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ABSTRACT

ALGORITHMS FOR NON-PARAMETRIC CLASSIFIERS

IN MULTI-RELATIONAL DATA MINING

By

Trilce Marie Encarnación Rivera

Dissertation Presented to the Graduate School of the University of Puerto Rico

in Partial Fulfillment of the Requirements for the Degree of Master of Science

December 2006

Directed By: Edgar Acuña Fernandez, Ph.D.

Department of Mathematical Sciences

Over the last decades, due to the advances in information technologies, both the indus-

trial and scientific communities have acquired large volumes of data in digital form. Most

of these data sets are stored using relational databases consisting of multiple tables and

associations. Moreover, the data used in the fields of bio-informatics, computational biol-

ogy, HTML and XML documents are relational in nature. However, most of the existing

approaches to knowledge discovery in databases, assume that the data are stored in a

single table. Therefore, new algorithms are needed in order to exploit the relational infor-

mation provided in these data sets. This thesis proposes two novel solutions to the task of

supervised classification in relational domains, based on traditional non-parametric clas-

sifiers and built upon relational algebra. The first approach is based on Kernel Density

Estimation, and the second technique is based on Gaussian Mixture Models. Both tech-

niques are evaluated using three real world relational data sets, drawn from the fields of

organic chemistry, medicine and genetics.
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RESUMEN

ALGORITMOS PARA CLASIFICADORES

NO PARAMÉTRICOS EN MINERÍA DE DATOS

MULTI-RELACIONAL

Por

Trilce Marie Encarnación Rivera

Disertación Presentada a Escuela Graduada de la Universidad de Puerto Rico

como requisito parcial de los Requerimientos para el grado de Maestŕıa en Ciencias

Deciembre 2006

Consejero: Edgar Acuña Fernandez, Ph.D.

Departmento de Ciencias Matemáticas

Avances en las tecnoloǵıas de información han hecho posible que en las últimas décadas

se hayan generado grandes volúmenes de datos de manera digital. La mayoŕıa de estos

conjuntos de datos están almacenados en bases de datos relacionales, utilizando múltiples

tablas y asociaciones. Por otro lado, existen otros datos cuya naturaleza es relacional,

como son los generados en los campos de bioinformática, bioloǵıa computacional, docu-

mentos de HTML y XML. A pesar de esta gran cantidad de datos relacionales disponibles,

la mayoŕıa de los enfoques de mineŕıa de datos existentes asumen que los datos se encuen-

tran almacenados en una sola tabla o matriz de datos. Por lo tanto, nuevos algoritmos

deben desarrollarse para explotar la información relacional que proveen estos datos. Esta

Tesis propone dos nuevas soluciones al problema de clasificación supervisada en bases de

datos relacionales, estas soluciones surgen como extensiones a técnicas no-paramétricas

tradicionales. El primer enfoque esta basado en estimación de densidad a base de Ker-

nel y la segunda solución se cimenta sobre la estimación de densidad basada en modelos

de mezclas Gaussianas. Ambos enfoques son evaluados experimentalmente utilizando

tres conjuntos de datos conocidos, estos conjuntos son extráıdos de los campos de bio-

informática, medicina y genética.
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Chapter 1

Introduction

Over the last decades, due to the advances in information technologies, both the scientific

and industrial communities have acquired large volumes of data in digital form. These

databases have become increasingly large, and thus more difficult to process with the

available technologies. The field of Knowledge Discovery in Databases (KDD) has arisen

from the need to obtain useful information from these databases, and since its beginning it

has generated a large body of research. In general, a knowledge discovery process consists

of several steps. The central step in the KDD process is Data Mining, which is defined as

the search for interesting patterns and important regularities within large databases [26].

Data mining seeks to generate similar information to the one that a human expert

could produce. In order to achieve this goal, data mining algorithms draw techniques from

several fields including neural networks, pattern recognition, visualization, high perfor-

mance computing, and inductive logic programming, among others. More formally, data

mining is considered to be situated at the intersection of the scientific fields of statistics,

database systems, pattern recognition and machine learning.

Multi-Relational data mining (MRDM) approaches look for patterns in relational

data [25]. In recent years, the most common types of patterns and approaches considered

in data mining have been extended to the multi-relational case, including association rules,

decision trees, clustering, and distance based methods, among others. Traditionally, data

mining algorithms have focused in searching for patterns within a single data table. This



approach is called attribute-value learning or propositionalization, where each example is

characterized as a fixed set of attributes for which values are given. However, for reasons

of storage optimization and access efficiency, most existing real world databases are not

stored as a single table, but as several tables called relations [16]. As a result, the task of

learning from multiple tables (relations) has begun to receive significant attention in the

literature.

One of the main tasks in data mining is supervised classification, whose goal is to

induce a predictive model from a set of training data. This task aims to estimate a func-

tion, given data from a number of training examples, that predicts a class label value for

any input attribute vector. Thus far, multi-relational data mining techniques have been

successfully used in classification tasks, with the majority of the solutions implemented in

order to solve this problem based on probabilistic relational models. This thesis proposes

two novel solutions to the task of supervised classification in relational domains. The

solutions are based on traditional non-parametric classifiers.

The thesis is organized as follows: Chapter 2 overviews the relevant literature in the

multi-relational data mining field, Chapter 3 introduces the multi-relational data-mining

framework; Chapter 4 provides the definition and scope of supervised classification and

introduces the application of kernel density estimation to the task of multi-relational

supervised classification; Chapter 5 covers the theory related to multi-relational supervised

classification based on Gaussian Mixture models; Chapter 6 presents the experimental

results obtained with the described classification techniques; Chapter 7 concludes with a

discussion of the main results achieved in this research and an outline for proposed future

work.
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Chapter 2

Multi-Relational Data Mining

2.1 Introduction

Multi-Relational data mining looks for patterns that involve multiple relations in a rela-

tional database [24], its main difference with traditional data mining approaches is that

it does not need to transform the data into a single table, it learns from the data in its

original form preserving its structure and incorporating such structure into the learning

process. Typically, most relational data mining algorithms have been upgraded from the

single-table case. The techniques available in the literature have been mainly developed

in the field of inductive logic programming (ILP), however, the most recent publications

show a growing interest in the development of statistical relational models. This chapter

presents a brief review of the literature, introducing the main approaches available in

relational data mining.

2.2 Inductive Logic Programming

Since its inception [46], ILP has been one of the first approaches taken in relational learn-

ing and one of the most expanded. However it has not been widely accepted for the

development of relational data mining solutions for knowledge discovery in databases, for

the following reasons. The lack of equivalence among the different ILP engines in terms of

input specification [36], the language bias and the lack of validation of relational database

theory.



Inductive Logic Programming has been deemed as the intersection of Machine Learn-

ing and Logic Programming. In machine learning the learner generates new concepts or

knowledge, based on examples provided by the teacher [44]. This form of knowledge

discovery is called learning from examples, where the teacher provides examples, and the

learner abstracts what is common to these examples to a generalization. In ILP systems,

these examples are given to the learning system in the form of logic programs expressed in

a logic programming language such as Progol. Moreover, the concepts which the learning

system develops from the examples are also expressed in the same language. This is an

advantage of ILP systems, because the system can use the information it has previously

learned as background knowledge for future learning; this is known as incremental learn-

ing.

The ILP paradigm is based on inductive learning. Induction is a machine learning

technique that focuses on inductive inference, which involves unsound conjectures based

on statistical support from data [45]. The models produced by inductive algorithms are

able to express their findings in more complex structures than models which generalize

specific instances. Logic programming is the programming paradigm that uses first order

logic to represent relations between objects, patterns discovered by this paradigm are

expressed as logic programs, which constitute of a set of clauses.

The ILP paradigm is best explained by an example [23]:

Let

E+ = {daughter(Mary,Ann), daughter(Eve, Tom)}

be the positive examples of the relation daughter;

E− = {daughter(Tom, Ann), daughter(Eve,Ann)}

be the negative examples of the same relation;

4



And

B =



{mother(Ann, Mary), mother(Ann, Tom),

father(Tom, Eve), father(Tom, Ian),

female(Ann), female(Mary), female(Eve),

male(Ian), male(Tom),

parent(X,Y )← mother(X, Y ),

parent(X, Y )← father(X, Y )}

be the background knowledge, where the relations daughter, mother, father, female, male,

and parent have the common meaning.

