920) 

0.9710** 
(0.07695) 

Shoulder 1 -0.7754* 
(0.4154) 

-0.4562 
(0.4093) 

-0.7570** 
(0.3813) 

-0.4565 
(0.3761) 

- - 

Shoulder 2 -0.7652** 
(0.2129) 

-0.6298** 
(0.2104) 

-0.8484** 
(0.2021) 

-0.7552** 
(0.2065) 

- - 

Shoulder 3 -0.3394 
(0.4081) 

-0.1015 
(0.4068) 

-0.5991 
(0.3884) 

-0.4361 
(0.3991) 

- - 

Shoulder 6 (Ref) (Ref) (Ref) (Ref) - - 
4 Lanes 0.2190 

(0.1930) 
- 0.2565 

(0.2298) 
- - - 

6 Lanes 0.3960** 
(0.1646) 

- 0.4048* 
(0.1697) 

- - - 

7 > Lanes (Ref) - (Ref) - - - 
Region 1 - - -0.2448 

(0.1514) 
-0.3370** 
(0.1399) 

-0.1909 
(0.1348) 

- 

Region 2 - - -0.3877** 
(0.1384) 

-0.3920** 
(0.1358) 

-0.4003** 
(0.1422) 

- 

Region 3 - - -0.5265 
(0.4558) 

-0.5776 
(0.4717) 

-0.6093      
(0.5012) 

- 

Region 4 - - 0.0059 
(0.1614) 

-0.04862 
(0.1648) 

-0.08181   
(0.1743) 

- 

Region 5 - - 0.1502 
(0.1385) 

0.1022 
(0.1378) 

0.07423    
(0.1452) 

- 

Region 6 - - -0.1221 
(0.2317) 

-0.1243 
(0.2405) 

-0.1460     
(0.2555) 

- 

Region 7 - - (Ref) (Ref) (Ref) - 
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Table 6.6 Estimated parameters for freeway crash injury models with APKPY as the 
dependent variable 

    Ref= Reference level 
   **p-value<0.05 
   *p-value<0.1 
 

 

 
 

 M1 M2 M3 M4 M5 M6 
Effect Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Intercept -8.1702** 

(1.2003) 
-7.6034** 
(0.7602) 

-9.5078** 
(1.2282) 

-8.8555** 
(0.8354) 

-9.2382** 
(0.8617) 

-8.4901** 
(0.7267) 

logAADT 0.9664** 
(0.09910) 

0.9235** 
(0.0640) 

1.1035** 
(0.1014) 

1.0626** 
(0.0771) 

1.0293** 
(0.0795) 

0.9501** 
(0.0657) 

Shoulder 1 -0.7642* 
(0.4173) 

-0.4512 
(0.4108) 

-0.7443* 
(0.3818) 

-0.4528 
(0.3763) 

- - 

Shoulder 2 -0.7689** 
(0.2139) 

-0.6343** 
(0.2112) 

-0.8528** 
(0.2024) 

-0.7611** 
(0.2067) 

- - 

Shoulder 3 -0.3331 
(0.4100) 

-0.09663 
(0.4083) 

-0.6002 
(0.3888) 

-0.4329 
(0.3995) 

- - 

Shoulder 6 (Ref) (Ref) (Ref) (Ref) - - 

4 Lanes 0.2241 
(0.1942) 

- 0.2656 
(0.2303) 

- - - 

6 Lanes 0.3917** 
(0.1655) 

- 0.4030** 
(0.1700) 

- - - 

7 > Lanes (Ref) - (Ref) - - - 

Region 1 - - -0.2446 
(0.1516) 

-0.3381** 
(0.1401) 

-0.1912 
(0.1353) 

- 

Region 2 - - -0.3938** 
(0.1387) 

-0.3959** 
(0.1360) 

-0.4049** 
(0.1426) 

- 

Region 3 - - -0.5231 
(0.4565) 

-0.5714 
(0.4722) 

-0.6038 
(0.5026) 

- 

Region 4 - - 0.000566 
(0.1618) 

-0.05213 
(0.1651) 

-0.08679 
(0.1749) 

- 

Region 5 - - 0.1610 
(0.1387) 

0.1156 
(0.1379) 

0.0866 
(0.1456) 

- 

Region 6 - - -0.1267 
(0.2320) 

-0.1263 
(0.2407) 

-0.1503 
(0.2562) 

- 

Region 7 - - (Ref) (Ref) (Ref) - 
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Table 6.7 Estimated parameters for fatal freeway crash models with APKPY as the 

dependent variable  

     Ref= Reference level 
     **p-value<0.05 
     *p-value<0.1 
 
 

 M1 M2 M3 M4 M5 M6 
Effect Estimate 

(SE) 
Estimate (SE) Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Intercept -11.3324** 

(2.2963) 
-9.7660** 
(1.3681) 

-12.4740** 
(2.3742) 

-10.3407** 
(1.6437) 

-10.3623** 
(1.5745) 

-9.9148** 
(1.2324) 

logAADT 0.8324** 
(0.1902) 

0.7063** 
(0.1133) 

0.9399** 
(0.1984) 

0.7871* 
(0.1478) 

0.7697** 
(0.1426) 

0.7109** 
(0.1101) 

Shoulder 1 -0.9430 
(0.8467) 

-0.3866 
(0.8188) 

-0.8577 
(0.8232) 

-0.3283 
(0.7874) 

- - 

Shoulder 2 -0.4307 
(0.3755) 

-0.1006 
(0.3488) 

-0.4312 
(0.3610) 

-0.1926 
(0.3409) 

- - 

Shoulder 3 -0.6600 
(0.6080) 

-0.09281 
(0.5690) 

-0.7462 
(0.5754) 

-0.4159 
(0.5510) 

- - 

Shoulder 6 (Ref) (Ref) (Ref) (Ref) - - 

4 Lanes 0.5197 
(0.3616) 

 0.7054* 
(0.4154) 

- - - 

6 Lanes 0.6920** 
(0.2961) 

- 0.6868** 
(0.3146) 

- - - 

7 > Lanes (Ref) - (Ref) - - - 

Region 1 - - -0.1427 
(0.2552) 

-0.3715 
(0.2427) 

-0.3063 
(0.2168) 

- 

Region  2 - - -0.2443 
(0.2125) 

-0.2099 
(0.1987) 

-0.1847 
(0.1931) 

- 

Region  3 - - -0.8413 
(1.0294) 

-0.8983 
(1.0293) 

-0.8856 
(1.0292) 

- 

Region  4 - - 0.07123 
(0.3001) 

0.000458 
(0.2934) 

0.00754 
(0.2930) 

- 

Region  5 - - -0.6717** 
(0.2981) 

-0.6979** 
(0.2888) 

-0.6868** 
(0.2877) 

- 

Region  6 - - 0.1196 
(0.2667) 

0.09855 
(0.2619) 

0.1097 
(0.2603) 

- 

Region  7 - - (Ref) (Ref) (Ref) - 
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b. Estimated parameters for arterial models 
 

Tables 6.8 to 6.10 present the parameter estimates for the three arterial models 

of total injury and fatal crashes, in which the significant variables are the region, group of 

proportion of signalized intersections, intersections by kilometers and the logAADT. 

Table 6.8  Estimated parameters for models of total arterial crashes with APKPY as the 
dependent variable. 

 M1 M2 M3 M4 
Effect Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Intercept -8.7525** 

(1.5669) 
-9.3121** 
(1.5874) 

-9.1803** 
(1.5500) 

-10.5764** 
(1.1450) 

Region 1 -1.1610** 
(0.2127) 

-1.0857** 
(0.2158) 

-1.1080** 
(0.2084) 

- 

Region 2 -1.5458** 
(0.3043) 

-1.5785** 
(0.3123) 

-1.5261** 
(0.3024) 

- 

Region 3 0.1699 
(0.2139) 

0.2106 
(0.2195) 

0.1800 
(0.2115) 

- 

Region 4 -0.4721** 
(0.2343) 

-0.4224* 
(0.2407) 

-0.4745** 
(0.2327) 

- 

Region 5 -0.4720 
(0.4723) 

-0.5463 
(0.4796) 

-0.4687 
(0.4673) 

- 

Region 7 (Ref) (Ref) (Ref) - 

logAADT 1.0854** 
(0.1441) 

1.1091** 
(0.1469) 

1.0850** 
(0.1437) 

1.1657** 
(0.1095) 

Group of proportion 
for signalized 
intersections 1 

-0.4309** 
(0.1800) 

- - - 

Group of proportion 
for signalized 
intersections 2 

-0.2928 
(0.1946) 

- - - 

Group of proportion 
for signalized 
intersections 3 

(Ref) - - - 

Signalized 
intersections by 
kilometer 

- - 0.1350** 
(0.0532) 

0.1541** 
(0.07003) 

             Ref= Reference level 
            * *p-value<0.05 
            *p-value<0.1 
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Table 6.9 Estimated parameters for arterial injury crash models with APKPY as the 
dependent variable. 

 M1 M2 M3 M4 
Effect Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Intercept -9.0637** 

(1.5754) 
-9.6860** 
(1.5979) 

-9.5555** 
(1.5638) 

-10.8457** 
(1.1561) 

Region 1 -1.1669** 
(0.2110) 

-1.0934** 
(0.2143) 

-1.1144** 
(0.2076) 

- 

Region 2 -1.5212** 
(0.3026) 

-1.5482** 
(0.3108) 

-1.5001** 
(0.3019) 

- 

Region 3 0.1817 
(0.2119) 

0.2203 
(0.2177) 

0.1914 
(0.2105) 

- 

Region 4 -0.5206** 
(0.2327) 

-0.4713** 
(0.2392) 

-0.5179** 
(0.2320) 

- 

Region 5 -0.4630 
(0.4712) 

-0.5160 
(0.4788) 

-0.4446 
(0.4678) 

- 

Region 7 (Ref) (Ref) (Ref) - 

logAADT 1.1127** 
(0.1450) 

1.1421** 
(0.1479) 

1.1187** 
(0.1450) 

1.1895** 
(0.1105) 

Group of proportion 
for signalized 
intersections 1 

-0.4280** 
(0.1785) 

- - - 

Group of proportion 
for signalized 
intersections 2 

-0.3045 
(0.1930) 

- - - 

Group of proportion 
for signalized 
intersections 3 

(Ref) - - - 

Signalized 
intersections by 
kilometer 

- - 0.1275** 
(0.0533) 

0.1441** 
(0.07026) 

                 Ref= Reference level 
                * *p-value<0.05 
                 *p-value<0.1 
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Table 6.10 Estimated parameters for fatal arterial crash models with APKPY as the  
dependent variable. 

 M1 M2 M3 M4 
Effect Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Estimate 

(SE) 
Intercept -9.2444** 

(3.4105) 
-9.7507** 
(3.4340) 

-9.3610** 
 (3.3716) 

-10.2481** 
(2.0431) 

Region 1 -0.9611** 
(0.3741) 

-0.9444** 
(0.3734) 

-0.9715** 
(0.3644) 

- 

Region 2 -1.0616* 
(0.5421) 

-1.0432* 
(0.5491) 

-1.0185* 
(0.5375) 

- 

Region 3 -0.5357 
(0.3352) 

-0.4488 
(0.3346) 

-0.4297 
(0.3256) 

- 

Region 4 0.1385 
(0.3594) 

0.1858 
(0.3602) 

0.1152 
(0.3534) 

- 

Region 5 -0.1030 
(0.9512) 

-0.2779 
(0.9566) 

-0.2036 
(0.9419) 

- 

Region 7 (Ref) (Ref) (Ref) - 

logAADT 0.7429** 
(0.3132) 

0.7802** 
(0.3173) 

0.7264** 
(0.3119) 

0.7677** 
(0.1933) 

Group of proportion 
for signalized 
intersections 1 

-0.3601 
(0.3203) 

- - - 

Group of proportion 
for signalized 
intersections 2 

0.2097 
(0.3176) 

- - - 

Group of proportion 
for signalized 
intersections 3 

(Ref) - - - 

Signalized 
intersections by 
kilometer 

- - 0.2058** 
(0.0880) 

0.2213** 
(0.0946) 

                  Ref= Reference level 
                  **p-value<0.05 

    *p-value<0.1 
 
 
 

The interpretation is based on the concept of elasticity for a model with 

specification log-log. This specification is related to the logarithmic link function. This log 

link function as well as the mean is found on the left hand side of the equation 6.1. The 
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explanatory variables, such as the AADT, are located on the right hand side of the 

equation.  The log link function is used to join the mean and the explanatory variables. 

 { ( | )} log( ) ,ij i i ilog E Y U x Uα β= + +  (6-1) 

The value of β  can be interpreted as the relative change (%) of the expected 

response by an increase of 1% in the explanatory variable at a given segment Ui (is only 

valid when β  is small). For derivation details see the Appendix, Chapter 6. 

 
In all of the freeway models the coefficient of logAADT is positive, which means 

that for one given segment (with constant geometry), with each 1% AADT increase, 

there is an increase of  β  % in the number of crashes by kilometer by year (APKPY), 

while maintaining the other elements constant . 

The following equation is an example of the model for total crashes for freeway 

model 5 (M5) in region 1 taken from Table 6.5 is the following and can be observed in 

Figure 6.2: 

 ( )ˆ ( | ) exp 9.33 1.02log ,
iji iE Y U AADT U= − + +  (6-2) 

The interpretation of this model is that, for each 1% increase in the proportion, 

there is an increase of 1.02% in the APKPY, while maintaining the other elements 

constant (Ui).  

 
Figure 6.2 presents an example of safety performance functions for a typical 

segment of freeway. The typical segment is   the segment with average risk or random 
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effects equal to zero. The solid line is the expected number of crashes and both of the 

dashed line represent its 95% confidence interval. This means that for a typical segment, 

the expected number of collisions are expected to be within the city with a 95% 

confidence level. As an example for an AADT of 300,000 the average APKPY for a 95% 

confidence interval is between  [50-150]. 

 
 

Figure 6.2 Example of SPF of APKPY by AADT for region 1 for freeways 
 

 
The Figure 6.2 shows that for smaller values of AADT, the APKPY values are 

less dispersed, but for higher values of AADT the dispersion of APKPY is greater. 

Equation 6.3 is an example of the model for total crashes for arterial model 1 

(M1) in region 1 and the group of intersections for kilometer number 1 found in Table 

6.8, 

95 % IC 
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 ( )ˆ ( | ) exp 9.18 1.08log ,i ij iE Y U AADT U= − + +  (6-3) 

The interpretation of this model is that, for each 1% increase in the proportion, 

there is an increase of 1.08% in the APKPY, while maintaining the other elements 

constant. The coefficient of AADT is positive, which means that for each change in 

percentage of the AADT there is a 108 % increase in the APKPY. 
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CHAPTER 7: INCORPORATION OF MODELS 
INTO THE SAFETY MANAGEMENT 
SYSTEM 

7.1 INTRODUCTION 

The main factors in promotion of the economic productivity of a country are the 

improvement of mobility and safety. The mobility efforts in place for the planning of 

urban transport is apparent, however, the safety efforts are underrepresented. This is 

due to the lack of reliable methodologies for the decision making process in the early 

planning stage. 

Reliable GLMMs enable the establishment of a long, mid and short range plan 

the last factor can be obtained through the design of projects that consider the 

established criteria and methods that were developed in this work in the long range 

transportation plan. These models can be used in order to generate a comprehensive 

and well coordinated Safety Management System. The Safety Management System 

(SMS) is a process used to develop strategies that decrease the quantity and severity of 

crashes. Incorporating safety into the planning process is one way to develop a 

comprehensive SMS. This plan has seven steps that were described in chapter 2; 

section 2.4, where step 4, called the technical analysis step, is the most directly related 

to the use of the developed models into the SMS. 

A reference framework is described in this chapter. This chapter explains how 

regional models and functional classification models can be used in a proactive way; in 

the decision making process from a micro and macro perspective, in the conceptual 
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design stage considering the hazard and vulnerability of the highway segments, or in the 

reactive form. The aforementioned information would all be placed into the SMS.  

The framework mentioned above is useful in the development of a systematic 

and comprehensive planning process. The framework identifies the problems and 

opportunities to improve the transport system for long range planning. It also analyzes 

the relative affectivity of the different projects or strategies. Later, projects are designed 

according to the established goals and it is here where statistical models are required for 

decision making.  

In some states, planning models have been developed, but many of the variables 

employed for the forecast of crashes cannot be manipulated by the planner. In those 

models, the dependent variable is a frequency, which does not allow direct comparisons 

between regions. Planners have tried to calibrate such models for other sites, but this 

has not yet yielded good fits. 

The development of a comprehensive safety management system for Puerto 

Rico requires micro and macro models. The regional macro models are used to identify 

the current and future hazardous regions. They can also be used to establish long range 

mitigation plan measures, or to require detailed studies in the most hazardous regions. 

These models predict crashes, not their causes. 

The models developed by functional classification give crash predictions per 

kilometer by type of road and are used in order to have a more specific idea of the 

number of regional crashes considering the functional class and their general design and 

operational characteristics. These features can be controlled in the planning and 

conceptual design phases. 
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The joining of the previous models allows for the execution of a network analysis 

while keeping the sensitivity of the improvements in the conceptual design, location, and 

mobility management strategies. The spatial effects of the different regions and of the 

segments are included in the models. The safety planning process is used to analyze 

different mobility alternatives, while considering the safety effects. 

7.2 DETAILED METHODOLOGY 

 
 

Figure 7.1 Detailed methodology to incorporate safety into transportation planning 
process through SMS (Adapted of Arizona SMS) 
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In the conventional seven step planning process, as described in chapter 2, 

section 2.4 the technical analysis step uses the four step model as a tool. It provides an 

estimate of future AADT as a result for each one of the highways in a region. With that 

estimate, the ability of the transportation network is evaluated so as to accommodate 

future trips. Later, the improvements required by the system from the mobility standpoint 

are identified, alternatives are established, and then evaluated. As a result, the new 

transport networks are planned long-term. Safety is evaluated afterwards, specifically in 

the short term planning phase (3 to 5 years). 

The four step model estimates the AADT as well as other predictive variables 

related to the conceptual design of the project. This serves as the entry data in order to 

calculate the effect different transportation alternatives on various road types may have.  

