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Member, Graduate Committee

Wilson Rivera Gallego, Ph.D Date
President, Graduate Committee

Pedro Vásquez Urbano, Ph.D. Date
Representative of Graduate Studies

Isidoro Couvertier Reyes, Ph.D Date
Chairperson of the Department



Abstract of Dissertation Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

ENABLING DISTRIBUTED RADAR DATA RETRIEVAL AND
PROCESSING IN DISTRIBUTED COLLABORATIVE ADAPTIVE

SENSING ENVIRONMENTS

By

Diego Mauricio Arias Velasco

March 2007

Chair: Wilson Rivera Gallego
Major Department: Electrical and Computer Engineering

This thesis describes the integration of radar network and grid computing tech-

nologies to provide a set of grid services to manipulate and store data from different

radars, to execute algorithms on different platforms in a transparent way to end

users, and to provide secure access to storage systems and instruments. The solution

approach considered is a grid-based system which includes a Grid Portal Interface,

a distributed storage to radar data management, and Grid services implementing

distributed algorithms to process data radar information.

A major requirement of this system is data availability and reliability. Consequently,

have been implemented two redundancy schemes to perform the data management

of the network: A simple Replication Algorithm and the Information Dispersal Al-

gorithm (IDA). Experimental results show that IDA provides better reliability and

less storage spending than the traditional replication algorithm. Furthermore, under

the same conditions, the redundancy in the replication technique is three times or

ii



more than IDA, when the reliability required is over 90%. IDA is normally used

to perform security deployments where message encryption is required. Thus, this

algorithm has been modified to enable large file management in order to satisfy the

large amount of data generated by radars.
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Esta tesis describe la integración de tecnoloǵıas grid computing y redes de

radares metereológicos, con el objetivo de proveer un conjunto de servicios grid

para manipular y almacenar datos de diferentes radares, ejecutar algoritmos sobre

múltiples plataformas de manera transparente a los usuarios y proveer acceso seguro

a los sistemas de almacenamiento e instrumentos. La solución propuesta es un

sistema basado en servicios grid el cual incluye un Portal Grid, un sistema distribuido

de almacenamiento de datos y servicios grid, implementando algoritmos distribuidos

para procesar la información de los datos generados por los radares.

El mayor requerimiento de este sistema es la disponibilidad y la confiabilidad de

los datos obtenidos. Consecuentemente, se han implementado dos esquemas de

redundancia para el manejo de los datos de la red: Un algoritmo de replicación simple

y el algoritmo de información dispersa (IDA). Resultados experimentales muestran

que IDA provee mejor confiabilidad que el algoritmo de replicación. Adicionalmente,
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bajo las mismas condiciones, la redundancia en la técnica de replicación es tres veces

o más que la de IDA, cuando los requerimientos de confiabilidad están por encima

del 90%. IDA es normalmente usado en aplicaciones de seguridad donde se requiere

encriptación de mensajes. De esta manera este algoritmo ha sido modificado para

poder manipular los archivos de gran tamaño generados por los radares.
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Your example and your constant support were my major source of motivation during

my university studies. I would like to especially thank my friends (my family here in

Puerto Rico) Natalia, Arjuna e Iveth. Natalia, without your patience, understanding

and unconditional support I would not have been able to achieve my goals. Arjuna

and Iveth, not only did you both welcome me to your home, but you provided me

with the spirit to continue forward. My most sincere thanks to my advisor, Professor

Wilson Rivera, who gave me the opportunity of belonging to his work team. Thank

you for your patience and your support, thank you for allowing me to work in

something which I like, but, most of all, special thanks for believing in me and my

work. Being part of the PDC Lab was a very important and satisfying experience

for me. I would like to give thanks to all the members of this magnificent work team,

Wilson, Fernando, Gustavo, Mariana, John and Kennie. I would also like to thank

all the members of the CASA Project, especially to the students, Manuel Vega and

Victor Marrero and to all the people, who, in one way or another, contributed and

gave support to my work. Many thanks to my committee, Dr. José Colom and
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CHAPTER 1

INTRODUCTION

1.1 Overview

The National Science Foundation Engineering Research Center for Collabora-

tive Adaptive Sensing of the Atmosphere (CASA) is focused on developing Dis-

tributed Collaborative Adaptive Sensing (DCAS) [1] as a systems technology to

improve our ability to monitor the earth’s lower atmosphere. Current approaches

to sampling the first three kilometers of atmosphere are physically limited in their

ability to provide the required resolution and coverage. For example, radar technol-

ogy is currently limited by the focus on long range sensing by single instruments.

Requiring radar to view distances up to 240km, as in the case of NEXRAD [2], in-

troduces the problem of the earth’s curvature [3]. As the range increases away from

the radar, the earth’s surface curves away under the radar beam. This causes the

volume of atmosphere being observed to be located at an increasing height above the

earth’s surface. The radar is unable to observe the atmosphere close to the earth’s

surface where people live.