Then, the goal of this ILP problem is to learn the concept daughter. For predictive

ILP, a solution could be the following synthesized clause:

daughter(X, Y )← female(X), parent(Y,X)

Or a set of definite clauses:

daughter(X,Y )← female(X), mother(Y, X)

daughter(X, Y )← female(X), father(Y,X)

In spite of its widely expressive language, ILP techniques pose difficulties to its

adaptation due to their limited use of relational database capabilities. In the few imple-

mentations where the ILP system uses relational database engines, the efficiency of the

techniques is significatively increased. Therefore, three ways have been presented for such

connection [7]:

1. The simplest and straightforward manner is to pre-process the relational data into

Progol syntax.

5



2. In the second approach, a relational database is given together with the Progol

knowledge base. Each time a clause is evaluated, Progol opens a connection to the

database and makes the corresponding query to determine whether the predicate

p(a, b) represents a positive or negative example.

3. The last solution takes the next step exploiting the close relationships between first

order logic and relational databases, where a logic predicate is defined as the relation

between its arguments (which are, in turn, attributes in relational databases) and

between logical clauses and relational database queries. Therefore, entire logical

clauses (not only a literal at a time) can be translated into SQL statements and

submitted to the database to obtain the necessary statistics.

There are several implementations of ILP systems available, the most well known

is Progol [45]. Another very popular system is FOIL [51] which is one of the first ILP

systems using top-down induction. Other implementations are Claudien, ICL and Tilde

[18]. Within the ILP systems, there also exists a distinct technique for induction called

learning from interpretations, or descriptive ILP. This setting has inspired the shifting

from a pure logical search space to the one consisting exclusively of database queries in

relational algebra ([7], [35]).

2.3 Propositionalization Approaches

Propositionalization approaches to relational data mining seek to transform a relational

representation of a learning problem into a propositional (featured-based, attribute-based)

representation. Experiments have shown that many data mining applications can be suc-

cessfully treated with this technique, without significant loss of their predictive perfor-

mance [42]. The premise in propositionalization techniques is that if enough thought is

dedicated to the construction of the features that represent the relational domain, any

relational data mining task can be solved by simple propositional rule learning systems.

6



Careful selection of the features that will compose the predictive space is required.

These features consist of a conjunction of literals which share variables that refer to parts

of the individual to be classified [39]. Therefore, for propositional representations it is as-

sumed that the examples or background knowledge is composed of feature-vectors of fixed

size. This means that all examples can be described using the same set of features, hence

the parallelism to the attribute-value representation. Therefore, propositionalization is

defined as the representation change from a relational representation to a propositional

one.

The main problem with these methods is the fact that they construct the feature

space in advance of the learning process. Therefore, they cannot detect the need for

a representation change, specially requirement of structural changes in order to avoid

serious problems such as overfitting. Some solutions have been proposed to minimize

these effects, including the creation of a class-driven feature space [38]. In the subsequent

paragraphs we introduce some of the existing approaches to propositionalization found in

the literature.

2.3.1 General-purpose Feature Construction

These approaches are designed to work with any type of relational domain. The most

representative example of this technique is the LINUS system [43], which was the first

system to transform a relational representation into a propositional representation. After

propositionalization, the system offers the users the choice of a number of propositional

algorithms including decision trees and rule induction.

Stochastic propositionalization [40] is another general-purpose technique that finds a

set of features which together possess good discriminatory power. Stochastic search is used

to find clauses of arbitrary length, where each clause corresponds to a binary feature in

the resulting model. The removal of clauses in each generation of the search is done proba-

bilistically, with probability proportional to the fitness of individual clauses. This method

7



is able to search deeper than other propositional approaches, but it cannot guarantee that

the propositionalization obtained is optimal, or even complete. Implementations of this

technique include the work by Srinivasan and King [58], the authors proposed a method

of stochastic propositionalization that works relatively well for all types of background

knowledge; the method builds the feature space based on the hypotheses returned by the

Prolog language. Another implementation is the WARMR algorithm [20], whose objective

is to find association rules over multiple relations; WARMR achieves its goal by means of

detecting frequent successful Datalog querys, which are based in a Prolog like language.

2.3.2 Special-purpose Feature Construction

Special-purpose feature construction approaches are developed with either domain de-

pendency or assume a strong declarative bias, or are otherwise applicable to a limited

problem class. Despite the fact that they are designed for very specialized tasks, any

study of propositionalization techniques should cover these methods because they have

been very successful in solving the problems that motivate them.

The first attempt at a special form of propositionalization was done in the work by

Turney [61]; here Progol programs were designed to solve East-West Challenge, classifying

trains as eastbound or westbound. The algorithm proposed introduced new combinations

of up to three Progol literals for each feature, to minimize complexity, the construction

of the feature space was made by a decision tree induction algorithm based on the cost

computed for each feature.

Another successful approach is the SUBDUE algorithm [12]. This technique was de-

signed for structure discovery in graphs, and is an Minimum Description Length (MDL)

based algorithm which finds substructures that compress the original data and represents

the structural concepts existent in the data. This system is capable not only of finding

linearly connected fragments, but is also capable of identifying subgraphs. Recent com-

parisons [32] of this approach have proven to be more efficient in learning structurally

8



complex patterns, but the algorithm remains limited in its use of the background knowl-

edge provided by the relational domain.

2.4 Multi-Relational Distance Based Methods

Distance based methods have been very popular for data analysis tasks, these methods

assume that it is possible to compute for each pair of objects in a domain their mutual

distance, also called similarity measure. The method seeks to define the distance between

individuals within a particular domain. Once this distance is defined, most data mining

tasks can be executed in a relatively simple fashion. In order to use these techniques

in relational domains, a common approach is to extract a vector of features from the

database objects and then use the Euclidean distance or some other norm between those

feature vectors as similarity measure. But this often results in very high dimensional fea-

ture vectors, which are not efficiently handled by the learning algorithms. Other solutions

have been proposed to compute similarity measures in multi-relational data mining, in

this section we aim to introduce some successful implementations of these approaches.

The first-order distance measure was first introduced by [8], it was developed for the

instance based learning system RIBL2. For this technique, each instance or observation

is described as a set of facts, which are the queries or clauses related to the individual

it represents. In order to select a suitable similarity function, the distance measure here

uses the idea of computing distances by recursively comparing the components of the

1rst-order instances until one can finally fall back on propositional comparisons of ele-

mentary features. This distance was developed for the multi-relational implementation of

the k-nearest neighbor algorithm (kNN), which is a method for classifying objects based

on closest training examples in the feature space. The training examples are mapped

into multidimensional feature space and the space is partitioned into regions by the class

labels of the training samples. Then each point in the space is assigned a class label, this

value is selected as the most frequent class label among the k nearest training samples.

9



The neighbors are identified using a similarity measure, in this case first-order distance;

in propositional domains Euclidean distance is commonly used.

Clustering is a distance based technique that has been extensively studied, and

has been also implemented in relational domains. An efficient multi-relational clustering

technique is provided in the RDBC system [33]. In this work they present a bottom-up

agglomerative clustering algorithm for 1rst-order representations or relational data, that

relies on distance information only. The algorithm features a novel parameter-free pruning

measure for turning the hierarchical cluster tree into a single-level cluster. This algorithms

predictions are based on the above mentioned first-order distance measure.

Another popular clustering technique is k-means, which is a variant of the expectation-

maximization algorithm in which the goal is to determine the k means of data generated

from gaussian distributions. The k-means clustering technique groups objects into k par-

titions based on their attributes, assuming that the object attributes form a vector space.

This techniques has been extended to relational domains with the implementation of FORC

[34], which also uses first-order distance. However, in this implementation it is required to

make assumptions about the available representation, otherwise the computational com-

plexity suffers greatly.

For graphical representations of relational data, the similarity measures defined are

computationally extremely complex (i.e. NP-complete), this makes them unsuitable for

data mining in large databases. When deriving a distance measure for attributed graphs,

two major aspects must be taken into account: The first one is the structural similarity

of graphs and the second one is the similarity of the attributes. Additionally, this two

aspects must be weighted, because it is highly application dependent to what extent the

structural similarity determines the object similarity and to what extent the attribute

similarity has to be considered. In the work by Kriegel [41], a new similarity measure for

attributed graphs is presented, called matching distance. Here, they propose a function

10



that instead of matching the vertices of two graphs, the cost function matches the edges

of the two graphs and then derives a minimal weight maximal matching between the edge

sets. This way, not only the attribute distribution, but also the structural relationships

of the vertices are taken into account

Multi-Relational distance based methods offer a lot of potential, but pose serious

concerns about scalability. Most of these methods must store all of the instances and

calculated distances until classification time. Moreover, computing distances between

structurally rich objects is more expensive than computing the similarity measure in

propositional domains. Therefore, these methods are more suitable for small domains.