The alternatives are evaluated in any given region by using the developed models. With 

this estimate, it is possible to evaluate the viability of the projects from the conventional 

standpoint and from a crash reduction perspective. 

In order to conduct an evaluation of the alternatives using multiple criteria, a 

cost/benefit economical analysis is necessary. This allows an agency to strategically 

prioritize their projects as part of their long range plan. The development of a new 

transportation network, and its influence in the reduction of private vehicle voyages, can 

serves as an example. From these examples, generalized alternatives for the mobility 

and the conceptual design can be established.  

These models can be employed in the development of macro crash modification 

factors (MCMF), which must consider the establishment of countermeasures at a larger 

scale. These should have an economic analysis developed and later be recommended 
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in the long term transport plan. It can also be used to better understand the crash at the 

regional level through functional classification as mentioned in Chapter 5. 

Methodologies that assess the hazard, vulnerability, and risk of structural 

systems in the face of any given event, exists in the structural engineering field. These 

hazards are associated with the exposure (geological fails in the structural area which 

can produce an earthquake with a given intensity), and the vulnerability associated with 

its physical characteristics (size of beams, materials of construction, year of 

construction, etc). The vulnerability factor is left constant, and it is through different 

hazard or earthquake scenarios that the risk is evaluated. In other words, the 

vulnerability of a structural system is evaluated in the event a hazardous situation were 

to take place. Hazards and structural vulnerability can have a great affect on a structure. 

These risks are quantified in terms of cost. 

A similar fashion, highway risks analysis can be done using a rate model. Risk 

assessment is evaluated by having the hazard factor remain constant. The hazard 

(which is associated with the AADT), the functional classification of the highway, and 

design elements are varied. This affects the vulnerability of the different segments. For 

example, for arterials, the intensity of intersections per kilometer can be varied in its 

effect on segment risk. Highways can also be evaluated using the proposed highway risk 

analysis model. With the developed model, percentile curves can be calculated in order 

perform a risk assessment or compare the costs of each design alternative from a safety 

standpoint. 

The dependent variable rate model has the advantage of realizing direct 

comparisons between different segments of built and planned roads. Then, hierarchy 
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can be developed based on the results, as well as develop mitigation measures to 

address the latent risk foreseen for the sites.  

7.2.1 Proactive use or safety planning system and Reactive use 
or short term planning 

The proactive approach consists of taking into consideration the impacts in safety 

that different strategies of planning or establishment of large projects have on the 

frequency, rate, and severity of the crashes. It also consists of identifying and 

recommending mitigation projects at a large scale, improving the conceptual design of 

the projects, and conducting additional studies pertaining to safety in high risk regions. 

The reactive uses consist in the risk evaluation of segments with crash history. 

7.2.1.1  Population average and specific subject models as tools 
to proactive technical analysis of alternative strategies for 
improvement  

 
Step 4 of the planning process consists of  model development and of performing 

an analysis of the available data in order to understand the effects (5 to 10 and 10 to 20 

years) that different, large projects will have in the future for safety. It will also analyze 

the effects depending on different improvement alternatives in the conceptual design 

and how mitigation measures affect crash frequency, rate or severity. 

A prediction is first conducted with the macro regional models, where 

municipalities with higher rates are found. For those municipalities, the population 

characteristics, drivers behavior, weather, environment, age of drivers, use of alcohol, 

and topography are analyzed. Findings or trends found will serve to make 

recommendations such as fine increases, awareness campaigns, policies, operation 
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strategies, infrastructure projects, studies, regulations, education, awareness, financing 

strategies, association, and collaboration commitments. 

Afterwards, the models by functional classification are used in order to have a 

greater understanding of what is happening in a particular region, and on each one of its 

highway types. So, it can tell if a region has a higher crash rate on expressways or 

arteries, in order to compare its value with the averages of the other regions. 

In expressways, the variable to consider in order to rate the models were AADT, 

region, shoulder type, and the number of lanes.  The variables considered in arterial 

models were AADT, region, group of intersections per kilometers, and intersection per 

kilometer. These variables take into account the effect of location, some aspects of 

conceptual design, mobility management, and multimodal aspects. The “region” variable 

captures the spatial heterogeneity of crashes.  

As a result of the functional classification models, analysis recommendations in 

conceptual design, mobility management, and the multimodality of the transportation 

network can be established into the step 6 of the planning process, which consists of 

developing a plan and program with safety in mind (long term plan). 

7.2.1.2  Reactive use (HSIP) or short term safety planning 
 

There are six basic components in the reactive process of highway safety 

management. The six basic components are identification, diagnosis, remediation, 

economical evaluation, hierarchy of projects, and monitoring of existing highways. 

 The application of the methods developed from this research can help in 

identifying the black spot sites, or the sites with the most probability of improvement. 

104 



Additionally, applying these methods help agencies to determine if the potential 

improvements are economically justified, to establish priorities for potential 

improvements, and to evaluate the effectiveness of improvements after implementation. 

The development models provide tools for the estimation of average crash frequency in 

its application, in the screening of the network steps, and the economical evaluation of 

the HSIP process improvements. 

7.2.1.3 Specific subject models as tools for identification of 
hazardous sites and regions respectively 

 
A methodology at the regional or site level is proposed in this work. It consists of 

employing the EB method for the prediction of the number of expected crashes in a 

specific site by means of SS models while considering its random effects. 

Through the developed models, crash predictions can be obtained using different 

options. When put into practice, oftentimes the parameters associated with the random 

effect are unknown. These parameters are related to the variability of the random effects 

and the residuals.  

Figure 7.2. presents the lineplots of the percentiles for the average total crashes  

on freeways model 2 and shoulder type 6. Each one of the curves has a different 

associated random effect. The 50th percentile curve represents the segments with 

average risk. If we add half variance, a population average model is obtained, and a 

strategic plan can be developed. On the case of an AADT of 300000 the estimate of 

APKPY for segments with average risk is between [37.5-75]. 
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Figure 7.2 Percentile curves for freeways model 2 and shoulder type 6 

 
 

The most specific details of design are included in the evaluation of design and 

construction alternatives. Economical evaluations are used to compare the benefits of 

countermeasures versus their cost. The predictive methods provide procedures for the 

estimation of crash frequency or average crash rates when the design and operation 

characteristics of the road are known, this with the purpose of establishment of a short-

term plan. 

Then of the implementation of the proactive and reactive approach, monitoring 

the system performance or step 7 of the planning process is conducted. This step 

consists of taking the collected data and evaluating the performance measures to 

determine whether there has been a decrease in the quantity and severity of crashes. 

High 
risk 

Average  
risk 

Low 
risk 

( )ˆ ( | ) exp 7.53 0.92log
iji iE Y U AADT U= − + +
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Figure 7.2 presents the curves percentiles for the total crashes in the freeway 

model 2 and shoulder type 6. Each one of the curves has a different associated random 

effect. The curve with 50th percentile represent the segments with average risk, low 

percentile represent segments with low risk, and high percentile represent segments 

with high risk. 

7.3 APPLICATION EXAMPLES  

The first step during the transportation planning process is the establishment of 

goals and objectives in order to reduce crashes. However, the objectives must be 

coherent with the natural growth of the crashes in the long term to adequately monitor 

compliance with these. The efficient investment of resources in safety can be achieved 

by risk analysis. This is done by identifying the most hazardous locations, analyzing the 

characteristics of those locations, and using the available resources to increase the 

safety of those areas. The municipality risk and rate can be calculated with the models 

developed in this research, and in accordance with the percentile curves estimates with 

these models. The proactive approach analysis can be completed using the freeway and 

arterial models to analyze different alternatives of mobility using the safety approach.  In 

the reactive planning approach, the segment risk can be found with the purpose of 

establishing the segments that require imminent improvements.  

In this section, a series of simple fictitious and real examples are included to 

exemplify how the models developed can be used in particular situations. The example 

number one represents the proactive approach for municipality models in the 

development of strategic planning goals for the reduction of crashes in the long term. 

The second example is a proactive approach for the risk rating of municipalities. The 
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third example is a proactive approach for analyzing freeway and arterials to calculate the 

number of crashes depending on different mobility alternatives. The fourth example 

represents the reactive approach for freeway and arterial models for risk rating, to be 

used as part of the short term planning process. 

7.3.1 Example 1 – Proactive approach (municipality model) for 
planning goals 

The Puerto Rico 2040 strategic plan has as long range objective (20 years) with 

the goal of a reduction of 10% in the total number of crashes for all municipalities 

including Mayaguez. The proportion of secondary highways in Mayaguez currently is 

0.10, and the population is 100,000 habitants. It is forecasted that in 20 years, the 

proportion of secondary highways will be 0.12, the length of total highways will increase 

by 10% (400 to 440 kilometers), and the population will decrease to 93,000. The 

planning department in the municipality wants to determine how many crashes can be 

expected in Mayaguez in 20 years and what will be the expected crash reduction after 

the implementation of safety improvement strategies?. (Please note, the data used in 

this example are hypothetical only). 

According to the results obtained in the municipality models, Mayaguez has an 

average risk of U=0, as shown in Table 7.5 which was obtained as the output of the 

models used. The equation to calculate the expected number of crashes is shown in 

Equation 7.1. The covariates for this equation are the proportion of secondary roads, the 

proportion of tertiary roads, and the value of U, which is associated to the municipalities 

as shown in Tables 7.2 through 7.8  

                                                                                                    (7-1) ( )ˆ ( | ) exp 10.85 12.93 sec 4.64i iE Y U prop propter U= − + + +
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Table 7.1 Example 1. 
Municipality Propsec APKPPPY Crash frequency 

Mayaguez (now) 0.10 0.0001 5673 
Mayaguez (after)* 0.12 0.0002 7516 
Expected reduction   752 
Expected number of 
crashes** 

  6764 

   APKPPPY -Crashes per kilometer per population per year  

  *without safety measures,  **with safety measures. 

The same equation is used to calculate the number of crashes in 20 years 

without the implemented strategies. This is done in order to monitor the performance of 

the objectives. Table 7.1 shows the number of crashes expected with and without safety 

measures. The expected reduction will be 752 crashes and the expected number of 

crashes after applying the safety measures will be 6764 crashes. 

7.3.2 Example 2- Proactive approach (municipality model) for 
risk rating 

Unlike the first example, this example utilizes real crash data obtained from the 

office of Road Safety in Puerto Rico. The long range plan of the Road Safety Agency 

should have as one of the objectives to determine the municipalities with the highest risk 

to make an efficient investment of resources and including additional studies such as 

Road Safety Audits. 

Equation 7.1 allows the calculation of the crash rate of Puerto Rico in 20 years by 

considering the change in the proportion of secondary roads and tertiary roads in the 

municipality. The U in the equation represents the risk associated to the municipality 

being analyzed that is obtained from the outputs calculated from the models. The values 

of the different percentiles are calculated by multiplying the standard deviation of the 

model by the representative z-value. Tables 7.2 to 7.9 presents the U values and the 
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characteristics of each municipality by region. The U are indicators of risk. The U values 

between 95th and 75th percentile [2.31, 0.94], represent high risk and are highlighted in 

red. The U values between 75th and 25th percentile [0.94,-0.94], represent average risk 

and are highlighted in yellow. The U values between 25th and 5th [-0.94,-2.31,] represent 

low risk and are highlighted in green.                                                                                                    

Table 7.2 Crash risk of municipalities in the Arecibo region. 
Municipality U Secondary Tertiary Total Population km^2 
Arecibo -0.41 10 174 1152 100004 326 
Utuado -0.55 43 149 921 35045 113 
Barceloneta 2.00 6 9 189 23407 82 
Florida -0.68 17 21 94 12624 39 
Manati 0.46 16 67 476 45591 120 
Ciales -1.23 65 49 436 19667 172 
V. Baja 0.53 8 91 520 61923 122 
Morovis 0.15 31 66 432 31229 101 
V. Alta 0.69 2 61 265 39020 72 
Corozal 0.32 21 84 390 37356 110 
Dorado 0.78 13 41 262 35794 60 
T. Baja 0.54 5 35 371 93399 62 
T. Alta 0.46 15 53 290 68345 72 
Naranjito -0.11 31 63 315 30306 72 

 
 
 
 
 
 

Table 7.3 Crash risk of municipalities in the Aguadilla region. 
Municipality U Secondary Tertiary Total Population km^2 

Rincon 1.19 10 32 179 15068 37 
Aguada 1.00 9 68 422 42561 78 
Aguadilla 0.35 18 54 352 64193 95 
Moca 0.81 10 94 527 40326 82 
Isabela 0.85 4 88 483 45358 143 
San Sebastian 0.08 44 98 645 44083 182 
Quebradillas 1.10 3 47 51 25906 23 
Camuy 0.87 12 64 468 35635 120 
Lares -0.07 35 110 590 33619 156 
Hatillo 1.01 11 65 401 40381 110 
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Table 7.4 Crash risk of municipalities in the Humacao region. 
Municipality U Secondary Tertiary Total Population km^2 
Aibonito 0.05893 21 64 296 26621 82 
Barranquitas -0.5058 37 51 288 29798 86 
Comerio -1.0689 37 45 233 20550 72 
Aguas 
Buenas 0.4579 28 40 323 29004 78 
Cidra -0.0951 39 42 337 43509 93 
Cayey -0.1844 18 76 508 48158 130 
Salinas 0.7566 0 32 578 31469 180 
Guayama 0.5403 0 77 655 45155 169 
Arroyo 1.5676 0 23 177 19500 38 
Patillas -0.1195 32 39 367 20109 125 

 
 

Table 7.5 Crash risk of municipalities in the Mayaguez region. 
Municipality U Secondary Tertiary Total Population km^2 

Añasco 0.2181 28 68 438 28928 92 
Cabo Rojo 0.1733 26 94 639 48717 182 
Guanica 0.6936 11 43 297 21344 96 
Hormigueros 1.0303 6 26 129 16986 29 
Las Marias -0.4715 51 39 384 10808 121 
Mayaguez 0.1418 41 75 635 96490 201 
Maricao -0.4547 26 55 251 6467 169 
Lajas 0.1179 25 71 442 26407 158 
San German 0.1448 21 104 523 36962 141 
Sabana Grande 0.2455 15 57 308 25984 92 
Yauco 0.788 0 112 645 45512 179 

 

Table 7.6 Crash risk of municipalities in the San Juan region. 
Municipality U Secondary Tertiary Total Population km^2 
Catano 2.3369 0 16 93 29823 5 
Bayamon 0.8791 4 102 946 221360 115 
Guaynabo 0.9333 0 60 502 100495 70 
San Juan -2.039 0 61 1370 426660 124 
Trujillo Alto 0.4 5 51 330 76370 55 
Carolina 0.2024 9 64 747 184766 117 
Loiza 0.551 23 7 158 32145 50 
Canovanas 0.7616 15 48 360 45320 73 
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Table 7.7 Crash risk of municipalities in the Fajardo region. 
Municipality U Secondary Tertiary Total Population km^2 
Rio Grande -5.0796 6 102 495 53602 157 
Luquillo -4.2431 0 51 234 20131 68 
Fajardo -4.6483 6 40 314 39944 77 
Ceiba -3.4439 0 32 281 16748 75 
Naguabo 0.3109 11 60 439 25018 135 
Humacao 0.635 2 60 474 59613 142 
Las Piedras 0.6404 15 59 304 36302 35 
Juncos 0.7886 13 47 272 38128 68 
Gurabo 0.5214 15 62 332 40009 76 
San Lorenzo 0.2861 29 79 575 41516 138 
Yabucoa 0.4029 8 80 561 39214 142 
Maunabo -3.8085 0 31 188 12714 54 
Caguas 0.4594 13 85 775 142927 152 

 

Table 7.8 Crash risk of municipalities in the Ponce region. 
Municipality U Secondary Tertiary Total Population km^2 
Adjuntas 0.155 22 96 539 19485 173 
Guayanilla 0.9069 5 59 399 22866 110 
Penuelas 0.7355 16 46 405 26262 117 
Ponce -1.1014 52 122 1283 181971 297 
Jayuya 0.0204 28 51 286 17326 102 
Villalba -0.215 36 58 346 27670 96 
Juana Diaz 0.262 8 96 605 51236 61 
Orocovis -0.6826 68 63 572 23995 164 
Coamo -0.6185 42 96 555 39020 202 
Santa Isabel 0.7299 13 29 380 22457 88 

 

According to Tables 7.2 to 7.8, the municipalities of Rincon, Aguada, Quebradilla, 

Hatillo, Barceloneta, Cataño, and Hormigueros are the municipalities with the highest 

risk of crashes. The regional averages of these municipalities in terms of other 

contributing factor can be compared to the regional averages of other municipalities. 

Some of the contributing factors include the averages of consumption, of drugs, alcohol, 

population aging, and topography. Using all these information, recommendations can be 
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made for engineering policies, education measures, medical emergency response 

management, enforcement strategies, and planning improvements, to effectively use  

the limited resources in those places with higher risk of crashes. 

7.3.3 Example 3- Proactive approach (freeway and arterial 
model) for introducing safety as part of the strategic 
planning process 

Hypothetical data was used in this example. Suppose that the long range 

planning process has recognized the need to construct a road between Fajardo and 

Mayaguez. Different alternatives of mobility have been identified and each one has a 

different level of safety associated to each alternative, as shown in Tables 7.9 though 

7.15. The models M4 for freeways (Table 6.5), and M3 for arterials (Table 6.8) were 

employed to obtain the expected APKPY for each one of the alternatives. The covariates 

used in the model M4 are AADT, shoulder type, and regional location. In model M3, the 

covariates used are regional location, AADT, and signalized intersections by kilometer. 

These covariates can vary depending on the model chosen. 