DCAS aims to radically alter the radar paradigm. Rather than relying on single

radar to provide long range (hundreds of kilometers) coverage, DCAS proposes to

mosaic the output of lower power shorter range (tens of kilometers) radars. It must

be acknowledged that reducing the range would require an increase in the number

of radars to cover the same land area. By directly comparing areas, reducing the

maximum required range from 240 km to 30 km would require approximately 64

short range radars to cover the area of the single long range radar.

1
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The island of Puerto Rico presents a unique set of challenges that accentuate the

limitation of the current large radar paradigm. With a land area of approximately

9000 km2, Puerto Rico is home to an estimated 3.8 million people, predominately

located in the coastal lowlands, surrounding a central mountain range peaking 1.3

km above sea level. The island is located in the Tropic of Cancer and receives a

30-year average of 63 inches of rainfall per year [4]. The amount and nature of this

rainfall, combined with the island’s particular orography makes Puerto Rico prone to

flash flooding events, which require Quantitative Precipitation Estimation (QPE) for

accurate radar based forecasting. QPE forecasts are produced by the NWS forecast

office in San Juan using, in part, the island’s single NEXRAD WSR-88D, TJUA.

TJUA is located in Cayey on the eastern end of the central mountain range. The

radar is installed at an elevation of 851 m, and is responsible for Puerto Rico and the

U.S. Virgin Islands. Due to NWS regulations, the lowest elevation angle, a NEXRAD

will use for sampling a 0.5◦. As range is increased away from the instrument, so is the

minimum altitude that the NEXRAD will sample. The University of Puerto Rico,

Mayagüez (UPRM) campus, is located west of TJUA at a distance of approximately

100 km. Over the course of this 100 km the NEXRAD beam rises 871 m into

the atmosphere. When combined with the base elevation of TJUA, the resulting

minimum altitude of atmosphere being sampled is 1.7 km above sea level.

Sampling the atmosphere nearly 2 km above sea level can only provide an es-

timate of the ground-truth rainfall. Precipitation may be blown by wind or may

evaporate before falling to the ground, which results in unavoidable errors in rainfall

estimation introduced by the location where sampling takes place. Correctly esti-

mating ground-truth rainfall requires sampling the atmosphere close to the earth’s

surface making the mission of QPE ideally suited to the DCAS paradigm of remote

sensing. Utilizing radars with a maximum range of no more than 30 kilometers

would, assuming an elevation angle of 0.5◦, result in a minimum altitude of 261
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m at maximum range. In addition, 30 km radars could be located in the coastal

lowlands on tall buildings’ roof tops allowing the beam minimum altitude to remain

below 300 m. A total of four 30 km radars, properly located, would be required to

provide complete coverage of the island. Varying the range of radars within a sensing

network would allow the network to adapt to the requirements of the terrain, al-

lowing radar’s beam altitude to be kept below 1 km, impacting QPE measurements

and the corresponding flood forecasts. To verify this hypothesis a QPE test-bed is

being constructed in Puerto Rico. The infrastructure and technologies derived from

this QPE test-bed will be used to build the base for the Puerto Rico Full DCAS

System Testbed.

1.2 Problem Statement

Recent years have shown the utility of using many commodity computers net-

worked to form a larger system instead of a single, more expensive, larger system.

Similarly, the act of networking many inexpensive radars to cover the same area as

a single high power radar introduces new capabilities into the system, such as fault

tolerance and adaptability of the network sensing strategy, which the larger systems

are currently not capable of performing.

A parallel development in the technology landscape is grid computing [5], which

involves coordination, storage and networking of resources across dynamic and geo-

graphically dispersed organizations in a transparent way for users. The Open Grid

Services Architecture (OGSA) [6], based upon standard Internet protocol, is becom-

ing a standard platform for grid services and application development.

The integration of grid computing and radar network technologies enables the

complementary strengths of these technologies to be achieved in an integrated plat-

form. However, it poses significant computing challenges, such as the need to comply

with emerging APIs for grid and Web services, the coordination of communication,
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and the requirement of a more data-centric infrastructure focused on distributed

services.

This thesis addresses the technical problems of integrating a weather radar

network and grid computing technologies, focusing on data management issues.

1.3 Solution Approach

To perform the integration of data from the DCAS weather nodes into grid

architecture while preserving data integrity, a grid-service based system is considered

in order to access, manipulate and store radar data. The grid based system includes

a Grid Portal interface, a distributed storage system to radar data management,

and Grid services implementing data processing algorithms.