2.5 Probabilistic Relational Models

Probabilistic Relational Models (PRMs) are an extension of Bayesian Networks to rela-

tional domains. In this approach, the nodes of the network are the attributes of a re-

lational database and the edges represent probabilistic dependencies between attributes.

The models are expressed as a probability distribution over the attributes and the rela-

tions between them [27].

The resulting models have two main components: A relational component that

describes the relational schema of the domain, this would be the network structure in

Bayesian Networks; The other component is a probabilistic component that describes the

probabilistic dependencies that hold in the domain. The main work in this subject has

been done by Getoor [28], her model exploits the conditional independence existent in

most domains.

The task in this algorithms consists in learning the two components of the PRMs.

The parameter estimation is an easier task than learning the structure. The key function

used to estimate the parameters in the PRM is the likelihood function. The higher the

11



value of this function, the better the model predicts the data. For the structure learning

task three components need to be defined: the hypothesis space (the structures that must

be considered by the algorithm); a scoring function to evaluate each hypothesis relative to

the data; and the search algorithm. The search algorithm is usually heuristic, for example

the greedy hill-climbing search.

2.6 Multi-Relational Tree-Based Approaches

Decision tree learning is a common method used in data mining. Here, a decision tree

describes a tree structure wherein leaves represent classifications and branches represent

conjunctions of features that lead to those classifications. The tree itself is a predictive

model that maps observations about an object, to conclusions about the target value.

In classification tasks, the target value represents the class label. In this model, the leaf

represents the predicted value for the target variable, given the values of the features

represented in the path from the root. Decision trees are also a descriptive means for

calculating conditional probabilities. In relational domains, there are two very distinct

techniques used for tree induction, these are tied to the form in which the relational do-

main is represented.

In first-order logic databases, S-Cart [50] is an algorithm that learns a theory for

the prediction of either discrete classes or numerical values, from examples and relational

background knowledge [31]. The result is a classification tree that expresses its findings

as a conjunction of literals in each node, these literals consist of an atomic formula or its

negation (also represented as database querys). The class value or the numerical response

is stored in each leaf.

Multi-relational decision tree learning algorithms construct decision trees whose

nodes are multi-relational patterns i.e., selection graphs. Knobbe [37] proposed a multi-

relational decision tree induction algorithm, based on the logical decision tree induction
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algorithm called TILDE proposed by Blockeel [6]. Later, this algorithm was implemented

in the work by Atramentov et. al. [3], and called MRDTL. This technique deals with records

in relational databases, the nodes contain selection graphs. Selection graphs are directed

graphs whose nodes contain a set of tuples that fulfill a given condition. These selection

graphs are added to the tree through a process of successive refinement until some ter-

mination criterion is met, in the case of the supervised classification task, the stopping

criterion is the correct classification of instances in the training set.

Experiments performed with tree based approaches to multi-relational data mining

show that they compete with other existing methods in terms of predictive accuracy.

However, since relational formalisms open a much larger search space for these methods,

the algorithms have a high computational cost.
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Chapter 3

Multi-Relational Data Mining

Framework

3.1 Introduction

Relational data often have irregular structures and complex dependencies that contra-

dict the assumptions of conventional machine learning techniques. The field of Multi-

Relational data mining aims to improve the existing techniques in order to discover pat-

terns within relational databases. Algorithms in the attribute-value paradigm assume

that the data instances are recorded in homogeneous structures, but the objects stored in

relational databases are usually more varied and complex. The ability to generalize across

heterogeneous data instances is the defining trait of multi-relational learning algorithms.

Representation is fundamental in the process of knowledge discovery. In a multi-

relational framework, the notion of a database begins with constructs [49]. Constructs

can be logical objects such as data models, rules, subtypes or physical objects like tables

and records; The primitives used here are objects and their attributes. Independent of

what kind of database model is assumed to be used, at the time of designing a database,

the universe X of objects that will be described in the database should be distinguished.

Usually such a universe is considered as consisting of heterogeneous sets of objects. Hence,

a number of types of objects are distinguished. For each type of objects in X, some at-



Figure 3.1: Propositional Representation of University Database

tributes have to be predetermined and to each attribute a particular meaning is assigned.

Loosely speaking, the conceptual domain of a database is defined by specifying a universe

X and its distribution over sets of different types Xt, t ∈ T , and then assigning to each

type t ∈ T a set of attributes At.

3.2 Relational Data

Relational data records characteristics of heterogeneous objects and persistent relation-

ships among those objects. Relational data is often stored in multiple tables, with separate

tables recording the attributes of different object types and the relationships among these

objects. In contrast to propositional data, which records characteristics of a single set of

homogeneous objects and is often stored in a single table.

Consider the task of determining the popularity of professors based on the data

collected at a university between the registered students. A propositional representation

of the available data is given in Figure 3.1. Now, in relational domains the language

of representation is richer and therefore is able to portray the relationship between the

different entities in the database. In figure 3.2, the same university database is modelled

as a set of separate entities and the links which represent their relationship.

A data model is not just a way of structuring data: it also defines a set of operations
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Figure 3.2: Example of Relational Schema for the University Database

that can be performed on the data. The relational model, for example, defines operations

such as selection, projection, and joins. Various techniques are used to model the data

structure in relational domains. Most database management systems are built around one

particular data model, but recent developments are making possible the support for more

than one model within the same system. However, this is not the case in the development

of data mining algorithms where representation is an intrinsic part of the technique,

and the choices that are made have a significant effect on performance. According to

Neville [47], there are three main representations of relational data for multi-relational

data mining: relational databases, graphs and first-order logic knowledge bases.

3.2.1 First-order logic Knowledge Bases

Here, the relational domain is represented as set of first-order logic statements. A first-

order database language serves to describe a database structure and properties of the

database constructs [54]. In this approach the database schema is defined as a set of

formulas in the database language. The notion of a database schema plays the same role

as the notion of theory in predicate calculus; a schema can contain formulas representing

integrity constraints specifically for an application and the constraints specifically for a

type of database, all expressed in the same database language.
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The language used to represent instances is based on first-order logic, and is not

restricted toward any particular type of database domain. In this language, the data can

express the special requirements resulting from either relational, hierarchical or network

databases. The database can be considered as an interpretation of some formulas given

in this language, moreover, the same database language can be used to formulate user

queries. Therefore, this kind of representation is used as a natural end-user interface to

databases of different types.

3.2.2 Graph Based Representation

This approach represents the relational domain by means of a directed, attributed hyper-

graph GD = (VD, ED) with V nodes representing objects and E hyperedges representing

relations, with one or more connected components. Each node vi ∈ VD and edge ej ∈ ED

are associated with a type T (vi) = tvi, T (ej) = tej. Each item type t ∈ T has a number

of associated attributes Xt = (X t
1, ..., X

t
m). Consequently, each object v and link e are

associated with a set of attribute values determined by their type X tv
v = (X tv

v1, . . . , X
tv
vm).

Graph-based approaches to multi-relational data mining represent examples, back-

ground knowledge, hypotheses and target concepts as graphs. The objective of these

approaches are the search for graph patterns which are frequent or which compress the

input graphs, moreover, the distinction of positive and negative examples through the

patterns available in the graphs is another goal of these techniques.

3.2.3 Relational Databases

Relational databases consist of a set of database tables with entities E and relations R.

Items of a common type are stored in a separate database table with one field for each

attribute. In this representation, the relational domain is defined by a schema, which

describes entities, their attributes and relations between them. A common misconception

is that a relational database management system is also a relational database, but soft-
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ware such as Oracle, Microsoft SQL Server, PostgreSQL, and MySQL are not relational

databases but tools in which one can implement relational databases. This work considers

relational data represented using the relational schema, more information about this form

of representation is given in the next section.

3.3 Concepts of Relational Databases

The fundamental assumption of the relational model [11] is that all data are represented as

mathematical n-ary relations, an n-ary relation being a subset of the Cartesian product

of n domains. In the mathematical model, reasoning about such data is done in two-

valued predicate logic, meaning there are two possible evaluations for each proposition:

either true or false. However, in relational domains there usually exists a third value such

as unknown, which is often associated with the concept of NULL. Thus, although logic

(which is inherently two-valued) is an important part of the relational model, a system

that uses a form of three-valued logic can still be considered relational. In this form of

representation the data is operated by means of a relational calculus or algebra, both

being equivalent in expressive power.

A Relational Database is conformed by a collection of relations (frequently called

tables), the term Relation is used here in its accepted mathematical sense.

Definition Given sets S1, S2, . . . , Sn, (not necessarily distinct), R is a relation on these n

sets if it is a set of n-tuples each of which has its first element from S1, its second element

from S2, and so on. We shall refer to Sj as the jth domain of R; R is said to have degree n.