Alternative 1 

Table 7.9 Freeway total crashes SPF without metal barrier (North area). 
Mayaguez Municipalities AADT Kilometers APKPY APY 
Humacao Fajardo-Rio Grande 55270 14 3 49 
San juan Rio Grande- Bayamon 290000 40 15 601 
Arecibo Bayamon- Arecibo 144000 66 6 421 
Aguadillla Arecibo-Aguadilla 39500 53 1 73 
Mayaguez Aguadilla-Mayaguez 47900 17 3 48 
Total    190  1191 
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Table 7.10 Freeway fatal crashes SPF without metal barrier (North area). 
Region Municipalities AADT Kilometers APKPY APY 

Humacao Fajardo-Rio Grande 55270 14 0.18 3 
San juan Rio Grande- Bayamon 290000 40 0.46 18 
Arecibo Bayamon- Arecibo 144000 66 0.31 21 
Aguadillla Arecibo-Aguadilla 39500 53 0.06 3 
Mayaguez Aguadilla-Mayaguez 47900 17 0.16 3 
Total     190   47 

 

Alternative 2 

Table 7.11 Freeway total crashes SPF without metal barrier (South area). 
Region Municipalities AADT Kilometers APKPY APY 

Humacao Fajardo-Yabucoa 55270 31 7 219 
Guayama Yabucoa-Salinas 76700 64 9 561 
Ponce Salinas-Yauco 81700 42 12 495 
Mayaguez Yauco-Mayaguez 47900 45 6 260 
 Total     182   1535 
 

Table 7.12 Freeway fatal crashes SPF without metal barrier (South area). 
Region Municipalities AADT Kilometers APKPY APY 

Humacao Fajardo-Yabucoa 55270 31 0.18 6 
Guayama Yabucoa-Salinas 76700 64 0.26 17 
Ponce Salinas-Yauco 81700 42 0.12 5 
Mayaguez Yauco-Mayaguez 47900 45 0.16 7 
 Total    182  34 
 

Alternative 3 

Table 7.13 Arterial total crashes SPF without metal barrier (North area). 
Region Municipalities AADT Kilometers APKPY APY 

Humacao Fajardo-Rio Grande 88100 14 29 403 
San juan Rio Grande- Bayamon 126300 40 14 568 
Arecibo Bayamon- Arecibo 46000 66 3 205 
Aguadillla Arecibo-Aguadilla 66300 53 13 700 
Mayaguez Aguadilla-Mayaguez 88200 17 18 310 
 Total     190   2186 
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Table 7.14 Arterial fatal crashes SPF without metal barrier (North area). 

Region Municipalities  AADT Kilometers APKPY APY 
Humacao Fajardo-Rio Grande 88100 14 0.35 5 
San juan Rio Grande- Bayamon 126300 40 0.21 8 
Arecibo Bayamon- Arecibo 46000 66 0.10 6 
Aguadillla Arecibo-Aguadilla 66300 53 0.23 12 
Mayaguez Aguadilla-Mayaguez 88200 17 0.48 8 
 Total     190   40 

 
 
Alternative 4 

 
Table 7.15 Arterial total crashes SPF without metal barrier (South area). 

Region Municipalities AADT Kilometers APKPY APY 
Humacao Fajardo-Yabucoa 88100 31 29 893 
Guayama Yabucoa-Salinas 88100 64 29 1844 
Ponce Salinas-Yauco 40000 42 8 323 
Mayaguez Yauco-Mayaguez 88200 45 18 812 
 Total     182   3872 
 

 
Table 7.16 Arterial fatal crashes SPF without metal barrier (South area). 

Region Municipalities AADT Kilometers APKPY APY 
Humacao Fajardo-Yabucoa 88100 31 0 11 
Guayama Yabucoa-Salinas 88100 64 0 22 
Ponce Salinas-Yauco 40000 42 0 8 
Mayaguez Yauco-Mayaguez 88200 45 0 22 
Total     182   63 

 
 

This example shows how safety can be analyzed as part of the strategic planning 

process. For example alternative 1 represents a freeway going through the Northern 

Region of Puerto Rico, and process and has a total number of 1191 crashes per year, 

and 47 crash fatalities per year. The second alternative, which represents a freeway 

going through Southern Region, has a total number of 1535 crashes per year, and 34 

crash fatalities per year. The third alternative, which represents an arterial going through 

the Northern Region, has a total annual number of crashes of 2186 and 40 crash 
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fatalities per year, and alternative 4, arterials going through the Southern Region, has a 

total number of annual crashes of 3872 and 63 crash fatalities. Each alternative can be 

analyzed using a cost-benefit analysis in order to rate the safety between the different 

criteria in the evaluation for the best alternative. 

7.3.4 Example 4 – Reactive approach (freeway and arterial 
model) for Risk Rating of Segments 

The following example uses real crash data. The segments with highest risk for 

crashes can be identified as part of the short term planning process. The segments 

between the 95th and 75th percentile have high risk. For example a segment with an 

AADT OF 300,000 and a APKPY between [37.5-75] is considered an average risk 

segment as can be determined using figure 7.2. Different segments can be evaluated 

with varying crash rates in order to identify the magnitude of risk of the segments. The 

covariates will change depending on the model chosen for the segment evaluation. 

Additional studies can be developed of these segments to identify the problems and 

possible countermeasures. To identify the appropriate countermeasures for these high 

risk segments, it is necessary to perform a road safety audit. Afterwards, it is important 

to monitor the actual reduction in crashes due to the countermeasure chosen. The 

expected number of crashes before the improvement can then be compared to the 

observed number of crashes after the improvement. 

116 



CHAPTER 8: CONCLUSIONS  

8.1 LOCAL PROCEDURES 

• The Puerto Rico Department of Transportation and Public Works (PRHTA) and 

the Puerto Rico Highway and Transportation Authority (PRHTA) have developed the 

Puerto Rico Strategic Highway Safety Plan (SHSP) 2014-2018, so as to significantly 

reduce the number of fatalities and serious crash related injuries. The development of 

this plan is a federal requirement of 23 USC, Section 402, which requires the creation of 

a state highway safety program. 

• During interviews with various experts in the urban planning field of Puerto Rico, 

the following were found to be true: 

• Crash databases exits, but do not have the exact location of the crashes and 

omit relevant information necessary for crash data analysis. 

• Transportation safety appears in the transportation planning process of the  

Commonweatlh of Puerto Rico, in the LRTP set of goals and objectives, and in their 

vision statement.  

• There is no Safety Management System in place for planning and monitoring 

safety related to the transport of goods and services on the road. 

• The Regulations office has a Road Safety Audit Division which is in the process 

of developing a HSIP that would include planning, evaluation and implementation of 

safety countermeasures. The Road Safety Audit Division has a methodology for the 

identification of black spot priorities and is similar to the one used in the State of Iowa.  
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8.2 CALIBRATION OF ARIZONA MODELS TO WESTERN 
REGION AND DEVELOPMENT OF WESTERN 
REGION MODELS 

Due to the lack of fit of Arizona models to Puerto Rico’s characteristics, as shown 

in chapter 4, a decision was made to find new explanatory variables and develop a 

model for the western region. The model required a set of independent variables using 

road network characteristics, socio-economic, demographics, and crash history.  The 

conclusions and recommendations are: 

• The variables interstate, municipal, tertiary roads and population density were 

found to be significant. 

• The focus of macro- level models is prediction and association. The goal is to 

inform the analyst what effects a hypothetical planning scenario can have on crash 

numbers and severities. An example of a hypothetical planning scenario can be the 

increase in the number of roadway kilometer inside a region. The developed models 

have limitations and assumptions. An important assumption is that ‘new’ safety 

countermeasure investments are to be analyzed independently by some other model or 

research study. 

• The appropriate uses of the developed models are for planning, prediction, or 

forecasting domains. The inappropriate use of the model would be in the traffic and 

safety engineering domains. 
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8.3 REGIONAL MODELS 

• A pilot study was conducted in the beginning of this experimentation to verify 

how some variables would behave and to draw conclusions that would help in the 

creation of regional models for the whole island. For example, the pilot study revealed 

that population was not a good prediction variable due to the decrease in population in 

some municipalities. 

• The pilot study results also found that the frequency models do not allow for a 

direct comparison between municipalities in determining which one is more dangerous. 

The number of crashes per municipality is only one factor among many. Therefore, 

information related to the number of kilometers in primary, secondary and tertiary roads 

was investigated to use them as explanatory variables. Information related to the 

population and the length of roads was used to “offset” the models, or, to standardize 

variables. The developed prediction models were used to obtain a base condition 

(current circumstances), and to determine what would happen under various planning 

scenarios in terms of crash rates 

• When the planning process has reached its final stage, the zones at greater risk 

of accidents should be included within the transportation plan for the development of 

more detailed analysis and for the implementation of safety projects. Afterwards, the 

high risk zones should be analyzed as part of  the planning process, to verify whether 

there is  truly a decrease in the accident rate, and see if it was a result of the 

implemented measures, or if there is another possible explanation. 

• The use of these models could provide planners with information concerning 

future road safety. This data could be achieved while assuming similar design 
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characteristics that to those used now. As a result, planners could prepare new safety 

plans that would implement new system-wide safety initiatives in order to improve safety 

in the future and calculate the Crash Modification Factors (CMF’s) accordingly. In this 

way, planners could estimate the amount of resources needed to meet the regional 

safety objectives. 

• Regional expansion can affect the population growth, the number of the miles in 

the roads, and intersection density. A statewide or regional safety objective may present 

an X% reduction of total and fatal crashes as a goal, but this does not necessarily mean 

that there will be a crash reduction because population growth and other factors can still 

cause an increase in the number of crashes. The fatal crash model simply provides 

planners with a tool for setting targets and for meeting objectives and performance 

milestones. 

8.4 FREEWAY AND ARTERIAL MODELS 

• In the APKPY models for expressways, AADT, number of lanes, shoulder type 

and region were found to be significant variables; while in the arterial APKPY models, 

the variables that were found to be significant were the AADT, intersections by kilometer, 

and segment location or region. The AADT, shoulder type and lanes were the most 

important elements in predicting crashes on expressways. Meanwhile, AADT, region and 

signalized intersection by kilometer were found to be the most important in crash 

predictions on arterials.  

• In the expressway model, as the AADT variable increased, the number of 

crashes per kilometer also increased. The expressway segments with a paved shoulder 
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had a lower total crash rate. Arterial segments located in Arecibo have a lower total 

crash rate, while those located in Aguadilla had a higher total crash rate, keeping 

constant with the AADT independent variable. These results concurred with the 

statistical analysis by region shown in chapter 3. 

• The values of β found by the maximum likelihood method describe the typical 

values of the relationship between the response and covariates, while keeping the effect 

of a subject (segment) constant. These models are called Specific Subject ‘SS’ or 

conditional models and can be employed in crash predictions for improving existing, 

specific sites, or for the creation of new infrastructures with specific characteristics by 

means of the EB method. 

• In the long range planning level, the typical predictions can be changed into 

marginal means or Population Average, PA in a simple way for predictions or dependent 

variables. This characteristic allows for versatility and multiple applications for developed 

models. 

• Alongside total crash models, others were developed in order to separate 

different crash severities. These models allow an economic analysis in order to evaluate 

the different alternatives planned for long, mid, and short term projects. Unlike the 

models developed for arterials in the HSM, these models require a low sample size, little 

information. In addition the use of a model for functional classification is needed in order 

to conduct an estimation at an aggregated or regional level. 

• A factor is considered arbitrary if the levels studied can be treated as a random 

sample of a population of levels for the factor; this would mean that an associated 

probability exits. The random selection of the sample of the levels is done with the 
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purpose of treating this as a representation of the population of effects for which the 

inference is be done. In this study the factor is the segment, and the levels are the 

different characteristics or their treatments. 

• In the analysis of random segment crashes, these being representative of the 

entire island, the segments were incorporated as a random factor with the purpose of 

inferring the result of the segments for the whole island (different degrees of inference in 

the consideration of different experimental unit orders). When the modeling did not 

include these effects, the inference could only be done for modeled segment levels. 

• The conditional model objectives are: estimating the typical values of the 

parameters (random effects = 0, in the center of its distribution) of f, studying how the 

parameters vary in the population, and studying if this variation is related to the 

characteristics of the individuals (covariates, etc). These objectives were obtained 

through inference around parameters β  and D. 

• The components of β described both typical values and the relationship between 

the response and the covariates; while maintaining the effect of the subject constant. 

• As in many regression models, the main objective is to identify a parsimonious 

functional form so as to describe the relationship between the observations and the 

covariates. Characterizing the subject can be of interest (predicting the random effects), 

in order to predict the places according to their improvement potential in crash reduction. 

• The Generalized Linear Mixed Models  are of the Specific Subject (SS) type: the 

values relate the observations with a covariate for a given subject, not for the Population 
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Average. On the other hand, the parameters of a PA represent the relationship between 

the marginal average, ( | )E Y u  and covariates.  

• Both strategies can use non linear models like the ones in this work, through the 

SS approach is more common because it is richer. It is possible to study the marginal 

relation (PA) in a simpler way through a SS model, but it is impossible to study SS 

relationship from a PA model. 

• When a prediction for an effect population (levels) for a given factor (segment) is 

needed in the modeling process, the segments at the time of the study should be treated 

as random variables. 

• The functional classification planning models allow for the consideration of the 

possible consequences in the case of different infrastructure alternatives in regards to 

safety. This then enables the mitigation alternatives to be considered from an early 

stage. The models can be used to find the crash rate reduction as a result of an increase 

of public transportation. 

• The planning models developed in this work can be used to develop macro crash 

modification factors at the network level. This can be used in conceptual design and to 

make recommendations for any long term transportation plan. 

• Traffic growth can affect the number of required highways. Therefore, when 

considering crash reduction objectives at a regional level, it is necessary to take normal 

population growth into account when faced with an increase in the number of road 

crashes. If this is done, crash reduction objectives can be wholly achieved. 
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• In addition to the mentioned applications, the models could also be used using a 

more traditional or reactive approach. Existing infrastructures can be improved when this 

Empirical Bayes EB method is used. 

8.5 FRAMEWORK FOR THE INCORPORATING OF 
SAFETY INTO LONG AND MID RANGE URBAN 
PLANNING 

• This work found that the developed models are versatile. This means, that they 

can be used to assess the consequences of safety on different projects, to realize a risk 

analysis of the existing highways, or to implement on a new infrastructure and to conduct 

a comprehensive SMS. 

8.6 GENERAL CONCLUSIONS 

The main contributions of this research are the following: 

• The development of SPF models for municipalities, freeways and arterials while 

taking into account the spatial effects and temporal correlation in collision data and 

including random effects. 

• The development of improved SPF models through the inclusion of random 

effects, obtaining both conservative and realistic models. This model focuses on 

explaining part of the extra-variation by improving the mean function. 

• The development of different tools and a framework for their incorporation into 

the strategic planning process. 
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• The development of arterial SPF models has been restricted to intersections or 

road segments modeling. This practice ignores the relationship between intersection 

safety levels on a regional road segment level or vice versa. The incorporation of spatial 

heterogeneity into the models developed in this thesis could be used to assess the 

safety of a network composed of both intersections and road segments. 

• Preliminary analyses concerning this topic has provided some valuable insights 

into the relationship between collisions on intersections and road segments in a network.  

• The GLMM network models with spatial heterogeneity were compared to GLM 

models, and the independent models, in terms of goodness-of-fit, inference, and  the 

identification of high risk zones.  

• Typically, the n segments under consideration in this study belong to mutually 

exclusive K regions. In such cases, an additional component of variability can be 

included in the model so as to allow for the possibility that different regions have different 

collision risks due to traffic, geometric and environmental conditions that vary among 

them. 

• Therefore, in order to benefit from the advantages of using the random 

parameters approach, and avoid over-fitting, it is recommended to cluster the road 

entities into homogeneous groups (e.g., districts, municipalities, zones, etc.) and fitting a 

different regression curve for each group rather than for each individual site. 

• The models allow for global predictions to be developed at a regional level, while 

keeping the same sensitivity to changes in geometry, location and safety features for 

segment safety. 
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CHAPTER 9: RECOMMENDATIONS 

9.1 LOCAL PROCEDURES 

• It is necessary to improve the current system and the data collection format in 

order to obtain a better data quality that would, in turn, produce better models. 

• The development of average population models, marginal models, subject 

specific models or conditional models is necessary in order to fully complete the safety 

monitoring processes in Puerto Rico and be able to establish an all encompassing safety 

system. 

9.2  CALIBRATION OF ARIZONA MODELS FOR THE 
WESTERN REGION AND THE DEVELOPMENT OF 
WESTERN REGION MODELS 

• The modeling processes consists of developing the trial and error process and 

of knowing the contributing factor for crashes. 

• The safety  analysis of any project will provide expected crashes as a result. 

This should be considered as an explanatory statement regarding safety and not a 

defining statement about safety. It could represent the amount of risk expected by 

changes in the number of intersections, residential development, road mileage, and local 

population. 

• Although many explanations are provided for models predictive variables, 

models are not used for explaining. They are used instead for the prediction of crash 

outcomes and their severity per municipality in hypothetical situations. This restriction is 
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not to dissimilar from the restriction placed on travel demand models’, whose primary 

purpose is to predict demand for roadway space of motor vehicles in hypothetical or 

future scenarios.  

• The municipalities at higher risk are found by using this prediction. Afterwards, 

comparisons between the socio-economic and demographic data of other municipalities 

can be conducted so as to acquire a complete understanding of the vehicular accidents 

and of safety measure tendencies. It is also necessary to conduct additional studies and 

audits for the safety in major risk zones after these areas are identified. 

• Crash data is modeled so as to predict any future safety problems that may 

surge in a hypothetical population growth scenario. This type of models is important in 

order to plan for specific countermeasures to avoid those crashes typical of regional 

conditions. 

• The next step would be to examine design policies and safety investments so as 

to meet the regional safety goals. 

• It is necessary to develop models that include public transportation and non 

motorized means as independent variables in order to capture the effect of these 

important aspects into highway safety. 

• It is also necessary to develop a complete HSIP to monitor and evaluate the 

improvements of safety as a result of in infrastructure, enforcement, education, and 

medical emergencies through SPF. This complete program cannot be found in Puerto 

Rico at the moment. 
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• Transportation planning often focuses solely on infrastructure related solutions. 

A much broader perspective on how the planning process can affect the safety of the 

transportation system should include recommended policies, processes, studies, and 

budget priorities. 

• The long range transportation plan must include topics such as safety education 

programs for motor vehicles , safety awareness, cyclist and pedestrians, work zones, 

education policies, elderly driver evaluations and mature driver education. It should also 

include engineering and operation topics such as traffic management safety audits of 

existing, rehabilitated and new roadways, traffic safety studies, and traffic safety 

measures in construction zones. 

• Municipalities at higher risk can be analyzed in a detailed way through the 

comparison of average variables of other municipalities, that way providing a better 

insight of the high occurrence of crashes. 

9.3 REGIONAL MODELS 

• One possible way to analyze the impact of the incorporation of safety devices is 

to create accident risk maps for each alternative or scenario, and to determine what 

would happen with the implementation of mitigation measurements or safety 

improvements. Another important impact that can be studied is the economic analysis. 

This analysis considers the direct and indirect costs of accidents versus the required 

strategic investments. 
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9.4 FREEWAY AND ARTERIAL MODELS 

• The developed models can be used to conduct economic studies while 

considering both the direct and indirect cost of accidents and the improvements to safety 

measures. 

9.5 FRAMEWORK FOR THE INCORPORATION OF 
SAFETY INTO LONG AND MID RANGE URBAN 
PLANNING 

• The incorporation of the models into a SMS can assist in monitoring  the results 

of the safety improvements done on the different roads. 

9.6 GENERAL RECOMMENDATIONS 

• The resulting models can provide the planners with information about future 

safety data. Assuming of course, that the design standards will be similar to those used 

in the present. However, the planners can prepare new safety plans to put into practice, 

or suggest new initiatives at a network level. This will help to improve safety in the future 

and calculate the corresponding MCMF. This way, the scheduler can have a better idea 

of resources needed to achieve the regional safety objectives for the future. 
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Table. Data used for Puerto Rico western region models (2002 year) 

 

  

Municipality Highway_miles Population_thousand Acres POP_PAC Intersections Int_mile Intestates Freeways Pop_young_thousand POP_drive_thousand Total_crashes Fatal_crashes Injury_crashes Primary Secundary Tertiary Municipal Millas_acre
Aguada 262.49 42.46 19795 2.14 32 0.12 0.03 0.00 9.98 28.49 2286 7 361 5.55 5.67 42.33 208.94 0.013
Aguadilla 219.06 64.41 23417 2.75 20 0.09 0.09 0.07 14.09 42.41 3243 12 592 15.64 10.94 33.49 158.82 0.009
Añasco 272.07 28.76 25132 1.14 23 0.08 0.08 0.02 6.58 18.98 1206 5 197 3.78 17.53 42.40 208.35 0.011
Cabo_rojo 397.36 48.19 45023 1.07 21 0.05 0.05 0.00 10.24 30.97 1703 5 262 16.15 0.01 58.11 323.09 0.009
Guanica 187.39 21.54 23750 0.91 18 0.10 0.04 0.00 5.19 13.76 665 0 117 4.43 7.00 27.03 146.06 0.008
Hormigueros 300.36 16.88 7244 2.33 11 0.04 0.03 0.00 3.25 11.03 820 4 130 5.69 3.74 16.45 54.23 0.041
Isabela 80.11 45.11 35430 1.27 28 0.35 0.17 0.00 10.16 29.41 2082 7 397 6.92 2.74 54.50 236.20 0.002
Lajas 274.53 26.39 33463 0.79 27 0.10 0.03 0.00 5.82 17.00 1032 2 122 0.00 15.33 44.00 215.21 0.008
Las_Marias 238.42 10.89 23206 0.47 18 0.08 0.00 0.00 2.63 7.14 370 0 77 0.00 31.55 24.29 182.57 0.010
Maricao 156.12 6.46 23442 0.28 12 0.08 0.00 0.00 1.61 4.22 174 0 23 0.00 16.36 33.94 105.82 0.007
Mayaguez 394.58 97.22 49683 1.96 40 0.10 0.05 0.00 18.78 64.65 6282 9 727 21.71 25.59 46.89 300.39 0.008
Moca 327.68 40.18 32185 1.25 30 0.09 0.00 0.00 9.87 26.56 1979 7 317 0.00 6.48 58.39 262.80 0.010
Rincon 110.94 14.98 9145 1.64 7 0.06 0.00 0.00 3.19 9.78 621 1 130 0.00 6.13 19.89 84.92 0.012
Sabana_Grande 191.34 25.98 22969 1.13 14 0.07 0.04 0.00 6.01 16.75 862 2 155 4.88 9.58 35.58 141.30 0.008
San_German 324.97 37.03 34886 1.06 35 0.11 0.06 0.00 7.87 24.00 1670 5 227 7.64 12.78 64.67 239.89 0.009
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1.1 LOG-NORMAL 
TOTAL CRASHES 

MODEL  
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The GLIMMIX Procedure 
 

4.5.6.1 Models for total crashes 

Log- normal model Eq(4.8 and 4.9) 

The REG Procedure 
Model: MODEL1 

Dependent Variable: Total_crashes 
Number of Observations Read 16 

Number of Observations Used 15 

Number of Observations with Missing Values 1 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 1 9.33887 9.33887 68.79 <.0001 

Error 13 1.76483 0.13576   

Corrected Total 14 11.10369    
 

Root MSE 0.36845 R-Square 0.8411 

Dependent Mean 7.07733 Adj R-Sq 0.8288 

Coeff Var 5.20606   
 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 5.84693 0.17623 33.18 <.0001 

Population 1 0.03506 0.00423 8.29 <.0001 
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The GLIMMIX Procedure 
 

The REG Procedure 
Model: MODEL1 

Dependent Variable: Total_crashes 
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The GLIMMIX Procedure 
 

 
 

148 
 



The GLIMMIX Procedure 
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The GLIMMIX Procedure 
 

 
 
 

1.2 LOG LINEAR 
NEGATIVE 

BINOMIAL TOTAL 
CRASH MODEL  
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The GLIMMIX Procedure 
 

Log linear- negative binomial model Eq. (4.10 and 4.11) 

The GLIMMIX Procedure 
 

Model 1  Information 

Data Set WORK.EISENHOW
ERTOTCRASH 

Response Variable Total_crashes 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Variance Matrix Diagonal 

Estimation Technique Maximum 
Likelihood 

Degrees of Freedom Method Residual 

 

Number of Observations Read 15 

Number of Observations Used 15 

 
Dimensions 

Covariance Parameters 1 

Columns in X 4 

Columns in Z 0 

Subjects (Blocks in V) 1 

Max Obs per Subject 15 

 
Optimization Information 

Optimization Technique Newton-
Raphson 

Parameters in Optimization 5 

Lower Boundaries 1 

Upper Boundaries 0 

Fixed Effects Not Profiled 
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The GLIMMIX Procedure 
 

Iteration History 

Iteration Restarts Evaluations 
Objective 
Function Change 

Max 
Gradient 

0 0 4 124.26343235 . 6.25745 
1 0 22 113.17329085 11.09014150 4.734797 
2 0 3 113.12241859 0.05087226 2.439712 
3 0 3 113.085962 0.03645659 0.545013 
4 0 3 113.06165824 0.02430376 0.221281 
5 0 3 113.05619386 0.00546438 0.034789 
6 0 3 113.05602263 0.00017123 0.003138 
7 0 3 113.05602093 0.00000170 0.000154 
8 0 3 113.05602092 0.00000000 4.014E-6 

 
 

Convergence criterion (GCONV=1E-8) satisfied. 
 

Fit Statistics 

-2 Log Likelihood 226.11 

AIC  (smaller is better) 236.11 

AICC (smaller is better) 242.78 

BIC  (smaller is better) 239.65 

CAIC (smaller is better) 244.65 

HQIC (smaller is better) 236.07 

Pearson Chi-Square 12.62 

Pearson Chi-Square / DF 1.15 

 
Parameter Estimates 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 
Intercept 4.5972 0.3515 11 13.08 <.0001 

Highway_miles 0.005098 0.001079 11 4.73 0.0006 
POP_PAC 0.6432 0.1682 11 3.82 0.0028 
Intestates 9.3160 2.2690 11 4.11 0.0017 

 
Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

Highway_miles 1 11 22.33 0.0006 
POP_PAC 1 11 14.63 0.0028 
Intestates 1 11 16.86 0.0017 
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1.3 LOG NORMAL 
FATAL CRASHES 

MODEL 
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The GLIMMIX Procedure 
 

 

4.5.6.2 Models for fatal crashes 

Log-normal model Eq (4.12 and 4.13) 

The REG Procedure 
Model: MODEL1 

Dependent Variable: Fatal_crashes 
Number of Observations Read 16 

Number of Observations Used 15 

Number of Observations with Missing Values 1 
 

 

 

Stepwise Selection: Step 1 
 

Variable Municipal Entered: R-Square = 0.3068 and C(p) = 2.0000 
 
 
 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 1 0.00858 0.00858 5.75 0.0322 

Error 13 0.01939 0.00149   

Corrected Total 14 0.02797    
 

Variable Parameter 
Estimate 

Standard 
Error 

Type II SS F Value Pr > F 

Intercept 0.01113 0.01717 0.00062592 0.42 0.5284 

Municipal 0.02775 0.01157 0.00858 5.75 0.0322 
 

Bounds on condition number: 1, 1 

 

 

 

154 
 



The GLIMMIX Procedure 
 

All variables left in the model are significant at the 0.1500 level. 

 

All variables have been entered into the model. 
 
 
 
 

Summary of Stepwise Selection 

Step Variable 
Entered 

Variable 
Removed 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square 

C(p) F Value Pr > F 

1 Municipal  1 0.3068 0.3068 2.0000 5.75 0.0322 
 
 
 

The REG Procedure 
Model: MODEL1 

Dependent Variable: Fatal_crashes 
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The GLIMMIX Procedure 
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The GLIMMIX Procedure 
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1.4 LOG NORMAL 
INJURY CRASHES 

MODEL 
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The GLIMMIX Procedure 
 

4.5.6.3 Models for injury crashes 
Log-normal model Eq (4.14 and 4.15) 

The REG Procedure 
Model: MODEL1 

Dependent Variable: Injury_crashes 
Number of Observations Read 15 

Number of Observations Used 15 
 

 

 

Stepwise Selection: Step 1 
 

Variable POP_PAC Entered: R-Square = 0.4697 and C(p) = 22.0122 
 
 
 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 1 4.92280 4.92280 11.51 0.0048 

Error 13 5.55791 0.42753   

Corrected Total 14 10.48071    
 

Variable Parameter 
Estimate 

Standard 
Error 

Type II SS F Value Pr > F 

Intercept 4.09449 0.37928 49.82443 116.54 <.0001 

POP_PAC 0.85621 0.25232 4.92280 11.51 0.0048 
 

Bounds on condition number: 1, 1 

 

 

 

Stepwise Selection: Step 2 
 

Variable Tertiary Entered: R-Square = 0.8072 and C(p) = 3.0000 
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The GLIMMIX Procedure 
 

 
 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 2 8.46040 4.23020 25.13 <.0001 

Error 12 2.02031 0.16836   

Corrected Total 14 10.48071    
 

Variable Parameter 
Estimate 

Standard 
Error 

Type II SS F Value Pr > F 

Intercept 2.54768 0.41294 6.40853 38.06 <.0001 

POP_PAC 0.97375 0.16040 6.20439 36.85 <.0001 

Tertiary 0.03460 0.00755 3.53760 21.01 0.0006 
 

Bounds on condition number: 1.0262, 4.1049 

 

 

 

All variables left in the model are significant at the 0.1500 level. 

 

All variables have been entered into the model. 
 
 
 
 

Summary of Stepwise Selection 

Step Variable 
Entered 

Variable 
Removed 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square 

C(p) F Value Pr > F 

1 POP_PAC  1 0.4697 0.4697 22.0122 11.51 0.0048 

2 Tertiary  2 0.3375 0.8072 3.0000 21.01 0.0006 
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The GLIMMIX Procedure 
 

The REG Procedure 
Model: MODEL1 

Dependent Variable: Injury_crashes 
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The GLIMMIX Procedure 
 

 
  

162 
 



The GLIMMIX Procedure 
 

 
 
 

1.5 LOG LINEAR 
NEGATIVE 

BINOMAIL INJURY 
CRASHES MODEL 
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The GLIMMIX Procedure 
 

   

Log-linear negative binomial model Eq(4.16 and 4.17) 

The GLIMMIX Procedure 
 

Model 1  Information 

Data Set WORK.NEGBININJURYCRASH 

Response Variable Injury_crashes 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Variance Matrix Diagonal 

Estimation Technique Maximum Likelihood 

Degrees of Freedom Method Residual 

 

Number of Observations Read 15 

Number of Observations Used 15 

 

Convergence criterion (GCONV=1E-8) satisfied. 
 

Fit Statistics 

-2 Log Likelihood 166.83 

AIC  (smaller is better) 176.83 

AICC (smaller is better) 183.49 

BIC  (smaller is better) 180.37 

CAIC (smaller is better) 185.37 

HQIC (smaller is better) 176.79 

Pearson Chi-Square 14.80 

Pearson Chi-Square / DF 1.35 
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The GLIMMIX Procedure 
 

Parameter Estimates 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 
Intercept 2.7984 0.3259 11 8.59 <.0001 

POP_PAC 0.8831 0.1350 11 6.54 <.0001 
Intestates 2.5705 2.1313 11 1.21 0.2531 
Tertiary 0.02992 0.006555 11 4.57 0.0008 
Scale 0.09430 0.03775 . . . 
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The GLIMMIX Procedure 
 

 
 
 

 2. APPENDIX  
CHAPTER 5 
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 2.1 CHAPTER 5  
MODEL 1 
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The GLIMMIX Procedure 
 

 
 
 

2.1.1 TOTAL 
CRASHES-M1 

(GLM) 
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The GLIMMIX Procedure 
 

 

Model Information 

Data Set LB.MUNICIPALITIESGLIMMI
X 

Response Variable Choques_totbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBAS
E 

Variance Matrix Diagonal 

Estimation Technique Maximum Likelihood 

Degrees of Freedom 
Method 

Residual 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

233 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 4283.57 

AIC  (smaller is better) 4293.57 

AICC (smaller is 
better) 

4293.84 

BIC  (smaller is better) 4310.83 
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The GLIMMIX Procedure 
 

Fit Statistics 

CAIC (smaller is 
better) 

4315.83 

HQIC (smaller is 
better) 

4300.53 

Pearson Chi-Square 1346.45 

Pearson Chi-Square / 
DF 

5.88 

 

 

Parameter Estimates 

Effect 
Estimat

e 
Standar
d Error DF 

t Val
ue Pr > |t| 

Intercept -
43.1324 

0.4459 229 -
96.7

3 

<.0001 

propredpri
m 

21.8998 6.7773 229 3.23 0.0014 

propredsec 18.7888 3.7237 229 5.05 <.0001 

propredter 10.1845 2.2938 229 4.44 <.0001 

Scale 3.7840 0.2781 . . . 
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The GLIMMIX Procedure 
 

 
 
 

2.1.2 PDO-M1 
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The GLIMMIX Procedure 
 

 

 

Model Information 

Data Set LB.MUNICIPALITIESGLIMMI
X 

Response Variable PDO 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBAS
E 

Variance Matrix Diagonal 

Estimation Technique Maximum Likelihood 

Degrees of Freedom 
Method 

Residual 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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Fit Statistics 

-2 Log Likelihood 4138.47 

AIC  (smaller is better) 4148.47 

AICC (smaller is 
better) 

4148.74 

BIC  (smaller is better) 4165.57 

CAIC (smaller is 
better) 

4170.57 

HQIC (smaller is 
better) 

4155.37 

Pearson Chi-Square 1600.63 

Pearson Chi-Square / 
DF 

7.21 

 

 

Parameter Estimates 

Effect 
Estimat

e 
Standard 

Error DF t Value Pr > |t| 

Intercept -
43.3656 

0.4500 222 -96.37 <.0001 

propredpri
m 

23.3480 6.7340 222 3.47 0.0006 

propredsec 19.5358 3.7795 222 5.17 <.0001 

propredter 10.0331 2.2633 222 4.43 <.0001 

Scale 3.7157 0.2772 . . . 
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The GLIMMIX Procedure 
 

 
 
 

2.1.3 INJURY-M1  
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The GLIMMIX Procedure 
 

 

Model Information 

Data Set LB.MUNICIPALITIESGLIMMI
X 

Response Variable Choques_herbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBAS
E 

Variance Matrix Diagonal 

Estimation Technique Maximum Likelihood 

Degrees of Freedom 
Method 

Residual 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

 

 

Fit Statistics 

-2 Log Likelihood 3334.60 

AIC  (smaller is better) 3344.60 

AICC (smaller is 
better) 

3344.87 

BIC  (smaller is better) 3361.70 

CAIC (smaller is 
better) 

3366.70 

HQIC (smaller is 
better) 

3351.50 

Pearson Chi-Square 529.04 

Pearson Chi-Square / 
DF 

2.38 

 

 

Parameter Estimates 

Effect 
Estimat

e 
Standar
d Error DF t Value Pr > |t| 

Intercept -
45.1718 

0.4473 222 -100.99 <.0001 

propredpri
m 

20.9664 6.5561 222 3.20 0.0016 

propredsec 20.4108 3.9102 222 5.22 <.0001 

propredter 10.3070 2.2690 222 4.54 <.0001 

Scale 3.7772 0.2871 . . . 
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The GLIMMIX Procedure 
 

 
 
 

2.1.4 FATAL-M1  
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The GLIMMIX Procedure 
 

 

Model Information 

Data Set LB.MUNICIPALITIESGLIMMI
X 

Response Variable Choques_fatalbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBAS
E 

Variance Matrix Diagonal 

Estimation Technique Maximum Likelihood 

Degrees of Freedom 
Method 

Residual 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

225 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

 

Fit Statistics 

-2 Log Likelihood 1454.44 

AIC  (smaller is better) 1464.44 

AICC (smaller is 
better) 

1464.71 

BIC  (smaller is better) 1481.52 

CAIC (smaller is 
better) 

1486.52 

HQIC (smaller is 
better) 

1471.33 

Pearson Chi-Square 1644.74 

Pearson Chi-Square / 
DF 

7.44 

 

 