Relations are implemented by means of Tables, which organize data in rows and

columns. All of the data stored in a column should be in the same domain (i.e. data

type). In the relational model, it is stated that tuples should not have any ordering. This

means both that there should be no order to the tuples, and that the tuples should not
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impose an order of the attributes. This requirement is not universally achieved: All data

stored in a computer has to have an order, as the memory of a computer is linear. Also,

when the data is returned, there must be an order in which the data is returned because

all transfer protocols are linear. The SQL standard requires columns to have a defined or-

der, but the orders imposed must not impact performance, and they should never change

the result of a query on the database.

A tuple usually represents some object and its associated data, regardless if that

object is a physical one or is used to represent a concept. An important aspect of im-

plementing tuples are the key attributes, these attribute represents a type of constraint

which requires that the object isn’t duplicated. In practice a key could be comprised of

one or more attributes, in the case when a key covers more than one attribute is called a

compound key. Other special attributes are foreign keys, which are not keys by the previ-

ous definition; Rather, a foreign key is a reference to a key in another table. Meaning that

the referencing tuple has as part of its attributes, the values of a key in the referenced

tuple that corresponds to the relationship.

This objects are all expressed in the relation schema, that defines the structure of

the database [28]:

Definition A relation schema R consists of a set of tables R = {R1, R2, . . . , Rn}. Each

table R is associated with attributes of three types: a single primary key R.K, a set of

foreign keys F(R), and a set of descriptive attributes A(R). Each foreign key R.F is

associated to a table to which it points, DOM [R.F ] ∈ R. Each descriptive attribute R.A

is associated with a domain of possible values V(R.A).

From this definition we construe that a key requires that the cardinality of the rela-

tion should be equal to the cardinality of the relation projected over the columns of the

key. Therefore, a key in this context refers to any set of attributes which uniquely span
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the relation. Then, a database constitutes an instance of the relational schema:

Definition A database D over R consists of a set of tuples T[R] for each table R. For

each t ∈ T[R]:

• The primary key t.K is unique within R.

• For each F ∈ F(R), t.F is the primary key of some tuple in T[S] where S =

Dom[R.F ].

• For each A ∈ A(R), t.A is a value in V(R.A).

The second restriction refers to referential integrity, this database concept ensures

that relationships between tables remain consistent. When one table has a foreign key to

another table, the concept of referential integrity states that you may not add a record

to the table that contains the foreign key unless there is a corresponding record in the

linked table. More formally: Let R be a table and let F be a foreign key in R that refers

to a table S with primary key K; then for every tuple r ∈ R there must be some tuple

s ∈ S such that r.F = s.K. Although referential integrity is enforced in most real world

databases, in the models we’ve developed in this work we allow for foreign key attributes

to take the value null, indicating that there is no related tuple in Dom[R.F ].

3.4 Implementing Relational Databases

Relational Databases are implemented using a special software that supports relational

modelling and operations on relational data, this software is called a Relational Database

Management System. When implementing the relational model using a RDBMS, several

considerations have to be taken into account.
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Figure 3.3: Physical Implementation of the Schema for the University Database

The natural relationship mechanism within the relational model is the primary-

foreign key constraint. This binary relationship that has been explained in previous sec-

tions, can establish one-to-many and one-to-one relationship between two tables. Here, a

data entity is related to another via the equality of at least one attribute value. Many-to-

many relationship are modelled using a combination of two one-to-many relationships and

three tables. This method establishes a many-to-many relationship between two tables.

One of these tables is a cross product of the two tables involved within the many-to-many

relationship. However, there are numerous methods used to establish a many-to-many

relationship. Figure 3.3 illustrates this implementation with an example physical schema

of the university domain, here, the table registration represents the many-to-many rela-

tionship between courses and students.

Other objects are used to implement relational databases, and although they are

not intrinsic part of the relational database, its purpose is to help organize and structure

the data:

• Constraints: They impose restrictions on the values that can be stored in the rela-
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tions. These are usually defined in the form of expressions that result in a boolean

value, indicating whether or not the constraint holds.

• Stored procedures A stored procedure is executable code that is associated with

the database and usually store how to perform common operations, like inserting

a tuple into a relation, or gathering statistical information about usage patterns.

Stored procedures are not always considered part of a relational database, partially

because they are not essential to the functioning of the database.

• Indexes: An index is a way of providing quicker access to the data in a relational

database. Indexes can be created on any combination of attributes on a relation

and they operate in a similar manner to how a book’s index works, when tuples in

a relation need to be looked up, the index is accessed and it locates the desired tuple.

3.5 Structured Query Language

In order to create, modify, retrieve and manipulate data from relational database man-

agement systems, the standard operating language is the Structured Query Language or

SQL. This language is derived from the model proposed by Codd [11], and its first im-

plementation was done by Chamberlain and Boyce [9]. Since then, it has been adopted

as a standard by ANSI (American National Standards Institute) in 1986 and ISO (Inter-

national Organization for Standardization) in 1987. The SQL interface is organized into

the following groups:

• Data Definition: The Data Definition Language (DDL) allows the user to define

new tables and associated elements. Most commercial SQL databases have propri-

etary extensions in their DDL, which allow control over nonstandard features.
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• Data Retrieval: This is the most frequently used operation in transactional

databases. When restricted to data retrieval commands, SQL acts as a declara-

tive language. The main keyword is SELECT, which is used to retrieve zero or more

rows from one or more tables in a database. Trough the use of the WHERE clause the

command restricts the output to the tuples that comply to a given condition; this

command also provides for the ordering of the results, and for computing aggregate

functions.

• Data Manipulation: These commands are used to retrieve and manipulate data

and compose the standard Data Manipulation Language (DML). The functional ca-

pability of the commands is organized by the initial word in the statement, which is

almost always a verb. The basic commands are SELECT, INSERT, UPDATE and DELETE.

• Data Transaction: The latter implementations of the SQL standard include a

set of commands that allow the users to wrap around the DML operations. These

transactions are a set of operations that must be executed completely or not at all.

• Data control: This group of SQL keywords, known as the Data Control Language

(DCL), handles the authorization aspects of data and permits the user to control

who has access to see or manipulate data within the database.
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Chapter 4

Multi-Relational Supervised

Classification Based on Kernel

Density Estimation

4.1 Supervised Classification

Supervised classification involves methods that automatically induce a predictive model

from a set of training data. The goal is to estimate a function, that intends to predict a

class label value for any input attribute vector using the data from a number of training

examples. More formally, the supervised classification problem can be stated as:

“Given a finite set of classes G1, G2, ..., Gg, known a priori, and a p dimensional

input vector x. Supervised Classification aims to find the relationship between the values

of x and the group Gi to which it belongs, based on the examples provided by the training

data.”

In this setting, we assume that there is a series of a priori probabilities π1, π2, . . . πg,

for each class label. Then, we can model the relationship between the attributes of any

input vector and its class label by assuming that an element of the class y ∈ 1, 2, . . . , g is

an instance of the random variables with conditional probability function dependant on



the class Fy(x). Given an instance of the input vector X, noted by x, the goal of classifier

C is to determine its class label.

Definition A Classifier C is a function C : Rp → {1, 2, . . . , g}, where C(x) represents

the class label assigned to the input vector x.

The performance of a classifier C can be measured by the probability that a random

instance from a group Gi is assigned to Gj, j = 1, 2, ..., g, defined as:

eij(C) = Prob [C(x) = j|x ∈ Gi] (4.1)

=

∫
Rj

fi(x)dx , (4.2)

where fi is the i-th class density function and, Rj = {x : C(x) = j}.

We can estimate the probability of misclassification for any randomly selected mem-

ber of a group Gi:

ei(C) =

g∑
i6=j

eij(C) (4.3)

=

∫
R̄i

fi(x)dx (4.4)

Where R̄i is the complement of Ri (i = 1, 2, ..., g).

In order to estimate the error rate of the classifier C, we compute:

e(C) =

g∑
i=1

ei(C)πi (4.5)

Where πi represents the prior probability of class Gi.
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4.1.1 Multi-Relational Classification

The objective of multi-relational classification is to undertake classification tasks in re-

lational databases. As was discussed in section 3.2, a schema for a relational database

describes a set of tables DB = {T1, T2, . . . , Tn}, and a set of relationships between pairs of

tables. In this setting, we have a database DB and a target relation Ttarget which includes

a target variable y, representing the class label we aspire to predict.