Parameter Estimates 

Effect 
Estimat

e 
Standar
d Error DF t Value Pr > |t| 

Intercept -
53.1217 

0.8957 221 -59.30 <.0001 

propredpri
m 

28.4822 8.9936 221 3.17 0.0018 

propredsec 24.0546 5.5625 221 4.32 <.0001 

propredter 28.4056 3.2733 221 8.68 <.0001 

Scale 3.6307 0.3362 . . . 
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The GLIMMIX Procedure 
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MODEL 2 
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The GLIMMIX Procedure 
 

 
 
 

2.2.1 TOTAL 
CRASHES-M2 
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The GLIMMIX Procedure 
 

Model 2 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_totbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

 

Class Level Information 

Class 
Level

s Values 

County 7 1 2 3 4 5 6 
7 

 

 

Number of Observations 
Read 

23
4 

Number of Observations 
Used 

23
3 
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Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 3868.60 

AIC  (smaller is better) 3878.60 

AICC (smaller is better) 3878.86 

BIC  (smaller is better) 3878.33 

CAIC (smaller is better) 3883.33 

HQIC (smaller is better) 3875.26 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totbase | r. 
effects) 

3857.46 

Pearson Chi-Square 123.77 

Pearson Chi-Square / DF 0.53 

 

 

Covariance Parameter 
Estimates 

Cov 
Parm 

Estimat
e 

Standard 
Error 

County 0.05331 0.04548 

Scale 1.0671 0.09132 
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The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept -9.9205 0.2617 6 -37.91 <.0001 

propredse
c 

4.1814 1.7186 224 2.43 0.0158 

propredter 4.1525 1.5324 224 2.71 0.0073 
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The GLIMMIX Procedure 
 

 
 
 

2.2.2 PDO-M2 
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The GLIMMIX Procedure 
 

Model 2 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable PDO 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

Class Level Information 

Class 
Level

s Values 

County 7 1 2 3 4 5 6 
7 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 
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The GLIMMIX Procedure 
 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 3711.04 

AIC  (smaller is better) 3721.04 

AICC (smaller is better) 3721.31 

BIC  (smaller is better) 3720.77 

CAIC (smaller is better) 3725.77 

HQIC (smaller is better) 3717.70 
 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(PDO | r. effects) 3701.21 

Pearson Chi-Square 125.17 

Pearson Chi-Square / 
DF 

0.55 

 

 

Covariance Parameter 
Estimates 

Cov 
Parm 

Estimat
e 

Standard 
Error 

County 0.03995 0.03813 

Scale 0.9693 0.08483 
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The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standard 

Error DF 
t Val
ue Pr > |t| 

Intercept -
10.0141 

0.2510 6 -
39.8

9 

<.000
1 

propredse
c 

3.8786 1.6429 217 2.36 0.019
1 

propredter 3.9187 1.4677 217 2.67 0.008
2 
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The GLIMMIX Procedure 
 

 
 
 

2.2.3 INJURY-M2 
 
 
 
 

189 
 



The GLIMMIX Procedure 
 

Model 2 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_herbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

Class Level Information 

Class 
Level

s Values 

County 7 1 2 3 4 5 6 
7 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 
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Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Fit Statistics 

-2 Log Likelihood 2904.78 

AIC  (smaller is better) 2914.78 

AICC (smaller is better) 2915.05 

BIC  (smaller is better) 2914.51 

CAIC (smaller is better) 2919.51 

HQIC (smaller is better) 2911.44 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_herbase | r. 
effects) 

2895.30 

Pearson Chi-Square 144.68 

Pearson Chi-Square / DF 0.64 

 

 

Covariance Parameter 
Estimates 

Cov 
Parm 

Estimat
e 

Standard 
Error 

County 0.03379 0.03310 

Scale 0.8644 0.08030 
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Solutions for Fixed Effects 

Effect 
Estimat

e 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept -
11.6668 

0.2382 6 -
48.97 

<.0001 

propredse
c 

4.1620 1.5618 217 2.66 0.0083 

propredter 2.9438 1.4110 217 2.09 0.0381 

 

 
 
 
 
 
 

192 
 



The GLIMMIX Procedure 
 

 
 
 

2.2.4 FATAL-M2 
 
 
 
 

193 
 



The GLIMMIX Procedure 
 

Model 2 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_fatalbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

Class Level Information 

Class 
Level

s Values 

County 7 1 2 3 4 5 6 7 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

225 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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Fit Statistics 

-2 Log Likelihood 1155.03 

AIC  (smaller is better) 1165.03 

AICC (smaller is better) 1165.30 

BIC  (smaller is better) 1164.76 

CAIC (smaller is better) 1169.76 

HQIC (smaller is better) 1161.69 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_fatalbase | r. 
effects) 

1136.75 

Pearson Chi-Square 689.84 

Pearson Chi-Square / DF 3.07 

 

 

Covariance Parameter 
Estimates 

Cov 
Parm 

Estimat
e 

Standard 
Error 

County 0.2319 0.1520 

Scale 1.0364 0.1194 
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The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept -
16.4401 

0.3845 6 -42.76 <.000
1 

propredse
c 

1.9562 2.2289 216 0.88 0.381
1 

propredter 8.1348 2.0921 216 3.89 0.000
1 
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The GLIMMIX Procedure 
 

 
 
 

2.3.1 TOTAL 
CRASHES-M3  
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The GLIMMIX Procedure 
 

 

Model 3 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_totbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

233 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Fit Statistics 

-2 Log Likelihood 3779.73 

AIC  (smaller is better) 3791.73 

AICC (smaller is 
better) 

3792.10 

BIC  (smaller is better) 3805.87 

CAIC (smaller is 
better) 

3811.87 
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The GLIMMIX Procedure 
 

 

 
 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totbase | r. 
effects) 

3480.10 

Pearson Chi-Square 45.66 

Pearson Chi-Square / DF 0.20 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

MUNICIPALITIES 2.0044 0.3562 

Scale 0.3229 0.03770 

 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standar
d Error DF 

t Valu
e Pr > |t| 

Intercept -
11.3782 

0.7785 74 -14.62 <.0001 

propredpri
m 

7.4670 7.0497 155 1.06 0.2912 

propredsec 15.6079 4.6609 155 3.35 0.0010 

propredter 5.8372 3.9824 155 1.47 0.1447 

 

 

HQIC (smaller is 
better) 

3797.39 
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2.3.2 PDO-M3 
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Model 3 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable PDO 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Fit Statistics 

-2 Log Likelihood 3651.64 

AIC  (smaller is better) 3663.64 

AICC (smaller is 
better) 

3664.03 

BIC  (smaller is better) 3677.78 

CAIC (smaller is 
better) 

3683.78 

HQIC (smaller is 
better) 

3669.30 
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Fit Statistics for Conditional 
Distribution 

-2 log L(PDO | r. 
effects) 

3359.85 

Pearson Chi-Square 41.92 

Pearson Chi-Square / 
DF 

0.19 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

MUNICIPALITIES 1.8997 0.3525 

Scale 0.3249 0.03895 
 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standar
d Error DF 

t Valu
e Pr > |t| 

Intercept -
11.3862 

0.7659 74 -14.87 <.0001 

propredpri
m 

6.6360 6.9174 148 0.96 0.3390 

propredsec 14.9447 4.5676 148 3.27 0.0013 

propredter 5.3276 3.9010 148 1.37 0.1741 
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2.3.3 INJURY-M3 
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Model 3 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_herbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 2842.12 

AIC  (smaller is better) 2854.12 

AICC (smaller is 
better) 

2854.51 

BIC  (smaller is better) 2868.26 
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Fit Statistics 

CAIC (smaller is 
better) 

2874.26 

HQIC (smaller is 
better) 

2859.78 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_herbase | r. 
effects) 

2575.13 

Pearson Chi-Square 62.29 

Pearson Chi-Square / DF 0.28 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

MUNICIPALITIES 1.2867 0.2593 

Scale 0.2846 0.03742 

 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standar
d Error DF 

t Valu
e Pr > |t| 

Intercept -
13.0035 

0.6578 74 -19.77 <.0001 

propredpri
m 

5.5926 5.8772 148 0.95 0.3429 

propredsec 12.8725 3.8688 148 3.33 0.0011 

propredter 5.5726 3.2959 148 1.69 0.0930 
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2.3.4 FATAL-M3 
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Model 3 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_fatalbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

225 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Fit Statistics 

-2 Log Likelihood 1088.52 

AIC  (smaller is better) 1100.52 

AICC (smaller is 
better) 

1100.91 

BIC  (smaller is better) 1114.66 
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Fit Statistics 

CAIC (smaller is 
better) 

1120.66 

HQIC (smaller is 
better) 

1106.18 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_fatalbase | r. 
effects) 

960.15 

Pearson Chi-Square 160.89 

Pearson Chi-Square / DF 0.72 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

MUNICIPALITIES 0.5285 0.1293 

Scale 0.4335 0.07828 

 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standard 

Error DF t Value Pr > |t| 

Intercept -
17.0821 

0.5511 74 -31.00 <.0001 

propredpri
m 

6.5320 4.6657 147 1.40 0.1636 

propredsec 6.2013 3.1942 147 1.94 0.0541 

propredter 7.7692 2.6771 147 2.90 0.0043 
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2.4 CHAPTER 5 
MODEL 4 
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2.4.1TOTAL 
CRASHES-M4 
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Model 4 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_totbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

233 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Fit Statistics 

-2 Log Likelihood 3769.29 

AIC  (smaller is better) 3783.29 

AICC (smaller is 
better) 

3783.78 

BIC  (smaller is better) 3782.91 

CAIC (smaller is 
better) 

3789.91 

HQIC (smaller is 
better) 

3778.61 

212 
 



The GLIMMIX Procedure 
 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totbase | r. 
effects) 

3480.15 

Pearson Chi-Square 46.36 

Pearson Chi-Square / DF 0.20 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

County 0.4390 0.3068 

MUNICIPALITIES 1.5407 0.2866 

Scale 0.3225 0.03759 

 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standard 

Error DF t Value Pr > |t| 

Intercept -
11.2077 

0.7605 6 -14.74 <.0001 

propredpri
m 

8.9775 6.3935 155 1.40 0.1623 

propredsec 12.3830 4.4793 155 2.76 0.0064 

propredter 5.9142 3.7201 155 1.59 0.1139 
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2.4.2 PDO-M4 
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Model Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable PDO 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Fit Statistics 

-2 Log Likelihood 3642.05 

AIC  (smaller is better) 3656.05 

AICC (smaller is 
better) 

3656.57 

BIC  (smaller is better) 3655.67 

CAIC (smaller is 
better) 

3662.67 

HQIC (smaller is 
better) 

3651.37 
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Fit Statistics for Conditional 
Distribution 

-2 log L(PDO | r. 
effects) 

3359.20 

Pearson Chi-Square 42.25 

Pearson Chi-Square / 
DF 

0.19 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

County 0.4005 0.2855 

MUNICIPALITIES 1.4920 0.2864 

Scale 0.3236 0.03857 

 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standar
d Error DF 

t Valu
e Pr > |t| 

Intercept -
11.2509 

0.7531 6 -14.94 <.0001 

propredpri
m 

8.1757 6.3464 148 1.29 0.1997 

propredsec 11.9937 4.4282 148 2.71 0.0076 

propredter 5.5039 3.6816 148 1.50 0.1370 
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2.4.3 INJURY-M4 
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Model 4 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_herbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

226 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Fit Statistics 

-2 Log Likelihood 2834.88 

AIC  (smaller is better) 2848.88 

AICC (smaller is 
better) 

2849.40 

BIC  (smaller is better) 2848.50 

218 
 



The GLIMMIX Procedure 
 

Fit Statistics 

CAIC (smaller is 
better) 

2855.50 

HQIC (smaller is 
better) 

2844.20 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_herbase | r. 
effects) 

2573.14 

Pearson Chi-Square 62.09 

Pearson Chi-Square / DF 0.27 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

County 0.2472 0.1885 

MUNICIPALITIES 1.0707 0.2201 

Scale 0.2833 0.03701 

 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standar
d Error DF t Value Pr > |t| 

Intercept -
12.8896 

0.6606 6 -19.51 <.0001 

propredpri
m 

7.5537 5.5872 148 1.35 0.1785 

propredsec 11.1856 3.8214 148 2.93 0.0040 

propredter 5.2176 3.2072 148 1.63 0.1059 
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2.4.4 FATAL-M4 
 
 
 
 

220 
 



The GLIMMIX Procedure 
 

Model 4 Information 

Data Set LB.MUNICIPALITIESGLIMMI
X2 

Response Variable Choques_fatalbase 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable logtotkilPOPESTIMATEBASE 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

Number of Observations 
Read 

234 

Number of Observations 
Used 

225 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 1088.36 

AIC  (smaller is better) 1102.36 

AICC (smaller is 
better) 

1102.87 

BIC  (smaller is better) 1101.98 
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Fit Statistics 

CAIC (smaller is 
better) 

1108.98 

HQIC (smaller is 
better) 

1097.68 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_fatalbase | r. 
effects) 

959.93 

Pearson Chi-Square 160.92 

Pearson Chi-Square / DF 0.72 

 

 

Covariance Parameter Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

County 0.02078 0.05872 

MUNICIPALITIES 0.5120 0.1326 

Scale 0.4336 0.07829 

 

 

Solutions for Fixed Effects 

Effect 
Estimat

e 
Standar
d Error DF 

t Valu
e Pr > |t| 

Intercept -
17.1187 

0.5640 6 -30.35 <.0001 

propredpri
m 

7.1941 4.9122 147 1.46 0.1452 

propredsec 6.5493 3.3372 147 1.96 0.0516 

propredter 7.7829 2.7038 147 2.88 0.0046 
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APPENDIX CHAPTER 6 

DESCRIPTIVE STATISTICS FREEWAYS 
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The GLIMMIX Procedure 
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DESCRIPTIVE STATISTICS ARTERIALS 
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3.1 CHAPTER 6 
FREEWAY  
MODEL 1 
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3.1.1 TOTAL 
CRASHES-M1 
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Statistical expressway models 

In These tables the región 1 is formed by 8 municipalities (Bayamon, Catano, Guaynabo, 
San Juan, Carolina, Loiza, Canovanas, Trujillo Alto). The  región 2 is formed by 14 
municipalities (Arecibo, Barceloneta, Manati, Vega Baja, Vega Alta, Dorado, Toa Baja, Toa 
Alta, Naranjito, Corozal, Morovis, Ciales, Utuado, Florida). The region 3 is formed by 10 
Municipios (Aguadilla, Isabela, Quebradillas, Camuy, Hatillo, Lares, San Sebastian, Moca, 
Aguada, Rincón). The región 4 is formed by 11 municipios (Mayaguez, Anasco, las Marias, 
Maricao, Yauco, Guanica, Lajas, Cabo Rojo, Hormigueros, San German, Sabana Grande). 
The region 5 is formed by 10 municipios (Ponce, Juana Diaz, Santa Isabel, Coamo, 
Orocovis, Villalba, Jayuya, Adjuntas, Guayanilla, Penuelas). The región 6 is formed by 10 
municipios (Guayama, Arroyo, Patillas, Cayey, Cidra, Aguas Buenas, Comerio, 
Barranquitas, Aibonito, Salinas). The región 7 is formed by 13 municipios (Humacao, 
Naguabo, Ceiba, Fajardo, Luquillo, rio grande, las piedras, juncos, Gurabo, Caguas, San 
Lorenzo, Yabucoa, Murabo). 

 

Model 1  Information 

Data Set LB.AUTOPISTAS2 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 
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Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 5047.82 

AIC  (smaller is better) 5065.82 

AICC (smaller is better) 5066.06 

BIC  (smaller is better) 5091.42 

CAIC (smaller is better) 5100.42 

HQIC (smaller is better) 5076.22 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 4663.70 

Pearson Chi-Square 638.19 

Pearson Chi-Square / DF 0.84 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2100 0.03320 

Scale 0.07806 0.008393 
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Solutions for Fixed Effects 

Effect 
number 
of lanes Shoulder_Type Estimate 

Standard 
Error DF 

t Val
ue Pr > |t| 

Intercept   -8.0560 1.1920 121 -6.76 <.0001 

logAADT   0.9575 0.09841 631 9.73 <.0001 

Lanes 4  0.2190 0.1930 631 1.13 0.2570 

Lanes 6  0.3960 0.1646 631 2.41 0.0165 

Lanes 7  0 . . . . 

Shoulder_Type  1 -0.7754 0.4154 631 -1.87 0.0624 

Shoulder_Type  2 -0.7652 0.2129 631 -3.59 0.0004 

Shoulder_Type  3 -0.3394 0.4081 631 -0.83 0.4059 

Shoulder_Type  6 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 94.66 <.0001 

Lanes 2 631 3.26 0.0389 

Shoulder_Type 3 631 4.81 0.0026 
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3.1.2 INJURY-M1 
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Model 1 Information 

Data Set LB.AUTOPISTAS2 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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Fit Statistics 

-2 Log Likelihood 5047.31 

AIC  (smaller is better) 5065.31 

AICC (smaller is better) 5065.55 

BIC  (smaller is better) 5090.91 

CAIC (smaller is better) 5099.91 

HQIC (smaller is better) 5075.71 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 4666.07 

Pearson Chi-Square 641.59 

Pearson Chi-Square / DF 0.85 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2116 0.03345 

Scale 0.08137 0.008754 
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Solutions for Fixed Effects 

Effect 
number 
of lanes Shoulder_Type Estimate 

Standard 
Error DF 

t Valu
e Pr > |t| 

Intercept   -8.1702 1.2003 121 -6.81 <.0001 

logAADT   0.9664 0.09910 631 9.75 <.0001 

Lanes 4  0.2241 0.1942 631 1.15 0.2490 

Lanes 6  0.3917 0.1655 631 2.37 0.0183 

Lanes 7  0 . . . . 

Shoulder_Type  1 -0.7642 0.4173 631 -1.83 0.0676 

Shoulder_Type  2 -0.7689 0.2139 631 -3.59 0.0004 

Shoulder_Type  3 -0.3331 0.4100 631 -0.81 0.4169 

Shoulder_Type  6 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 95.09 <.0001 

Lanes 2 631 3.12 0.0450 

Shoulder_Type 3 631 4.82 0.0025 

 

 

 

 

 

 

 

 

248 
 



The GLIMMIX Procedure 
 

 
 
 

3.1.3 FATAL-M1  
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Model 1 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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Fit Statistics 

-2 Log Likelihood 1004.01 

AIC  (smaller is better) 1022.01 

AICC (smaller is better) 1022.25 

BIC  (smaller is better) 1047.61 

CAIC (smaller is better) 1056.61 

HQIC (smaller is better) 1032.41 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(Fatal | r. effects) 983.84 

Pearson Chi-Square 849.79 

Pearson Chi-Square / DF 1.12 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.05081 0.08891 

Scale 0.2384 0.1551 
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Solutions for Fixed Effects 

Effect 
number 
of lanes Shoulder_Type Estimate 

Standard 
Error DF t Value Pr > |t| 

Intercept   -11.3324 2.2963 121 -4.94 <.0001 

logAADT   0.8324 0.1902 631 4.38 <.0001 

Lanes 4  0.5197 0.3616 631 1.44 0.1512 

Lanes 6  0.6920 0.2961 631 2.34 0.0197 

Lanes 7  0 . . . . 

Shoulder_Type  1 -0.9430 0.8467 631 -1.11 0.2658 

Shoulder_Type  2 -0.4307 0.3755 631 -1.15 0.2518 

Shoulder_Type  3 -0.6600 0.6080 631 -1.09 0.2781 

Shoulder_Type  6 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 19.15 <.0001 

Lanes 2 631 2.90 0.0557 

Shoulder_Type 3 631 0.65 0.5819 
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3.2 CHAPTER 6 
FREEWAY MODEL 2 
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3.2.1 TOTAL 
CRASHSE-M2  
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Model 2 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

Number of Observations Read 75
9 

Number of Observations Used 75
9 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 5054.12 

AIC  (smaller is better) 5068.12 

AICC (smaller is better) 5068.27 

BIC  (smaller is better) 5088.03 

CAIC (smaller is better) 5095.03 

HQIC (smaller is better) 5076.21 
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Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 4660.53 

Pearson Chi-Square 633.29 

Pearson Chi-Square / DF 0.83 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2261 0.03477 

Scale 0.07766 0.008326 

 

 

Solutions for Fixed Effects 

Effect Shoulder_Type Estimate 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept  -7.5270 0.7565 123 -9.95 <.0001 

logAADT  0.9177 0.06369 631 14.41 <.0001 

Shoulder_Type 1 -0.4562 0.4093 631 -1.11 0.2655 

Shoulder_Type 2 -0.6298 0.2104 631 -2.99 0.0029 

Shoulder_Type 3 -0.1015 0.4068 631 -0.25 0.8030 

Shoulder_Type 6 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 207.64 <.0001 

Shoulder_Type 3 631 3.64 0.0126 
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Model Information 

Data Set LB.AUTOPISTAS2 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 5053.33 

AIC  (smaller is better) 5067.33 

AICC (smaller is better) 5067.48 

BIC  (smaller is better) 5087.24 

CAIC (smaller is better) 5094.24 

HQIC (smaller is better) 5075.42 
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Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 4662.80 

Pearson Chi-Square 636.63 

Pearson Chi-Square / DF 0.84 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2274 0.03498 

Scale 0.08092 0.008682 

 

 

Solutions for Fixed Effects 

Effect Shoulder_Type Estimate 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept  -7.6034 0.7602 123 -
10.00 

<.0001 

logAADT  0.9235 0.06400 631 14.43 <.0001 

Shoulder_Type 1 -0.4512 0.4108 631 -1.10 0.2725 

Shoulder_Type 2 -0.6343 0.2112 631 -3.00 0.0028 

Shoulder_Type 3 -0.09663 0.4083 631 -0.24 0.8130 

Shoulder_Type 6 0 . . . . 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 208.19 <.0001 

Shoulder_Type 3 631 3.69 0.0119 
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The GLIMMIX Procedure 
 

 
 
 

3.2.3 FATAL-M2  
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The GLIMMIX Procedure 
 

Model 2 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 1010.07 

AIC  (smaller is better) 1024.07 

AICC (smaller is better) 1024.22 

BIC  (smaller is better) 1043.98 

CAIC (smaller is better) 1050.98 

HQIC (smaller is better) 1032.16 

 

 

261 
 



The GLIMMIX Procedure 
 

Fit Statistics for Conditional Distribution 

-2 log L(Fatal | r. effects) 985.88 

Pearson Chi-Square 817.80 

Pearson Chi-Square / DF 1.08 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.06164 0.08891 

Scale 0.2372 0.1559 

 

 

Solutions for Fixed Effects 

Effect Shoulder_Type Estimate 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept  -9.7660 1.3681 123 -7.14 <.0001 

logAADT  0.7063 0.1133 631 6.23 <.0001 

Shoulder_Type 1 -0.3866 0.8188 631 -0.47 0.6370 

Shoulder_Type 2 -0.1006 0.3488 631 -0.29 0.7731 

Shoulder_Type 3 -0.09281 0.5690 631 -0.16 0.8705 

Shoulder_Type 6 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 38.86 <.0001 

Shoulder_Type 3 631 0.08 0.9718 
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The GLIMMIX Procedure 
 

 
 
 

3.3 CHAPTER 6 
FREEWAY MODEL 3 
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The GLIMMIX Procedure 
 

 
 
 

3.3.1 TOTAL 
CRASHES-M3 
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The GLIMMIX Procedure 
 

Model 3 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 5033.55 

AIC  (smaller is better) 5063.55 

AICC (smaller is better) 5064.20 

BIC  (smaller is better) 5106.21 

CAIC (smaller is better) 5121.21 

HQIC (smaller is better) 5080.88 

 

 

265 
 



The GLIMMIX Procedure 
 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 4675.86 

Pearson Chi-Square 643.07 

Pearson Chi-Square / DF 0.85 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.1711 0.02825 

Scale 0.07953 0.008523 

 

Solutions for Fixed Effects 

Effect County 
number 
of lanes Shoulder_Type Estimate 

Standard 
Error DF t Value Pr > |t| 

Intercept    -9.3641 1.2235 115 -7.65 <.0001 

logAADT    1.0921 0.1010 631 10.82 <.0001 

Shoulder_Type   1 -0.7570 0.3813 631 -1.99 0.0476 

Shoulder_Type   2 -0.8484 0.2021 631 -4.20 <.0001 

Shoulder_Type   3 -0.5991 0.3884 631 -1.54 0.1234 

Shoulder_Type   6 0 . . . . 

Lanes  4  0.2565 0.2298 631 1.12 0.2647 

Lanes  6  0.4048 0.1697 631 2.39 0.0173 

Lanes  7  0 . . . . 

County 1   -0.2448 0.1514 631 -1.62 0.1063 

County 2   -0.3877 0.1384 631 -2.80 0.0053 

County 3   -0.5265 0.4558 631 -1.16 0.2484 

County 4   0.005895 0.1614 631 0.04 0.9709 

County 5   0.1502 0.1385 631 1.08 0.2784 

County 6   -0.1221 0.2317 631 -0.53 0.5983 

County 7   0 . . . . 
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The GLIMMIX Procedure 
 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 117.02 <.0001 

Shoulder_Type 3 631 6.13 0.0004 

Lanes 2 631 3.47 0.0317 

County 6 631 2.66 0.0150 
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The GLIMMIX Procedure 
 

 
 
 

3.3.2 INJURY-M3  
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The GLIMMIX Procedure 
 

Model 3 Information 

Data Set LB.AUTOPISTAS2 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 5032.53 

AIC  (smaller is better) 5062.53 

AICC (smaller is better) 5063.18 

BIC  (smaller is better) 5105.19 

CAIC (smaller is better) 5120.19 

HQIC (smaller is better) 5079.86 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 4678.60 

Pearson Chi-Square 646.46 

Pearson Chi-Square / DF 0.85 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.1710 0.02822 

Scale 0.08297 0.008898 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County 
number 
of lanes Shoulder_Type Estimate 

Standard 
Error DF 

t Valu
e Pr > |t| 

Intercept    -9.5078 1.2282 115 -7.74 <.0001 

logAADT    1.1035 0.1014 631 10.89 <.0001 

Shoulder_Type   1 -0.7443 0.3818 631 -1.95 0.0517 

Shoulder_Type   2 -0.8528 0.2024 631 -4.21 <.0001 

Shoulder_Type   3 -0.6002 0.3888 631 -1.54 0.1232 

Shoulder_Type   6 0 . . . . 

Lanes  4  0.2656 0.2303 631 1.15 0.2492 

Lanes  6  0.4030 0.1700 631 2.37 0.0181 

Lanes  7  0 . . . . 

County 1   -0.2446 0.1516 631 -1.61 0.1073 

County 2   -0.3938 0.1387 631 -2.84 0.0047 

County 3   -0.5231 0.4565 631 -1.15 0.2523 

County 4   0.000566 0.1618 631 0.00 0.9972 

County 5   0.1610 0.1387 631 1.16 0.2461 

County 6   -0.1267 0.2320 631 -0.55 0.5851 

County 7   0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 118.50 <.0001 

Shoulder_Type 3 631 6.18 0.0004 

Lanes 2 631 3.35 0.0356 

County 6 631 2.76 0.0117 
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The GLIMMIX Procedure 
 

 
 
 

3.3.3 FATAL-M3  
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The GLIMMIX Procedure 
 

Model 3 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Estimated G matrix is not positive definite. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 995.66 

AIC  (smaller is better) 1023.66 

AICC (smaller is better) 1024.23 

BIC  (smaller is better) 1063.48 

CAIC (smaller is better) 1077.48 

HQIC (smaller is better) 1039.84 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(Fatal | r. effects) 995.66 

Pearson Chi-Square 924.25 

Pearson Chi-Square / DF 1.22 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 5.49E-19 . 

Scale 0.2244 0.1431 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County 
number 
of lanes Shoulder_Type Estimate 

Standard 
Error DF 

t Valu
e Pr > |t| 

Intercept    -12.4740 2.3742 115 -5.25 <.0001 

logAADT    0.9399 0.1984 631 4.74 <.0001 

Shoulder_Type   1 -0.8577 0.8232 631 -1.04 0.2979 

Shoulder_Type   2 -0.4312 0.3610 631 -1.19 0.2327 

Shoulder_Type   3 -0.7462 0.5754 631 -1.30 0.1951 

Shoulder_Type   6 0 . . . . 

Lanes  4  0.7054 0.4154 631 1.70 0.0900 

Lanes  6  0.6868 0.3146 631 2.18 0.0294 

Lanes  7  0 . . . . 

County 1   -0.1427 0.2552 631 -0.56 0.5761 

County 2   -0.2443 0.2125 631 -1.15 0.2508 

County 3   -0.8413 1.0294 631 -0.82 0.4141 

County 4   0.07123 0.3001 631 0.24 0.8125 

County 5   -0.6717 0.2981 631 -2.25 0.0246 

County 6   0.1196 0.2667 631 0.45 0.6541 

County 7   0 . . . . 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 22.43 <.0001 

Shoulder_Type 3 631 0.75 0.5223 

Lanes 2 631 2.40 0.0916 

County 6 631 1.34 0.2373 
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The GLIMMIX Procedure 
 

 
 
 

3.4 CHAPTER 6 
FREEWAY MODEL 4 
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The GLIMMIX Procedure 
 

 
 
 

3.4.1 TOTAL 
CRASHES-M4  
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The GLIMMIX Procedure 
 

Model 4 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 5040.28 

AIC  (smaller is better) 5066.28 

AICC (smaller is better) 5066.76 

BIC  (smaller is better) 5103.25 

CAIC (smaller is better) 5116.25 

HQIC (smaller is better) 5081.30 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 4671.60 

Pearson Chi-Square 636.99 

Pearson Chi-Square / DF 0.84 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.1868 0.02952 

Scale 0.07915 0.008459 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County Shoulder_Type Estimate 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept   -8.7580 0.8333 117 -
10.51 

<.0001 

logAADT   1.0549 0.07685 631 13.73 <.0001 

Shoulder_Type  1 -0.4565 0.3761 631 -1.21 0.2252 

Shoulder_Type  2 -0.7552 0.2065 631 -3.66 0.0003 

Shoulder_Type  3 -0.4361 0.3991 631 -1.09 0.2750 

Shoulder_Type  6 0 . . . . 

County 1  -0.3370 0.1399 631 -2.41 0.0163 

County 2  -0.3920 0.1358 631 -2.89 0.0040 

County 3  -0.5776 0.4717 631 -1.22 0.2212 

County 4  -0.04862 0.1648 631 -0.30 0.7681 

County 5  0.1022 0.1378 631 0.74 0.4587 

County 6  -0.1243 0.2405 631 -0.52 0.6055 

County 7  0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 188.42 <.0001 

Shoulder_Type 3 631 4.88 0.0023 

County 6 631 2.53 0.0197 
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The GLIMMIX Procedure 
 

 
 
 

3.4.2 INJURY-M4  
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The GLIMMIX Procedure 
 

Model 4 Information 

Data Set LB.AUTOPISTAS2 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 5039.03 

AIC  (smaller is better) 5065.03 

AICC (smaller is better) 5065.51 

BIC  (smaller is better) 5102.00 

CAIC (smaller is better) 5115.00 

HQIC (smaller is better) 5080.05 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 4674.11 

Pearson Chi-Square 640.49 

Pearson Chi-Square / DF 0.84 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.1864 0.02946 

Scale 0.08249 0.008821 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County Shoulder_Type Estimate 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept   -8.8555 0.8354 117 -
10.60 

<.0001 

logAADT   1.0626 0.07706 631 13.79 <.0001 

Shoulder_Type  1 -0.4528 0.3763 631 -1.20 0.2294 

Shoulder_Type  2 -0.7611 0.2067 631 -3.68 0.0003 

Shoulder_Type  3 -0.4329 0.3995 631 -1.08 0.2789 

Shoulder_Type  6 0 . . . . 

County 1  -0.3381 0.1401 631 -2.41 0.0161 

County 2  -0.3959 0.1360 631 -2.91 0.0037 

County 3  -0.5714 0.4722 631 -1.21 0.2267 

County 4  -0.05213 0.1651 631 -0.32 0.7523 

County 5  0.1156 0.1379 631 0.84 0.4022 

County 6  -0.1263 0.2407 631 -0.52 0.5998 

County 7  0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 190.16 <.0001 

Shoulder_Type 3 631 4.96 0.0021 

County 6 631 2.63 0.0159 
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The GLIMMIX Procedure 
 

 
 
 

3.4.3 FATAL-M4  
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The GLIMMIX Procedure 
 

Model 4 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 75
9 

Number of Observations Used 75
9 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Estimated G matrix is not positive definite. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 1000.45 

AIC  (smaller is better) 1024.45 

AICC (smaller is better) 1024.87 

BIC  (smaller is better) 1058.58 

CAIC (smaller is better) 1070.58 

HQIC (smaller is better) 1038.31 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Fatal | r. effects) 1000.45 

Pearson Chi-Square 925.29 

Pearson Chi-Square / DF 1.22 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 1.22E-21 . 

Scale 0.2297 0.1442 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County Shoulder_Type Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept   -10.3407 1.6437 117 -6.29 <.0001 

logAADT   0.7871 0.1478 631 5.32 <.0001 

Shoulder_Type  1 -0.3283 0.7874 631 -0.42 0.6768 

Shoulder_Type  2 -0.1926 0.3409 631 -0.56 0.5723 

Shoulder_Type  3 -0.4159 0.5510 631 -0.75 0.4506 

Shoulder_Type  6 0 . . . . 

County 1  -0.3715 0.2427 631 -1.53 0.1263 

County 2  -0.2099 0.1987 631 -1.06 0.2912 

County 3  -0.8983 1.0293 631 -0.87 0.3832 

County 4  0.000458 0.2934 631 0.00 0.9988 

County 5  -0.6979 0.2888 631 -2.42 0.0159 

County 6  0.09855 0.2619 631 0.38 0.7068 

County 7  0 . . . . 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 28.35 <.0001 

Shoulder_Type 3 631 0.21 0.8860 

County 6 631 1.56 0.1564 
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The GLIMMIX Procedure 
 

 
 
 

3.5 CHAPTER 6 
FREEWAY MODEL 5 
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The GLIMMIX Procedure 
 

 
 
 

3.5.1 TOTAL 
CRASHES-M5  
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The GLIMMIX Procedure 
 

Model 5 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 5054.06 

AIC  (smaller is better) 5074.06 

AICC (smaller is better) 5074.36 

BIC  (smaller is better) 5102.51 

CAIC (smaller is better) 5112.51 

HQIC (smaller is better) 5085.62 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 4667.51 

Pearson Chi-Square 635.14 

Pearson Chi-Square / DF 0.84 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2151 0.03344 

Scale 0.07875 0.008424 
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The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect County Estimate 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept  -9.1392 0.8581 120 -10.65 <.0001 

logAADT  1.0219 0.07920 631 12.90 <.0001 

County 1 -0.1909 0.1348 631 -1.42 0.1573 

County 2 -0.4003 0.1422 631 -2.81 0.0050 

County 3 -0.6093 0.5012 631 -1.22 0.2246 

County 4 -0.08181 0.1743 631 -0.47 0.6390 

County 5 0.07423 0.1452 631 0.51 0.6095 

County 6 -0.1460 0.2555 631 -0.57 0.5678 

County 7 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 166.51 <.0001 

County 6 631 1.91 0.0765 
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The GLIMMIX Procedure 
 

 
 
 

3.5.2 INJURY-M5  
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The GLIMMIX Procedure 
 

 

Model 5 Information 

Data Set LB.AUTOPISTAS2 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 5053.01 

AIC  (smaller is better) 5073.01 

AICC (smaller is better) 5073.31 

BIC  (smaller is better) 5101.46 

CAIC (smaller is better) 5111.46 

HQIC (smaller is better) 5084.57 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 4669.9
1 

Pearson Chi-Square 638.46 

Pearson Chi-Square / DF 0.84 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2156 0.03354 

Scale 0.08206 0.008785 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County Estimate 
Standard 

Error DF 
t Val
ue Pr > |t| 

Intercept  -9.2382 0.8617 120 -
10.7

2 

<.0001 

logAADT  1.0293 0.07952 631 12.9
4 

<.0001 

County 1 -0.1912 0.1353 631 -1.41 0.1580 

County 2 -0.4049 0.1426 631 -2.84 0.0047 

County 3 -0.6038 0.5026 631 -1.20 0.2301 

County 4 -0.08679 0.1749 631 -0.50 0.6199 

County 5 0.08656 0.1456 631 0.59 0.5525 

County 6 -0.1503 0.2562 631 -0.59 0.5577 

County 7 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 167.53 <.0001 

County 6 631 1.98 0.0658 
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The GLIMMIX Procedure 
 

 
 
 

3.5.3 FATAL-M5  
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The GLIMMIX Procedure 
 

Model 5 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

Estimated G matrix is not positive definite. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 1001.06 

AIC  (smaller is better) 1019.06 

AICC (smaller is better) 1019.30 

BIC  (smaller is better) 1044.66 

CAIC (smaller is better) 1053.66 

HQIC (smaller is better) 1029.46 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(Fatal | r. effects) 1001.0
6 

Pearson Chi-Square 932.07 

Pearson Chi-Square / DF 1.23 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0 . 