Analogous to the propositional case, the multi-relational classification task aims to

find a classifier function C(x) which maps each tuple x of the target table Ttarget to its

class label y. Therefore, the classifier function C(x) now becomes a function dependant

not only on the attributes associated to the tuples in the target table, but also to the

attributes stored in the tuples of foreign key relations; in example: y = C(x, DB, Ttarget).

In this scenario, the Ttarget table is considered the target relation while all others are

background relations, which are in turn associated with the target relation by foreign key

attributes.

4.1.2 Training Sample

In a supervised classification environment we have a set of data that constitutes the train-

ing sample and is used to build the classifier. In the attribute-value paradigm, the training

sample is defined as a matrix £ whose elements are of the form (xj, yj), (j = 1, ..., n);

where xj is a p dimensional observation vector and yj is its respective label.

In multi-relational data mining, the training data also includes the data in the

tuples related to each instance in the target table. Therefore, for each tuple t in the

target table, the feature space will be composed the descriptive attributes A(R) in the

target relation TTarget and the descriptive attributes A′(R) stored in foreign key relations

T [S] ∈ DOM [R.F ]. The dimension of this feature space is not known beforehand, since

each tuple can have a different number of related instances in foreign key relations.
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4.1.3 Test Sample

The test sample contains the examples that are used to test the generated model. Its

structure is the same as the training sample, and it is produced from a set of elements

that are independently sampled from the same population from which the training sample

was generated.

4.1.4 Error Rate Estimators

When we use a classification technique, it is important to verify that the generated model

is atoned with the data. In order to evaluate the efficacy of a classifier, we have several

estimators for the error rate associated to e(C).The most widely used estimators are:

• Apparent error: When calculating this value, the training sample is used for building

as well as for testing the classifier. Then, the error is estimated as the proportion of

the misclassified instances in the training set. The expression to estimate this rate

is:

eA =
1

n

n∑
i=1

Q(zi, C(xi)) (4.6)

where

Q(u, v) = 0 if u = v and Q(u, v) = 1 for u 6= v

Generally, this error rate is extremely optimistic and tends to produce bias when

the number of samples is smaller than the number of predictor variables. In this

case the obtained models respond to the noise present in the data rather than its

structure [62].

• Test sample: In order to estimate the misclassification error, the training data is

divided randomly into two sets: The first set will remain the training data and

will be used to build the classifier, the remaining samples will constitute the test
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sample. In order to estimate the error rate, the model obtained from the classifier

is used to classify the instances in the test sample, and the error is the proportion

of misclassified instances in this set. In this method, the usual distribution is 2
3

of

elements are assigned to the training sample, and 1
3

is assigned to the test sample.

This is repeated a given number of times and the average is reported.

• Cross validation: This is a more robust method to estimate the misclassification

rate, here the set of target instances is partitioned in m sub-samples (m = 10 being

the most used). Each sub-sample becomes then a test sample, and the classifier

is built iteratively m times with the remainder m − 1 samples. Then, the error

estimate is obtained as the average of classification errors for each sub-sample. The

experiment is repeated a given number of times and the average is computed in

order to estimate the error rate.

4.2 Multi-Relational Kernel Density Estimation

4.2.1 Introduction

At first glance, we can assume that the classification problem can be solved by correctly

assigning a probability distribution Fy(x) to each class label. Methods that apply this

technique are called parametric, and have been efficiently employed when working with

known distributions that adjust to each particular problem. However, it is not always pos-

sible to obtain these distributions, hence the use of nonparametric techniques is needed.

In nonparametric classification, the main task is to efficiently estimate the probability

density fy(x) for each class label. Popular non-parametric techniques include kernel den-

sity estimation, k-nearest neighbors, and gaussian mixture models.

Kernel density estimation [22] is a relatively simple non-parametric density estima-
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Figure 4.1: Histogram Example

tor that is frequently encountered and has been extensively used in the attribute-value

paradigm. To understand kernel estimators, we first need to understand histograms,

whose disadvantages provide the motivation for kernel estimators.

The construction of a histogram depends upon the the width of the bins (equal

sub-intervals in which the whole data interval is divided) and the end points of the bins

(where each of the bins start), the outcome is that the resulting model is not smooth,

as illustrated by the example provided in figure 4.1. Kernel density estimation aims to

improve this outcome. To remove the dependence on the end points of the bins, kernel

estimators center a kernel function at each data point. Moreover, this estimation smooths

out the contribution of each observed data point over a local neighborhood of that data

point. The contribution of data point x(i) to the estimate at some point x depends on

how apart x(i) and x are. The extent of this contribution depends on the shape of the

kernel function adopted and its bandwidth. An example of kernel density estimation is

shown in figure 4.2.

More formally, we can describe the process of kernel density estimation as [30]:
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Figure 4.2: Example of Kernel Density Estimation in One and Two Dimensions

Given (x1, ..., xn), a random sample of the variable X with density function f(x).

Then, f(x) can be estimated using the Kernel density estimation as follows:

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(4.7)

Where K(·) is a weight function, and h is called the bandwidth, which is a smoothing

parameter. The function K indicates the contribution each point has over the estimated

value.

K(z) and h must satisfy the following regularity conditions:

K(z) must be bounded and completely integrable in (−∞,∞)

30



∫ ∞

−∞
K(z)dz = 1

And,

lim
h→∞

h(n) = 0

Several kernel functions can be found in the literature, the most widely used in

multivariate estimation are:

• Uniform Kernel:

K(z) =


0 for |z| > 1

1
2

for |z| ≤ 1

(4.8)

• Gaussian Kernel:

K(z) =
1√
2π

e−
1
2
z2

(4.9)

• Triangular Kernel:

K(z) =


1− |z| for |z| < 1

0 for |z| ≥ 1

(4.10)
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• Biweight Kernel:

K(z) =


15
16

(1− z2)
2

for |z| < 1

0 for |z| ≥ 1

(4.11)

• Epanechnikov Kernel:

K(z) =


3

4
√

5

(
1− z2

5

)
for |z| <

√
5

0 for |z| ≥ |z| <
√

5

(4.12)

4.2.2 Multi-Relational Kernel Density Estimation

Multi-Relational kernel density estimation has been effectively used in the work presented

by Shangai et al. [55], here the authors propose a form of kernel density estimation to

directly and accurately compute the joint probability distribution of the variables within

relational domains. However, this research does not explore the use of kernel density

estimation for classification purposes. The authors successfully implement this technique

in order to estimate the joint probability distribution in the framework of Relational Dy-

namic Bayesian Networks.

The authors assume independence between all the predictor variables corresponding

to each foreign key relation, in order to approximate the joint distribution of the relational

variables. Then, the marginal probabilities can be used to compute the joint distribution

as:

P (X = x) =
∏
R∈X

[ ∏
l,j∈XR

P (Xl,j = xl,j)

]
(4.13)
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where X represents the random attribute vector and x is a particular value, R is

a relation in the DB. The drawback to this approach is that it can lead to inaccurate

results when the independence assumption does not hold. Now, we can formulate the

kernel density estimation technique proposed:

A kernel density estimator for a random vector X takes n samples and estimates

X’s probability density function of f at X as:

f̂(x) =
1

n

∑
i

K(x; xi) (4.14)

where K is a non-negative kernel function.

The kernel function K represents a distribution over X based on the sample x1, x2, . . . , xn

and is typically a function of the distance between xi and x. In multi-relational domains

this approach can lead to a very large feature space, therefore, the kernel function is broken

into a product of kernel functions that can be computed using any of the above mentioned

multivariate kernel functions over the set of i related tables . Thus, the relational kernel

function yields:

K(x; xi) =
∏
R

KR(x, xi) (4.15)

Where KR(·) is a multivariate density function that is estimated over the attributes

of a relation within the relational database. Therefore, in order to estimate the probability

density for the elements of the target relation, one must compute the product kernel for

the density functions of all relations connected to the target relation by a foreign key
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0. For each tuple T.t in T = Ttarget

1. For each class label y = y1, y2, . . . , yn compute the multi-relational probability density:

P (yi, T.t) = πj f̂(T.t, yi)

where:

f̂(T.t, yi) =
∏

R
1
n

∑n
i=1 KR(x, xi)

2. Assign the class label that maximizes P (yi, T.t)

Figure 4.3: Algorithm for Multi-Relational Supervised Classification based on Kernel

Density Estimation

relationship.

4.2.3 Supervised Classification using Multi-Relational Kernel

Density Estimation

In order to use the kernel density estimation for the multi-relational classification task,

we compute the conditional probability distribution of each class for every instance to be

classified. Then, the class label that maximizes this probability is assigned to this instance.