Scale 0.2308 0.1444 
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The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect County Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept  -10.3623 1.5745 120 -6.58 <.0001 

logAADT  0.7697 0.1426 631 5.40 <.0001 

County 1 -0.3063 0.2168 631 -1.41 0.1581 

County 2 -0.1847 0.1931 631 -0.96 0.3393 

County 3 -0.8856 1.0292 631 -0.86 0.3898 

County 4 0.007543 0.2930 631 0.03 0.9795 

County 5 -0.6868 0.2877 631 -2.39 0.0173 

County 6 0.1097 0.2603 631 0.42 0.6736 

County 7 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

logAADT 1 631 29.14 <.0001 

County 6 631 1.49 0.1774 
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The GLIMMIX Procedure 
 

 
 
 

3.6 CHAPTER 6 
FREEWAY MODEL 6 
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The GLIMMIX Procedure 
 

 
 
 

3.6.1 TOTAL 
CRASHES-M6  
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The GLIMMIX Procedure 
 

Model 6 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 5064.05 

AIC  (smaller is better) 5074.05 

AICC (smaller is better) 5074.12 

BIC  (smaller is better) 5088.27 

CAIC (smaller is better) 5093.27 

HQIC (smaller is better) 5079.82 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 4662.13 

Pearson Chi-Square 633.29 

Pearson Chi-Square / DF 0.83 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2366 0.03825 

County 0.008574 0.01426 

Scale 0.07819 0.008377 

 

 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept -8.7114 0.8501 0 -10.25 . 

logAADT 0.9710 0.07695 63
1 

12.62 <.0001 
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The GLIMMIX Procedure 
 

 
 
 

3.6.2 INJURY-M6  
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The GLIMMIX Procedure 
 

Model 6 Information 

Data Set LB.AUTOPISTAS2 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 5064.00 

AIC  (smaller is better) 5072.00 

AICC (smaller is better) 5072.05 

BIC  (smaller is better) 5083.38 

CAIC (smaller is better) 5087.38 

HQIC (smaller is better) 5076.62 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 4662.01 

Pearson Chi-Square 636.17 

Pearson Chi-Square / DF 0.84 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.2500 0.03794 

Scale 0.08118 0.008700 

 

 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept -8.4901 0.7267 126 -11.68 <.0001 

logAADT 0.9501 0.06571 631 14.46 <.0001 
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The GLIMMIX Procedure 
 

 
 
 

3.6.3 FATAL-M6  
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The GLIMMIX Procedure 
 

Model 6 Information 

Data Set LB.AUTOPISTAS2 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum 
Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 759 

Number of Observations Used 759 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 1010.32 

AIC  (smaller is better) 1018.32 

AICC (smaller is better) 1018.37 

BIC  (smaller is better) 1029.69 

CAIC (smaller is better) 1033.69 

HQIC (smaller is better) 1022.94 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(Fatal | r. effects) 986.97 

Pearson Chi-Square 826.29 

Pearson Chi-Square / DF 1.09 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.05922 0.08814 

Scale 0.2376 0.1560 

 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF 
t Valu

e Pr > |t| 

Intercept -9.9148 1.2324 126 -8.05 <.0001 

logAADT 0.7109 0.1101 631 6.46 <.0001 
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The GLIMMIX Procedure 
 

 
 
 

3.7 CHAPTER 6 
ARTERIAL MODEL 1   
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The GLIMMIX Procedure 
 

 
 
 

3.7.1 TOTAL 
CRASHES-M1  
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The GLIMMIX Procedure 
 

 

Model 4  Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 3461.27 

AIC  (smaller is better) 3483.27 

AICC (smaller is better) 3483.73 

BIC  (smaller is better) 3511.93 

CAIC (smaller is better) 3522.93 

HQIC (smaller is better) 3494.87 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 3186.13 

Pearson Chi-Square 575.36 

Pearson Chi-Square / DF 0.99 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.4008 0.07428 

Scale 0.1827 0.02229 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County 

signal 
intersections 
per kilometer Estimate 

Standard 
Error DF 

t Val
ue Pr > |t| 

Intercept   -8.7525 1.5669 92 -5.59 <.0001 

County 1  -1.1610 0.2127 482 -5.46 <.0001 

County 2  -1.5458 0.3043 482 -5.08 <.0001 

County 3  0.1699 0.2139 482 0.79 0.4274 

County 4  -0.4721 0.2343 482 -2.01 0.0445 

County 5  -0.4720 0.4723 482 -1.00 0.3181 

County 7  0 . . . . 

logAADT   1.0854 0.1441 482 7.53 <.0001 

group_int  1 -0.4309 0.1800 482 -2.39 0.0170 

group_int  2 -0.2928 0.1946 482 -1.50 0.1331 

group_int  3 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

County 5 482 14.51 <.0001 

logAADT 1 482 56.70 <.0001 

group_int 2 482 2.88 0.0569 
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The GLIMMIX Procedure 
 

 
 
 

3.7.2 INJURY-M1 
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The GLIMMIX Procedure 
 

 

 

 

Model 1 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

 

Fit Statistics 

-2 Log Likelihood 3433.31 

AIC  (smaller is better) 3455.31 

AICC (smaller is better) 3455.78 

BIC  (smaller is better) 3483.97 

CAIC (smaller is better) 3494.97 

HQIC (smaller is better) 3466.91 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 3161.46 

Pearson Chi-Square 580.17 

Pearson Chi-Square / DF 1.00 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.3923 0.07279 

Scale 0.1830 0.02239 
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The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect County 

signal 
intersections 
per kilometer Estimate 

Standard 
Error DF 

t Valu
e Pr > |t| 

Intercept   -9.0637 1.5754 92 -5.75 <.0001 

County 1  -1.1669 0.2110 482 -5.53 <.0001 

County 2  -1.5212 0.3026 482 -5.03 <.0001 

County 3  0.1817 0.2119 482 0.86 0.3918 

County 4  -0.5206 0.2327 482 -2.24 0.0257 

County 5  -0.4630 0.4712 482 -0.98 0.3263 

County 7  0 . . . . 

logAADT   1.1127 0.1450 482 7.68 <.0001 

group_int  1 -0.4280 0.1785 482 -2.40 0.0169 

group_int  2 -0.3045 0.1930 482 -1.58 0.1153 

group_int  3 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

County 5 482 14.78 <.0001 

logAADT 1 482 58.91 <.0001 

group_int 2 482 2.91 0.0554 
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The GLIMMIX Procedure 
 

 
 
 

3.7.3 FATAL-M1 
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The GLIMMIX Procedure 
 

 

Model 1 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 693.82 

AIC  (smaller is better) 715.82 

AICC (smaller is better) 716.28 

BIC  (smaller is better) 744.48 

CAIC (smaller is better) 755.48 

HQIC (smaller is better) 727.42 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(Fatal | r. effects) 615.56 

Pearson Chi-Square 485.04 

Pearson Chi-Square / DF 0.83 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.4518 0.1909 

Scale 0.04662 0.1838 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County 

signal 
intersections 
per kilometer Estimate 

Standard 
Error DF t Value Pr > |t| 

Intercept   -9.2444 3.4105 92 -2.71 0.0080 

County 1  -0.9611 0.3741 482 -2.57 0.0105 

County 2  -1.0616 0.5421 482 -1.96 0.0508 

County 3  -0.5357 0.3352 482 -1.60 0.1106 

County 4  0.1385 0.3594 482 0.39 0.7001 

County 5  -0.1030 0.9512 482 -0.11 0.9138 

County 7  0 . . . . 

logAADT   0.7429 0.3132 482 2.37 0.0181 

group_int  1 -0.3601 0.3203 482 -1.12 0.2614 

group_int  2 0.2097 0.3176 482 0.66 0.5094 

group_int  3 0 . . . . 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

County 5 482 2.72 0.0196 

logAADT 1 482 5.62 0.0181 

group_int 2 482 2.09 0.1244 
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The GLIMMIX Procedure 
 

 
 
 

3.8 CHAPTER 6 
ARTERAL MODEL 2 
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The GLIMMIX Procedure 
 

 
 
 

3.8.1 TOTAL 
CRASHES-M2  
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The GLIMMIX Procedure 
 

 

Model 2 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 3466.87 

AIC  (smaller is better) 3484.87 

AICC (smaller is better) 3485.18 

BIC  (smaller is better) 3508.32 

CAIC (smaller is better) 3517.32 

HQIC (smaller is better) 3494.36 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 3185.14 

Pearson Chi-Square 573.19 

Pearson Chi-Square / DF 0.98 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.4301 0.07873 

Scale 0.1828 0.02230 

 

 

Solutions for Fixed Effects 

Effect County Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept  -9.3121 1.5874 94 -5.87 <.0001 

County 1 -1.0857 0.2158 482 -5.03 <.0001 

County 2 -1.5785 0.3123 482 -5.05 <.0001 

County 3 0.2106 0.2195 482 0.96 0.3378 

County 4 -0.4224 0.2407 482 -1.75 0.0800 

County 5 -0.5463 0.4796 482 -1.14 0.2552 

328 
 



The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect County Estimate 
Standard 

Error DF t Value Pr > |t| 

County 7 0 . . . . 

logAADT  1.1091 0.1469 482 7.55 <.0001 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

County 5 482 13.65 <.0001 

logAADT 1 482 57.01 <.0001 
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The GLIMMIX Procedure 
 

 
 
 

3.8.2 INJURY-M2  
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The GLIMMIX Procedure 
 

 

Model 2 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 3438.86 

AIC  (smaller is better) 3456.86 

AICC (smaller is better) 3457.17 

BIC  (smaller is better) 3480.30 

CAIC (smaller is better) 3489.30 

HQIC (smaller is better) 3466.35 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 3160.37 

Pearson Chi-Square 578.10 

Pearson Chi-Square / DF 0.99 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.4219 0.07738 

Scale 0.1832 0.02240 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept  -9.6860 1.5979 94 -6.06 <.0001 

County 1 -1.0934 0.2143 482 -5.10 <.0001 

County 2 -1.5482 0.3108 482 -4.98 <.0001 

County 3 0.2203 0.2177 482 1.01 0.3121 

County 4 -0.4713 0.2392 482 -1.97 0.0494 

County 5 -0.5160 0.4788 482 -1.08 0.2817 

County 7 0 . . . . 

logAADT  1.1421 0.1479 482 7.72 <.0001 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

County 5 482 13.85 <.0001 

logAADT 1 482 59.63 <.0001 
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The GLIMMIX Procedure 
 

 
 
 

3.8.3 FATAL-M2  
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The GLIMMIX Procedure 
 

 

Model 3- Fatal crashes (Table 6.4 and 6.10) 

 

Model 2 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

Fit Statistics 

-2 Log Likelihood 698.14 

AIC  (smaller is better) 716.14 

AICC (smaller is better) 716.45 

BIC  (smaller is better) 739.58 

CAIC (smaller is better) 748.58 

HQIC (smaller is better) 725.62 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(Fatal | r. effects) 616.37 

Pearson Chi-Square 483.32 

Pearson Chi-Square / DF 0.83 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.4790 0.1952 

Scale 0.04547 0.1835 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect County Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept  -9.7507 3.4340 94 -2.84 0.0055 

County 1 -0.9444 0.3734 482 -2.53 0.0117 

County 2 -1.0432 0.5491 482 -1.90 0.0580 

County 3 -0.4488 0.3346 482 -1.34 0.1804 

County 4 0.1858 0.3602 482 0.52 0.6061 

County 5 -0.2779 0.9566 482 -0.29 0.7715 

County 7 0 . . . . 

logAADT  0.7802 0.3173 482 2.46 0.0143 

 

 

Type III Tests of Fixed Effects 

Effect 
Num 
DF 

Den 
DF F Value Pr > F 

County 5 482 2.63 0.0234 

logAADT 1 482 6.05 0.0143 
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The GLIMMIX Procedure 
 

 
 
 

3.9 CHAPTER 6 
ARTERIAL MODEL 3  
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The GLIMMIX Procedure 
 

 
 
 

3.9.1 TOTAL 
CRASHES-M3 
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The GLIMMIX Procedure 
 

 

Model 3  Information 

Data Set LB.ARTERIAS2GLMSELE
CT 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

 

 

Number of Observations 
Read 

599 

Number of Observations 
Used 

583 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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The GLIMMIX Procedure 
 

 

Fit Statistics 

-2 Log Likelihood 3460.67 

AIC  (smaller is better) 3480.67 

AICC (smaller is 
better) 

3481.05 

BIC  (smaller is better) 3506.72 

CAIC (smaller is 
better) 

3516.72 

HQIC (smaller is 
better) 

3491.21 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. 
effects) 

3186.80 

Pearson Chi-Square 574.60 

Pearson Chi-Square / DF 0.99 

 

 

Covariance Parameter 
Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

Section_I
D 

0.3948 0.07358 

Scale 0.1827 0.02229 
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The GLIMMIX Procedure 
 

Solutions for Fixed Effects 

Effect 
Count
y 

Estimat
e 

Standar
d Error DF 

t Valu
e Pr > |t| 

Intercept  -9.1803 1.5500 93 -5.92 <.0001 

logAADT  1.0850 0.1437 482 7.55 <.0001 

County 1 -1.1080 0.2084 482 -5.32 <.0001 

County 2 -1.5261 0.3024 482 -5.05 <.0001 

County 3 0.1800 0.2115 482 0.85 0.3953 

County 4 -0.4745 0.2327 482 -2.04 0.0420 

County 5 -0.4687 0.4673 482 -1.00 0.3163 

County 7 0 . . . . 

Int_signa
l 

 0.1350 0.05316 482 2.54 0.0114 

 

 

Type III Tests of Fixed Effects 

Effect 

Nu
m 

DF 

De
n 

DF 
F 

Value Pr > F 

logAADT 1 482 57.04 <.000
1 

County 5 482 14.20 <.000
1 

Int_signa
l 

1 482 6.45 0.011
4 
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The GLIMMIX Procedure 
 

 
 
 

3.9.2 INJURY-M3 
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The GLIMMIX Procedure 
 

Model 3 Information 

Data Set LB.ARTERIAS2GLMSELE
CT 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

 

 

Number of Observations 
Read 

599 

Number of Observations 
Used 

583 
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The GLIMMIX Procedure 
 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 3433.35 

AIC  (smaller is better) 3453.35 

AICC (smaller is 
better) 

3453.73 

BIC  (smaller is better) 3479.40 

CAIC (smaller is 
better) 

3489.40 

HQIC (smaller is 
better) 

3463.89 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(No_fatal | r. 
effects) 

3161.97 

Pearson Chi-Square 578.50 

Pearson Chi-Square / DF 0.99 
 

 

Covariance Parameter 
Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

Section_I
D 

0.3903 0.07288 

Scale 0.1830 0.02240 
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The GLIMMIX Procedure 
 

 

Solutions for Fixed Effects 

Effect 
Count
y 

Estimat
e 

Standar
d Error DF 

t Valu
e Pr > |t| 

Intercept  -9.5555 1.5638 93 -6.11 <.0001 

logAADT  1.1187 0.1450 482 7.72 <.0001 

County 1 -1.1144 0.2076 482 -5.37 <.0001 

County 2 -1.5001 0.3019 482 -4.97 <.0001 

County 3 0.1914 0.2105 482 0.91 0.3636 

County 4 -0.5179 0.2320 482 -2.23 0.0260 

County 5 -0.4446 0.4678 482 -0.95 0.3423 

County 7 0 . . . . 

Int_signa
l 

 0.1275 0.05330 482 2.39 0.0171 

 

 

Type III Tests of Fixed Effects 

Effect 

Nu
m 

DF 

De
n 

DF 
F 

Value Pr > F 

logAADT 1 482 59.56 <.000
1 

County 5 482 14.36 <.000
1 

Int_signa
l 

1 482 5.72 0.017
1 
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The GLIMMIX Procedure 
 

 
 
 

3.9.3 FATAL-M3 
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The GLIMMIX Procedure 
 

Model 3  Information 

Data Set LB.ARTERIAS2GLMSELE
CT 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom 
Method 

Containment 

 

 

 

 

Number of Observations 
Read 

599 

Number of Observations 
Used 

583 
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The GLIMMIX Procedure 
 

Convergence criterion (GCONV=1E-8) 
satisfied. 

 

 

Fit Statistics 

-2 Log Likelihood 693.32 

AIC  (smaller is better) 713.32 

AICC (smaller is 
better) 

713.71 

BIC  (smaller is better) 739.37 

CAIC (smaller is 
better) 

749.37 

HQIC (smaller is 
better) 

723.87 

 

 

Fit Statistics for Conditional 
Distribution 

-2 log L(Fatal | r. 
effects) 

615.97 

Pearson Chi-Square 454.03 

Pearson Chi-Square / 
DF 

0.78 
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The GLIMMIX Procedure 
 

Covariance Parameter 
Estimates 

Cov Parm 
Estimat

e 
Standar
d Error 

Section_I
D 

0.4348 0.1794 

Scale 0.04580 0.1837 

 

 

Solutions for Fixed Effects 

Effect 
Count
y 

Estimat
e 

Standar
d Error DF t Value 

Pr > 
|t| 

Intercept  -9.3610 3.3716 93 -2.78 0.006
6 

logAADT  0.7264 0.3119 482 2.33 0.020
3 

County 1 -0.9715 0.3644 482 -2.67 0.007
9 

County 2 -1.0185 0.5375 482 -1.89 0.058
7 

County 3 -0.4297 0.3256 482 -1.32 0.187
5 

County 4 0.1152 0.3534 482 0.33 0.744
5 

County 5 -0.2036 0.9419 482 -0.22 0.829
0 

County 7 0 . . . . 