This algorithms complexity is dominated by the dimensionality of the attributes

that compose the predictor space. The complexity for the algorithm is bounded by

O(nclassesnobsnvar), where nobs is the number of examples, and nvar is the number of

predictor variables in all the relations that compose the DB.
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Chapter 5

Multi-Relational Supervised

Classification based on Gaussian

Mixture Models

5.1 Introduction

Mixture models are used to model probability density functions, as a sum of parametrized

functions. The resulting estimate of the probability function has the form

fX(x) =
K∑

k=1

akh(x|λk) (5.1)

where K is the number of components in the mixture model, and ak is mixture

proportion of the k-th component; and h(x|λk) is a density function with parameter

λk. These models try to mirror the behavior of populations which are composed by

several distinct populations. They have been extensively used due to their flexibility, and

hence, they have received a great deal of attention from researchers in both theory and

experimentation.



5.1.1 Finite Mixture

The p dimensional random vector Y is distributed with a finite mixture if its with density

function f(y; Ψ) can be expressed by:

f(y; Ψ) =
∑k

i=1 πif(y; θ1) (5.2)

πi > 0, i = 1, 2, . . . , k

k∑
i=1

πi = 1

Here, vector Ψ belongs to the parameter space Ω, which contains the unknown

parameters of the model:

Ψ = (π1, π2, . . . , πk−1, θ
t)t (5.3)

where θ represents the vector of parameters (θ1, θ2, . . . , θk), of all known a priori

parameters.

The f(y; θi) functions are probability density functions, and are called the compo-

nents of the mixture; θi is the vector of unknown parameters for each density function.

The mixture proportions or weights are noted by π1, π2, . . . , πk.

The number k of components of the finite mixture is unknown and has to be deter-

mined taking into consideration the available data.

In particular, a mixture model can be composed of a series of multivariate gaussian

density functions:
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f(y; Ψ) =
K∑

k=1

πiφ1(y; µi; Σi) (5.4)

where

φ1(y; µi, Σi) =
e[− 1

2
(y−µi))

tΣ−1
i (y−µi)]√

|2πΣi|
(5.5)

represents the gaussian density function with vector of means µi and covariance

matrix Σi (i = 1, 2, . . . , k). In this case, the vector Ψ of unknown parameters is given by

Ψ = (π1, π2, . . . , ξ
t)t (5.6)

where ξ is composed of the elements of each vector µi and the elements that make

up the covariance matrices Σ1, Σ2, . . . , Σk.

The density function defined in 5.4 is known as Gaussian Mixture, and is later used

in order to build the classifier in a similar way to the Kernel Density Estimation presented

in chapter 4.

5.2 The EM Algorithm

The unknown parameters of a Gaussian mixture model can be estimated by the EM

algorithm; This algorithm has been thoroughly studied within propositional domains.
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The idea behind this technique is the basis for its name, the goal of the Expectation-

Maximization (EM) algorithm is to find the stationary points of the log likelihood func-

tion.

The original work about this algorithm is presented in Dempster [21]. Theory show-

ing the monotone behavior of the likelihood and convergence of the algorithm is derived,

proving that the likelihood function L(θ, Ysample) is increasing in each iteration. Many ex-

amples are sketched, including missing value situations, applications to grouped, censored

or truncated data, finite mixture models, variance component estimation, hyperparameter

estimation, iteratively reweighted least squares and factor analysis.

After this initial work on the EM algorithm, more work on the convergence of the

algorithm was done by Wu [65]: He stated that the incomplete data can be represented

with a graph of the exponential family that posses a compact parametric space, where all

of the limiting terms in an EM succession are stationary points for the likelihood function.

Another outcome of Wu’s paper is the proof that, if the likelihood function is unimodal,

and satisfies certain differential condition. Then, any EM succession converges to the only

maximum likelihood estimator.

The Log Likelihood function of the gaussian mixture models can be unbounded and

therefore have several local maximums and saddle points. For this reason the EM algo-

rithm is dependant on the initial values, and no single solution is guaranteed.

The convergence rate of the EM algorithm is proportional to the ratio between the

observed data an the missing data. If the populations that compose the mixture are well

separated, then the EM successions exhibit a very fast linear convergence. On the other

hand, if these populations are poorly separated, the expected converge is slowly linear.

An efficient EM algorithm for estimation of mixtures densities is presented in Red-
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ner and Walker [52]. In this work, results show that the convergence of the algorithm

improves for large samples and better component separation. Bilmes [5] also describes the

maximum-likelihood parameter estimation problem and how the Expectation-Maximization

(EM) algorithm can be used for its solution. It provides an implementation of the EM pa-

rameter estimation procedure for two applications: 1) finding the parameters of a mixture

of Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM).

In general, the EM algorithm is an elaborate technique that provides a general

method for finding the maximum-likelihood estimate of the parameters of an underlying

distribution from a given data set, it is a stable algorithm that can be used when the data

is incomplete or has missing values.

5.2.1 Definition of the EM Algorithm

As before, we assume that X is observed and is generated by some distribution, we call

X the incomplete data. We assume that a complete data set exists Z = (X, Y ), for which

we specify a joint density function:

p(Z|Θ) = p(x, y|Θ) = p(y/x, θ)p(xΘ) (5.7)

With this new density function, we can define a new likelihood function called the

complete-data likelihood:

L(Θ|z) = L(Θ|X, Y ) = p(X, Y |Θ) (5.8)

This likelihood function will be used to estimate Θ.
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The EM algorithm first finds the expected value of the complete-data log-likelihood

log p(X; Y |Θ) with respect to the unknown data Y given the observed data X and the

current parameter estimates. Thus, we define

Q(Θ, Θ(i−1)) = E
[
log p(X, Y |Θ)|X, Θ(i−1)

]
(5.9)

where

E
[
log p(X, Y |Θ)|X, θ(i−1)

]
=

∫
y∈Υ

log p(X, y|Θ)f
(
y|X, Θ(i−1)

)
dy (5.10)

In the best of cases, this marginal distribution is a simple analytical expression of

the assumed parameters Θ(i−1) and the data. In the worst of cases, this density might be

very hard to obtain.

The evaluation of this expectation is called the E-step of the algorithm. The second

step (the M-step) of the EM algorithm is to maximize the expectation computed in the

first step. That is, to find:

Θ(i) = argmax
Θ

Q(Θ, Θ(i−1)) (5.11)

These two steps are repeated as necessary. Each iteration is guaranteed to increase

the log likelihood and the algorithm is guaranteed to converge to a local maximum of the

likelihood function.
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Due to the small computational cost that the EM algorithm has per iteration, we

believe that it will be possible to to extend this estimation to a relational setting; In

the next section we present an extension to this algorithm in order perform the task of

supervised classification in relational domains.

5.2.2 Number of Components in the Mixture

The problem of determining the number of components is a very complex one, to which

no definite solution has been found. Several authors have proposed different solutions in

order to determine the number of components k in the mixture model. The main factors

affecting the outcome of the proposed solutions are the separation between the different

populations within the data, the sample size and the dimensionality of the data [62].

One of the most widely accepted alternatives to estimate this number, and the one

used in this work, is the Bayesian Information Criterion (BIC) [56]. This criterion is

defined as:

BIC = 2Q(Θ, Θ(i−1))−mM log(n) (5.12)

where Q(Θ, Θ(i−1)) is the likelihood obtained via the EM algorithm for the model

and mM is the number of estimated parameters and n is the number of observations.

Given any two estimated models, the model with the larger value of BIC is preferred.

The BIC penalizes free parameters more strongly than does the Akaike information crite-

rion [1]; The work by Roeder and Wasserman [53], shows that this criterion is consistent

when using gaussian mixtures in order to estimate probability density functions. Several

experiments have shown the efficacy of the criterion; An example of which is the work by

Dasgupta and Raftery [15], where they employ this criterion in order to determine the
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number of components for the mixture models estimated via the EM algorithm.

5.3 Multi-Relational Classifier Based on Gaussian Mix-

ture Models

Gaussian mixture models have been previously used in classification tasks on propositional

domains [29]. Experimentation includes the work by Daza [17], who provides an extensive

reference in the application of Gaussian mixtures to the task of supervised classification

in KDD experiments. His research focuses on the combination of classifiers based on

Gaussian mixtures by means of Bagging and Boosting.

In order to extend this approach to a multi-relational setting, we build our technique

upon the independence assumption presented in the previous chapter; Namely, in order to

estimate the probability distribution of the relational variables, we assume independence

between all the predictor variables corresponding to each foreign key relation. In a super-

vised learning setting, one wants to estimate the parameters of the probability model. A

multi-relational classifier based on Gaussian Mixture models estimates the class posterior

probability function as a mixture of Gaussian distributions. Thus, the final estimate is

computed as the product of the probability densities estimated for each foreign key rela-

tion by means of a Gaussian Mixture model. Figure 5.1 illustrates the proposed algorithm.

This algorithms complexity is greatly influenced by the complexity of the algorithm

used to estimate the probability density. In order to estimate the complexity of our al-

gorithm we determine a bound for the EM algorithm as O(EM), which will be analyzed

in Chapter 6. For the Multi-Relational Classification Algorithm Based on Gaussian Mix-

tures, the complexity is bounded by O(nclasses nk (O(EM) nobs nR), where nk is the

maximum number of components that will be estimates in the Gaussian mixture model,

nobs is the number of examples, and nR is the number of relations in the DB.
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1. For each class label y = y1, y2, . . . , yn compute the probability density function:

1.1 For each Foreign Key Relation F ∈ R.F

1.2 For k = 1, ..., nk :

Apply the EM algorithm to the Foreign key relation, and store the likelihood in

lF (θj|xn) where xn ∈ A(R.F )

Estimate the BIC criterion for this value of k

1.3 Select the optimal number of components:

kopt = argmaxk BIC

1.4 Obtain the Multi-Relational probability density:

P (yi|T.t) = πj

∏nR

i=1 lF

where nR is the number of relations in DB

2. Assign the class label that maximizes P (yi|T.t)

Figure 5.1: Multi-Relational Gaussian Mixture Classification Algorithm
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Chapter 6

Experimental Results

6.1 Introduction

In order to test the efficiency of the classifiers proposed in previous chapters, we performed

experiments focused on three relational data sets: The mutagenesis database which has

been, widely used in Inductive Logic Programming (ILP) research [59]; the data for

prediction of protein/gene localization and function from KDD Cup 2001 [10]; and the

data released for the PKDD 2001 Discovery Challenge [13], from the medical domain for

the prediction of thrombosis. The table 6.1 shows a summary for the characteristics of the

data sets used; In the following sections we present the results obtained in experiments

upon these data sets.

Relational Data Sets

Data Set
No. Instances Number No. Features No. Features in

in Target R. of Classes in Target R. Foreign Key R.

Mutagenesis 188 2 5 5

Gene/Protein-Localization 862 15 6 2

Gene/Protein-Function 862 13 6 2

Thrombosis 1240 2 2 51

Table 6.1: Summary of Relational Data Sets



Figure 6.1: Relational Schema for Mutagenesis Data Set

6.2 Relational Data Sets

6.2.1 Mutagenesis Database

This database comes from the field of organic chemistry, the problem here is to predict the

mutagenicity of a set of 230 aromatic and heteroaromatic nitro compounds. Mutagenic-

ity is measured using the Ames test, its prediction is important as it is relevant to the

understanding and prediction of carcinogenesis. These compounds occur in automobile

exhaust fumes and sometimes are intermediates in the synthesis of thousands of industrial

compounds.

This database, available from the Machine Learning Network MLNet, is one of the

most widely used databases in ILP research. The most relevant results to the Machine

Learning community of experimentation with this data are available in ([59], [60]). The

original format of this database is Prolog syntax. In order to use this data set with

our algorithms, we needed to translate it to the relational format. The database schema

proposed for the domain is shown in figure 6.1.

The data set consists of 230 molecules and is drawn from the results obtained by

Debnath et. al. [19], where two subsets of data are recognized: 188 compounds that

could be fitted using linear regression, and 42 compounds that could not. The regression
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Figure 6.2: Physical Implementation of for Mutagenesis Database

friendly subset consists of 4893 atoms and 5243 bonds. In our experiments we selected the

regression friendly subset, which is the one that has been treated in the Machine Learning

literature. The implementation of the relational schema is shown in Figure 6.2.

6.2.2 Prediction of Protein/Gene Localization and Function

This database was released for the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2001), in the framework of the KDD Cup

competition. Figure 6.3 presents the relational schema proposed. The data is drawn from

the field of bio-informatics, where there exists increasing interest in learning about the

genes encoded in the sequences obtained in recent advances in genetics. Genes code for

proteins, and these proteins tend to localize in various parts of cells and interact with one

another, in order to perform crucial functions. This data set consists of a series of details

about the various genes of one particular type of organism.

Two classification tasks are proposed in the challenge, to predict the functions and

localizations of the proteins encoded by the genes. A gene/protein can have more than

one function, but the algorithms we’ve proposed assume that each individual should be

assigned to only one class label. In order to deal with multi-valued class attributes, we

use the technique proposed by Atramentov [2]. Here, we predicted the membership of
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Figure 6.3: Relational Schema for the KDD Cup 2001 Data Set

each individual to each possible class, which means that we determine if a given protein

has a function from all possible functions.

The overall accuracy of this approach is evaluated with this formula:

Accuracy =
(truepositive + truenegative)

(truepositive + truenegative + falsepositive + falsenegative)
(6.1)

The original data is available in two variants. The first version consists of a single

table, and is designed for propositional learning. The second format consists of two tables

with 8 attributes in total, the target relation contains 862 genes. For our experiments we

selected the second variant, because of its relational nature. However, the format in which

the data is presented does not abide to the normal form [11]. In order to implement the

relational schema in a physical database, we required that the attribute GeneId should

be identified uniquely as a primary key for the target relation. Hence, we transformed

the model into a normalized one presented in figure 6.4.
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Figure 6.4: KDD Cup 2001 Database

6.2.3 Medical Domain - Prediction of Thrombosis

The database was collected at Chiba University hospital. The data portraits the results

of a study made on patients suffering from collagen diseases. Collagen diseases are auto-

immune diseases in which patients generate antibodies attacking their own bodies. The

mechanisms of such diseases are only partially known, that is why there exist interest in

obtaining more information on its classification. Medical studies have shown that throm-

bosis is one of the most important and severe complications of collagen diseases, and one

of the major causes of death. Thrombosis is an increased coagulation of blood, that clogs

blood vessels. The physicians that donated the data have found that this complication is

closely related to anti-cardiolipin antibodies.

The classification task possed by this data consists in predicting the possibilities

of the occurrence of thrombosis in collagen disease patients [4]. The data is provided in

relational format, the schema is shown in Figure 6.5. The target relation contains records

of 1240 patients admitted to the outpatient clinic for collagen diseases, the implemented
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Figure 6.5: Relational Schema of Thrombosis Data

database is shown in figure 6.6.

6.3 Implementation Details

In order to carry out the experiments, we developed a computational environment in the

Java programming language, making it platform-independent. Within this setting, the

code required to carry out the knowledge discovery tasks was developed. Our implemen-

tation provides for the execution of the following data mining tasks for relational domains:

• Data preprocessing: Handling of missing values by means of Naive Bayes predictor

6.1.

• Classifier independent miss-classification error estimation, using the cross-validation

technique.

• Supervised classification using Kernel Density Estimation.

• Supervised classification using Gaussian Mixture Models.

The relational data was implemented using the MS Access RDBMS. In order to ac-

cess the data from our programming environment we used the JDBC Database Access
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Figure 6.6: Thrombosis Database

API, this interface allows our algorithms to be independent of the choice of RDBMS. In

order to operate the data, we abided by the ANSI SQL 1999 standard Data Manipulation

Language; although internally some XML manipulation is performed, the interface to the

database engine requires compliance with the SQL3 standard only.

6.4 Multi-Relational Kernel Density Estimation

In order to test this technique, we performed experiments on the described data sets using

the general procedure for supervised classification; namely, construct a classifier using a
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Multi-Relational Classifier Based on

Kernel Density Estimation

Data-Set/ Accuracy

Kernel Function Uniform Kernel Gaussian Kernel Bi-Weight Kernel

Mutagenesis 80.47% 81.71% 78.35%

Gene/Protein - Localization 70.89% 70.23% 69.45%

Gene/Protein - Function 79.86% 81.33% 77.67%

Thrombosis 90.05% 91.28% 90.91%

Table 6.2: Experimental Results for Multi-Relational Kernel Classifier

sample of the available data as Training Data and test the resulting classifier on the test

set provided. The miss-classification error for the resulting model was computed using

the cross-validation technique described in section 4.1.4, with m = 10 sub-samples.

The data sets used presents significant challenges because the data contains many

missing attribute values; If not treated, this problem affects the predictor power of the

classifier greatly. For our experimentation, we integrate a simple approach to treating

this problem. A Naive Bayes model for each attribute in a table is built, based on the

remaining attributes and excluding the class attribute [48]. Then, the missing attribute

values are completed with the most likely value predicted by the Naive Bayes predictor.