Int_signa
l 

 0.2058 0.08797 482 2.34 0.019
7 
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Type III Tests of Fixed Effects 

Effect 

Nu
m 

DF 

De
n 

DF 
F 

Value Pr > F 

logAADT 1 482 5.42 0.020
3 

County 5 482 2.62 0.023
5 

Int_signa
l 

1 482 5.47 0.019
7 
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3.10 CHAPTER 6 
ARTERIAL MODEL 4 
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3.10.1 TOTAL 
CRASHES-M4 
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Model 4- Total crashes (Table 6.4 and 6.8) 

 

Model 4 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable Choques_totales 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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Fit Statistics 

-2 Log Likelihood 3516.51 

AIC  (smaller is better) 3526.51 

AICC (smaller is better) 3526.61 

BIC  (smaller is better) 3539.54 

CAIC (smaller is better) 3544.54 

HQIC (smaller is better) 3531.78 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Choques_totales | r. effects) 3179.85 

Pearson Chi-Square 544.83 

Pearson Chi-Square / DF 0.93 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.7666 0.1321 

Scale 0.1827 0.02227 

 

 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept -10.5764 1.1450 98 -9.24 <.0001 

logAADT 1.1657 0.1095 482 10.65 <.0001 

Int_signal 0.1541 0.07003 482 2.20 0.0283 
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3.10.2 INJURY-M4  
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Model 3- Injury crashes (Table 6.4 and 6.9) 

 

Model 4 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable No_fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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Fit Statistics 

-2 Log Likelihood 3489.57 

AIC  (smaller is better) 3499.57 

AICC (smaller is better) 3499.68 

BIC  (smaller is better) 3512.60 

CAIC (smaller is better) 3517.60 

HQIC (smaller is better) 3504.84 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(No_fatal | r. effects) 3154.7
1 

Pearson Chi-Square 548.49 

Pearson Chi-Square / DF 0.94 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.7636 0.1315 

Scale 0.1829 0.02236 

 

 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept -10.8457 1.1561 98 -9.38 <.0001 

logAADT 1.1895 0.1105 482 10.76 <.0001 

Int_signal 0.1441 0.07026 482 2.05 0.0408 
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3.10.3 FATAL-M4  
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Model 3- Fatal crashes (Table 6.4 and 6.10) 

 

Model 3 Information 

Data Set LB.ARTERIAS2GLMSELECT 

Response Variable Fatal 

Response Distribution Negative Binomial 

Link Function Log 

Variance Function Default 

Offset Variable loglength 

Variance Matrix Not blocked 

Estimation Technique Maximum Likelihood 

Likelihood Approximation Laplace 

Degrees of Freedom Method Containment 

 

 

 

 

Number of Observations Read 599 

Number of Observations Used 583 

 

 

 

 

 

 

 

Convergence criterion (GCONV=1E-8) 
satisfied. 
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Fit Statistics 

-2 Log Likelihood 706.43 

AIC  (smaller is better) 716.43 

AICC (smaller is better) 716.53 

BIC  (smaller is better) 729.46 

CAIC (smaller is better) 734.46 

HQIC (smaller is better) 721.70 

 

 

Fit Statistics for Conditional Distribution 

-2 log L(Fatal | r. effects) 612.49 

Pearson Chi-Square 456.24 

Pearson Chi-Square / DF 0.78 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Section_ID 0.5899 0.2139 

Scale 0.04435 0.1826 

 

 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept -10.2481 2.0431 98 -5.02 <.0001 

logAADT 0.7677 0.1933 482 3.97 <.0001 

Int_signal 0.2213 0.09458 482 2.34 0.0197 
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4. SCRIPT SAS 
FREEWAY  AND 

ARTERIAL MODELS 
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ods rtf; 

PROC IMPORT OUT= WORK.autopistas  

            DATAFILE= "C:\Users\402063747\Desktop\sasautopistas.xlsx"  

            DBMS=EXCEL REPLACE; 

     RANGE="Sheet2$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

RUN; 

 

libname lb "C:\Users\INCI\Documents\ERIKA\Erika\Tesis - Marzo 3 2014\Modelos SAS\Dataset"; 

run; 

data lb.autopistas2; 

set autopistasstep1 ; 

logAADT=log(AADT); 

loglength=log(length); 

loglengthAADT=log(AADT)+log(length); 

No_fatal= (Choques_Totales-Fatal); 

APKPY=Choques_Totales/length; 

apkpyaadt=apkpy/(AADT*365)*1000000; 

Curves_km=Curves_A/lenght; 

if Section_ID=10000000 then delete; 

if Section_ID= 21000000 then delete; 

if lanes=2 then delete; 

if lanes=>7 then lanes=7; 
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if curves_A<>0 then group_curves=1; 

if curves_B<>0 then group_curves=2; 

if curves_C<>0 then group_curves=3; 

if curves_D<>0 then group_curves=4; 

if curves_E<>0 then group_curves=5; 

if curves_F<>0 then group_curves=6; 

if grades_A<>0 then group_grades=1; 

if grades_B<>0 then group_grades=2; 

if grades_C<>0 then group_grades=3; 

if grades_D<>0 then group_grades=4; 

if grades_E<>0 then group_grades=5; 

if grades_F<>0 then group_grades=6; 

if curves_A_km<>0 then group_curves_km=1; 

if curves_B_km<>0 then group_curves_km=2; 

if curves_C_km<>0 then group_curves_km=3; 

if curves_D_km<>0 then group_curves_km=4; 

if curves_E_km<>0 then group_curves_km=5; 

if curves_F_km<>0 then group_curves_km=6; 

if grades_A_km<>0 then group_grades_km=1; 

if grades_B_km<>0 then group_grades_km=2; 

if grades_C_km_<>0 then group_grades_km=3; 

if grades_D_km<>0 then group_grades_km=4; 

if grades_E_km<>0 then group_grades_km=5; 

if grades_F_km<>0 then group_grades_km=6; 

if section_ID=. then delete; 

if at_grade_signal<>0 then delete; 

if at_grade_other<>0 then delete; 
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if green<>0 then delete; 

label type_terrain='type of terrain'; 

label group_curves= 'degree of curvature'; 

label group_grades= 'gradient percent'; 

label lanes= 'number of lanes'; 

label rural_urban= 'rural_urban code'; 

label vert_align= 'vertical alignment'; 

label horz_align='horizontal alignment'; 

label design_speed='design speed'; 

label speed_limit='speed limit'; 

label urban_code= 'urban code'; 

run; 

 

proc format; 

 value type_terrain 0= "Not aplicable" 

        1= "Level" 

              2= "Rolling" 

                       3= "Mountainous"; 

         

    value group_curves 1= "0.0-3.4" 

                    2= "3.5-5.4" 

        3= "5.5-8.4" 

        4= "8.5-13.9" 

        5= "14.0-27.9" 

        6= "28+"; 

    

 value group_grades 1= "0.0-0.4" 
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                    2= "0.5-2.4" 

        3= "2.5-4.4" 

        4= "4.5-6.4" 

        5= "6.5-8.4" 

        6= "8.5+ "; 

 

 value vert_align 0="Not required" 

                     1= "All grades an vertical curves meet minimun design standards appropiate for the terrain" 

      2= "Some grades an vertical curves are belown design 
standards appropiate for the terrain" 

      3= "Infrequent grades an vertical curves that impair distance or 
affect the speed of trucks" 

      4="Frequent grades and vertical curves that impair sight 
distance or severely affect the speed of trucks"; 

 

 value horz_align 0="Not required" 

                  1="Apropiate design" 

      2= "some curves below apropiate design" 

      3= "Infrequent curves with design speeds less speed limit" 

      4="several curves with design speeds less speed limit"; 

 

 value county     1="San Juan" 

                  2= "Arecibo" 

      3= "Aguadilla" 

      4= "Mayaguez" 

      5= "Ponce" 

      6= "Guayama" 

      7= "Humacao"; 
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 value shoulder_type 1="None" 

                     2= "Surfaced" 

      3= "Stabilized" 

      4= "Combination" 

                        5= "Earth" 

                        6= "Barrier curb"; 

 

   value median_type 1= "Curbed" 

                     2= "Positive barrier" 

      3= "Unprotected" 

      4= "None";  

 

  value lanes       4="4" 

                    6="6" 

                    7="Multilane";  

 run; 

 

title 'model 1'; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model Choques_totales= logAADT lanes shoulder_type / dist=nb link= log offset=loglength solution 
htype=3; 

random section_ID/solution; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 
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where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model No_fatal= logAADT lanes shoulder_type / dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model fatal= logAADT lanes shoulder_type / dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

ods rtf close; 

 

ods rtf; 

title 'model 2'; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model Choques_totales= logAADT shoulder_type / dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 
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model No_fatal= logAADT shoulder_type / dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model fatal= logAADT shoulder_type / dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

ods rtf close; 

 

ods rtf; 

title 'model 3'; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model Choques_totales= logAADT shoulder_type lanes county/ dist=nb link= log offset=loglength solution 
htype=3; 

random section_ID/solution; 

run; 

 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

class section_ID county lanes  shoulder_type group_grades; 

model No_fatal= logAADT shoulder_type lanes county/ dist=nb link= log offset=loglength solution 
htype=3; 
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random section_ID/solution; 

run; 

 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model fatal= logAADT shoulder_type lanes county/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

ods rtf close; 

 

ods rtf; 

title 'model 4'; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model Choques_totales= logAADT shoulder_type county/ dist=nb link= log offset=loglength solution 
htype=3; 

random section_ID/solution; 

run; 

 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model No_fatal= logAADT shoulder_type county/ dist=nb link= log offset=loglength solution htype=3; 
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random section_ID/solution; 

run; 

 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model fatal= logAADT shoulder_type county/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

ods rtf close; 

 

ods rtf; 

title 'model 5'; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model Choques_totales= logAADT county/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model No_fatal= logAADT county/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID; 
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run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model fatal= logAADT county/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

ods rtf close; 

 

ods rtf; 

title 'model 6'; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model Choques_totales= logAADT/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model Choques_totales= logAADT/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID county; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 
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where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model No_fatal= logAADT/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID; 

run; 

ods rtf; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

where section_ID<>.; 

class section_ID county lanes  shoulder_type group_grades; 

model fatal= logAADT/ dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 

ods rtf close; 

 

ods rtf; 

title 'model 7'; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

class section_ID county lanes  shoulder_type group_grades speed_limit design_speed; 

model Choques_totales= logAADT  speed_limit design_speed county/ dist=nb link= log offset=loglength 
solution htype=3; 

random section_ID; 

run; 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

class section_ID county lanes  shoulder_type group_grades speed_limit design_speed; 
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model No_fatal= logAADT  speed_limit design_speed county/ dist=nb link= log offset=loglength solution 
htype=3; 

random section_ID; 

run; 

 

proc glimmix method=laplace data=lb.autopistas2; 

where apkpy<60; 

class section_ID county lanes  shoulder_type group_grades speed_limit design_speed; 

model fatal= logAADT speed_limit / dist=nb link= log offset=loglength solution htype=3; 

random section_ID/solution; 

run; 
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Arterias 

ods rtf; 

PROC IMPORT OUT= WORK.arteriasstep1  

            DATAFILE= "C:\Users\INCI\Documents\ERIKA\Erika\Tesis - Marzo 3 2014\Archivos 
excel\Segmentos\Excel para SAS\sasarteriasstep1.xlsx"  

            DBMS=EXCEL REPLACE; 

     RANGE="'2004-2009 Arterias (618)$'";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

RUN; 

libname lb"C:\Users\INCI\Documents\ERIKA\Erika\Tesis - Marzo 3 2014\Modelos SAS\Dataset"; 

run; 

data lb.arterias2glmselect; 

set arteriasstep1; 

logAADT=log(AADT); 

loglength=log(length); 

loglengthAADT=log(length)+log(AADT); 

No_fatal= (Choques_Totales-Fatal); 

APKPY=Choques_Totales/length; 

APKPYAADT=APKPY/(AADT*365)*1000000; 

if 0.54>int_signal=>0 then group_int=1; 

if 1.37>int_signal=>0.54 then group_int=2; 

if int_signal=>1.37 then group_int=3; 

if 0.67>int_others=>0 then group_intothers=1; 

if 1.47>int_others=>0.67 then group_intothers=2; 
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if int_others=>1.47 then group_intothers=3; 

if Section_ID=10000000 then delete; 

if Section_ID= 21000000 then delete; 

if Section_ID=. then delete; 

if lanes=2 then delete; 

if lanes=>7 then lanes=7; 

if curves_A<>0 then group_curves=1; 

if curves_B<>0 then group_curves=2; 

if curves_C<>0 then group_curves=3; 

if curves_D<>0 then group_curves=4; 

if curves_E<>0 then group_curves=5; 

if curves_F<>0 then group_curves=6; 

if grades_A<>0 then group_grades=1; 

if grades_B<>0 then group_grades=2; 

if grades_C<>0 then group_grades=3; 

if grades_D<>0 then group_grades=4; 

if grades_E<>0 then group_grades=5; 

if grades_F<>0 then group_grades=6; 

if curves_A_km<>0 then group_curves_km=1; 

if curves_B_km<>0 then group_curves_km=2; 

if curves_C_km<>0 then group_curves_km=3; 

if curves_D_km<>0 then group_curves_km=4; 

if curves_E_km<>0 then group_curves_km=5; 

if curves_F_km<>0 then group_curves_km=6; 

if grades_A_km<>0 then group_grades_km=1; 

if grades_B_km<>0 then group_grades_km=2; 

if grades_C_km_<>0 then group_grades_km=3; 
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if grades_D_km<>0 then group_grades_km=4; 

if grades_E_km<>0 then group_grades_km=5; 

if grades_F_km<>0 then group_grades_km=6; 

label type_terrain='type of terrain'; 

label group_curves= 'degree of curvature'; 

label group_grades= 'gradient percent'; 

label lanes= 'number of lanes'; 

label rural_urban= 'rural_urban code'; 

label vert_align= 'vertical alignment'; 

label horz_align='horizontal alignment'; 

label design_speed='design speed'; 

label speed_limit='speed limit'; 

label urban_code= 'urban code'; 

label group_int='signal intersections per kilometer'; 

label group_intothers='others intersections per kilometer'; 

label int_signal='number of signal intersections'; 

label int_sign='number of sign intersection'; 

label int_others='number of other intersection'; 

run; 

 

proc format; 

 value type_terrain 0= "Not aplicable-Urban" 

        1= "Level" 

              2= "Rolling" 

                       3= "Mountainous"; 

         

    value group_curves 1= "0.0-3.4" 
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                    2= "3.5-5.4" 

        3= "5.5-8.4" 

        4= "8.5-13.9" 

        5= "14.0-27.9" 

        6= "28+"; 

    

 value group_grades 1= "0.0-0.4" 

                    2= "0.5-2.4" 

        3= "2.5-4.4" 

        4= "4.5-6.4" 

        5= "6.5-8.4" 

        6= "8.5+ "; 

 

 value vert_align 0="Not required" 

                     1= "All grades an vertical curves meet minimun design standards appropiate for the terrain" 

      2= "Some grades an vertical curves are belown design 
standards appropiate for the terrain" 

      3= "Infrequent grades an vertical curves that impair distance or 
affect the speed of trucks" 

      4="Frequent grades and vertical curves that impair sight 
distance or severely affect the speed of trucks"; 

 

 value horz_align 0="Not required" 

                  1="Apropiate design" 

      2= "some curves below apropiate design" 

      3= "Infrequent curves with design speeds less speed limit" 

      4="several curves with design speeds less speed limit"; 

 

 value county     1="San Juan" 
379 

 



The GLIMMIX Procedure 
 

                  2= "Arecibo" 

      3= "Aguadilla" 

      4= "Mayaguez" 

      5= "Ponce" 

      6= "Guayama" 

      7= "Humacao"; 

 

 value shoulder_type 1="None" 

                     2= "Surfaced" 

      3= "Stabilized" 

      4= "Combination" 

                        5= "Earth" 

                        6= "Barrier curb"; 

 

   value median_type 1= "Curbed" 

                     2= "Positive barrier" 

      3= "Unprotected" 

      4= "None";  

 

   value group_int 1= "0-0.53" 

                   2= "0.54-1.36" 

       3= "1.37+"; 

 

  value group_intothers 1= "0-0.66" 

                        2= "0.67-1.46" 

            3= "1.47+"; 

  run; 
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ods rtf; 

title 'model 1'; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Choques_Totales= county logAADT  group_int/dist=nb link=log offset=loglength solution 
htype=3; 

 random section_ID; 

 run; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model No_fatal= county logAADT  group_int/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Fatal= county logAADT  group_int/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 

 

title 'model 2'; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Choques_Totales= county logAADT/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 
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 run; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model No_fatal= county logAADT/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Fatal= county logAADT/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 

 

title 'model 3; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Choques_Totales=logAADT county Int_signal/dist=nb link=log offset=loglength solution 
htype=3; 

 random section_ID; 

 run; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model No_fatal= logAADT county Int_signal/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 
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The GLIMMIX Procedure 
 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Fatal= logAADT county Int_signal/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 

 

title 'model 4'; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Choques_Totales=logAADT Int_signal/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model No_fatal= logAADT Int_signal/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 

 proc glimmix data=lb.arterias2glmselect method=laplace; 

 where apkpy<100; 

 class section_ID county lanes group_int; 

 model Fatal= logAADT Int_signal/dist=nb link=log offset=loglength solution htype=3; 

 random section_ID; 

 run; 
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