Then, for each tuple r from table R, the missing attribute values X.A in the tuple are

replaced with

vNB = argmax vm ∈ DOM(X.A)
∏

∀Xi∈DB

∏
∀Xi.Aj ,Aj 6=Am

∏
∀rn∈Xi,rn

P (Xi.Aj/vm) (6.2)

This estimate takes the first product over all relations in the database; The second

product is taken over all the attributes in that relation, excluding the target attribute and
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0. Initialization of m, s and p for all kernels:

µi = a vector in learning examples µi 6= µj∀j

pi = 1
number of kernels

σi = standar deviation of the ith feature

⇒ θi = (µi, σi)

1. Repeat until likelihood convergence

M-Step: maximization

µj =
P

n p(θj |xi)xiP
n p(θj |xi)

σ2
j = 1

d

P
n p(θj |xi)‖xi−µj‖2P

n p(θj |xi)

pj = 1
N

∑
n p(θj|xi)

where:

d is the dimension of x;

N is the number of learning examples

E-Step: expectation

p(θj|xn) =
p(xn|θold

j )p(θold
j )P

i p(xn|θold
i )p(θold

i )

=
N(µold

j ,σold
j ,xn)pold

jP
i N(µold

i ,σold
i ,xn)pold

i

where:

N(µ, σ, x) is a normal multivariate distribution

Figure 6.7: EM Algorithm

the class label; Then, the third product is taken over all the tuples in relations connected

trough foreign key associations. The classifier is built as described after the missing values

are filled in this manner. The results obtained with this approach are shown in Table 6.4

6.5 Multi-Relational Gaussian Mixture Models

In order to implement the technique described in chapter 5, we implemented a library of

functions in JAVA. Our version of the EM algorithm assumes that the co-variance matrix
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Multi-Relational Classifier Based on

Gaussian Mixture Models

Data-Set Accuracy

Mutagenesis 83.94%

Gene/Protein - Localization 76.72%

Gene/Protein - Function 89.45%

Thrombosis 96.68%

Table 6.3: Experimental Results for Multi-Relational Gaussian Mixtures Classifier

for the predictor features has a diagonal structure, with varying volume; This means that

the predictor features in each foreign key relation are independent, and we estimate the

co-variance for each pair of features. This results in a simplification of the EM algorithm,

the implemented algorithm is shown in Figure 6.7. The probability density function was

estimated using mixture models within the range of k = 1, . . . , 6 components, the best

number of components in the generated model model was selected using the BIC criterion.

Since our implementation of the EM algorithm simplifies the computations for the

covariance matrix, and reduces the number of parameters that will be estimated, the com-

plexity of the algorithm is also significantly reduced. The expectation step has a complex-

ity of O(nobs), and for the maximization step, the bound is determined by O(nobs nM),

where nobs represents the number of examples and nM is the number of parameters that

needs to be estimated. In past studies of the numerical properties for this algorithm,

it has been shown that its convergence is slowly linear at the worst case scenario [65];

Therefore, our implementation presents a bound of O(n2
obs nM) at the worst case.

The results obtained with this classifier are shown in Table 6.3. This results show a

significant improvement from the results obtained using kernel density estimation, how-

ever this increase in accuracy comes at the cost of a significant increase in running time.
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Running Time (in milliseconds)

Data-Set
MR-KDE MR-KDE MR-KDE MR Gaussian

Uniform Gaussian Bi-Weight Mixture

Mutagenesis 7, 832 7, 727 8, 103 40, 513

Localization 8, 985 9, 122 9, 240 68, 269

Function 9, 123 9, 526 9, 384 70, 343

Thrombosis 12, 430 12, 853 12, 678 57, 972

Table 6.4: Running Time for the Implemented Methods

Comparative Evaluation

Data-Set
MR-KDE MR-KDE MR-KDE MR Gaussian Best Reported

Uniform Gaussian Bi-Weight Mixture Accuracy

Mutagenesis 80.47% 81.71% 78.35% 83.94% 86% [57]

Localization 70.89% 70.23% 69.45% 76.72% 72.1% [10]

Function 79.86% 81.33% 77.67% 89.45% 93.6% [10]

Thrombosis 90.05% 91.28% 90.91% 96.68% 99.28% [13]

Table 6.5: Performance Comparison with Best Known Results

Figure 6.4 shows a comparison of the running time for the implemented methods.

These experiments were carried out under the MS Windows platform. Using a DELLr

PrecisionTM 690 workstation, which had Intelr XeonTM CPUs with speeds of 3.00

GHz and 2.99 GHz, under a 64 Bits environment and with 16 GB of RAM memory. Both

the accuracy and running accounted in this thesis results from performing 50 repetitions

of each experiment and then the average of these values is reported.
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Chapter 7

Conclusions and Future Work

In multi-relational data mining, algorithms are faced with the task of learning from rela-

tional databases and from data describing complex/structured objects. One of the main

tasks of data mining is the task of supervised classification; and several techniques have

been proposed in the literature in order to solve this problem. Most of the approaches in

multi-relational data mining are based on the ILP paradigm, and recent developments are

working with probabilistic relational models. This thesis presents two new algorithms for

estimating probability distributions over relational data sets. The models are based on

traditional non-parametric techniques, and contrary to most of the previous relational ap-

proaches, our approach is based on notions from relational algebra. By incorporating this

relational representation of the data, we provide a framework which has the potential for

a wider use than other representations that build on first-order logic bases or graph based

representation, because this approach is more generalized across the database community.

The first algorithm focused on multi-relational Kernel density estimation, this tech-

nique for estimating the probability distribution over relational data was described in

[55]. Another related work is done by Woznika et. al. [64], here they present a general

framework for kernel-based learning over relational schemata in a similar manner to the

one used in this thesis. However, their model is based upon a newly defined attribute

type call instance-set and their algorithm used a relational distance measure based on

kernels in order to perform the classification task. Therefore, the approach proposed here

presents a novel solution to this problem.



Experimental evaluation of this method shows that it performs in an efficient man-

ner. However, it still lacks the predictive performance that has been obtained in the best

known published results of the three relational data sets used in the experiments. This

result can be attributed to the characteristic of the databases, they posses posses a high

dimensional feature space, and the number of observations available to the learner is rel-

atively small for non-parametric techniques; This conclusion is confirmed by the outcome

obtained with the Thrombosis data set, which contains the larger number of observations

of the evaluated databases and achieved the best result for this technique. Therefore, this

technique is better suited for data sets that posses a large number of observations in the

training sample, in order to improve the predictive performance of the classifier.

Supplementary experiments with this algorithm can study the effect that the pa-

rameter settings for the elementary kernels used in this thesis have over the classifier.

Another interesting route for future work can be the study and creation of new kernel

functions that can build upon the relational properties from the set of predictor variables.

This new kernel function should try to express the expanded relational feature space as

reduced space, such as the mapping proposed by Cumby and Roth [14].

The task of learning probability distributions using Gaussian mixture models has

been extensively studied within propositional domains, still, it has not been used in a

relational setting. In this Thesis we present an algorithm to approximate the probability

density function of a relational database using Gaussian Mixture models, via the EM

algorithm. The model generated is used for the task of supervised classification, and an

empirical evaluation shows that this method compares well to other published results that

use the same relational data sets.

This technique improves the results obtained with our previous approach, this im-

provement can be attributed to the fact that the technique is slightly parametric in nature.
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The models are generated making some assumptions about the behavior of the density

function, and in our implementation we also assume independence between the predictor

features.

Further work in this direction should include alternative structures for the co-

variance matrix estimated with the EM algorithm, our implementation explores one struc-

ture but more complex models can also be generated if the independence assumption is

bypassed. Comparisons between methods for selecting the optimal number of compo-

nents is also a possibility of further research, alternatives include the Akaike Criterion,

and the Mutual Information Criterion. Another interesting area to explore consist the

incorporation of query optimizing techniques. Recent work in this direction has proven

to speed up multi-relational data mining algorithms [63] by means of identifying common

subexpressions in sets of relational queries and data mining query scheduling.

In conclusion, this Thesis has explored non-parametric techniques and their pre-

dictive performance for the task of supervised classification in multi-relational domains.

The methods proposed consist of original solutions to this data mining task, and the ex-

perimental evaluation of the algorithms show an efficient performance within benchmark

relational data sets. These techniques constitute a first step towards the exploration of

non-parametric techniques and their extension to a multi-relational setting. Moreover,

this work deals with relational data stored directly in relational database systems, pro-

viding an expression language that is intuitive to SQL programmers and taking one step

closer to bridging the gap between traditional KDD techniques and the database commu-

nity.
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