1.4 Objectives

The overall goal of the proposed research is to integrate radar network and grid

computing technologies to provide a set of grid services to manipulate and store data

from different radars, execute algorithms on different platforms in a transparent way

to end users, and provide secure access to storage systems and instruments. The

rationale of this research is that existing grid technologies will permit the fulfillment

of some of the main design goals for a DCAS system.

The specific objectives are:

1. Design and develop a grid-service based system to access and manipulate radar

data.

2. Develop and implement redundancy algorithm to enhance data management.

1.5 Contributions

The main contributions of this project can be summarized as follows:
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• The Implementation and evaluation of redundancy schemes to perform data man-

agement of radar network. This evaluation demonstrates that the Information Dis-

persal Algorithm (IDA) presents higher access reliability than typical replication

algorithm with less storage resources usage. The IDA, widely used in cryptographic

techniques to encode messages, was enhanced to operate over large type of files of

any kind, such as image, video, text and raw data.

• A grid based infrastructure which is fully functional and entirely configurable ac-

cording to the primary goals of DCAS systems. The developed system provides

transparency, security, reliability and expandable capabilities to allow users inter-

action with data and instruments.

1.6 Thesis Structure

This thesis is organized as follows: Chapter 2 presents the literature review

including grid computing concepts and Galois field theory. Operations on Galois

fields are the base for the implementation of the IDA. Chapter 3 describes the

redundancy schemes implemented and the algorithms involved, as well as how the

IDA was improved in order to allow large data files with an acceptable processing

time. Chapter 4 describes the grid implementation and radar integration, listing the

requirements and resources. Chapter 5 provides results of the experimentation, as

well as the methodology and metrics used to evaluate the replication schemes and

finally a summary of conclusions and future work are presented in chapter 6.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter provides the necessary background to understand the weather

radar technology and the nature of the acquired data from such radars. Grid com-

puting technologies used in the course of this research are also discussed, particu-

larly those related to grid computing implementations and portals. This chapter

also provides information related to Galois field operations, which are the basis of

the redundancy algorithm implementations proposed in this thesis. Finally, some

related works to this thesis are also highlighted here.

2.1 Weather Radars

Modern meteorology leans on a well-developed radar-based technology as an

effective strategy to provide warning capability for hazardous weather situations.

Weather radars have become a very popular tool in atmospheric phenomena de-

tection, tracking and forecasting, such as flash flooding, hurricanes, tornados, and

thunderstorms. Radar networks have been established throughout entire countries

in order to cover a wide area. And, to further compound the situation, information

provided by these radars is widespread through mass media, such as the internet, in

such a way that weather conditions can be verified in near real time.

6
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Doppler radar 1 is the preferred approach for detecting and predicting thun-

derstorms due to its capability to detect motion. Point-measurement systems, such

as surface weather-sensing systems, cannot rapidly measure the three-dimensional

structure of the storms [7]. Additionally, satellite system measurements are not

accurate. Doppler radar emits a burst of energy (electromagnetic pulse) which is

scattered in all directions if an object is stricken within its path and a small fraction

of that scattered energy is directed back toward the radar (See Figure 2–1).

Figure 2–1: Basic Doppler radar operation

This reflected signal is then received by the radar during its listening period.

Later, the computers will analyze the strength of the returned pulse, as well as the

time it takes to travel to the object and return, and to also analyze the phase shift

of the pulse. All this process which involves emitting a signal, listening for any

returned signal, and emitting the next signal, occurs quite quickly up to around

1300 times each second.

1 National Weather Service, ”Doppler Radar”, http://www.srh.noaa.gov/jetstream/
remote/doppler.htm
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2.1.1 Radar Measurements

Radars obtain weather information (precipitation and wind) based upon the

distance from the target (range) and energy returned. The range is calculated when

registering the elapsed time between emitted and received pulse. Since the pulse

is an electromagnetic wave, it travels at the speed of light. The target’s distance

equation is:

d =
ct

2

Weather radars register the strength of the signals returned from reflections. The

display of these signals is called reflectivity. Reflectivity can be correlated to the

intensity of the echo and return, the amount and the type of precipitation that is

falling. It can be classified as follows:

• Base Reflectivity is measured in dBZ (decibels of Z, where Z represents the

energy reflected back to the radar) and images which are available at several dif-

ferent elevation angles (tilts) of the antenna. If a base reflectivity image is from

the lowest ”tilt” angle (e.g. 0.5◦), it means that the radar’s antenna is tilted 0.5◦

above the horizon. The colors in the reflectivity image represent the reflectivity

measured expressed in decibels (see Figure 2–2). These dBZ values equate to an

approximate hourly rainfall rate as indicated in the Table 2–1.

• Composite Reflectivity is the display of maximum reflectivity from any elevation

angle at every range from the radar. The Composite Reflectivity reveals important

storm structure features and intensity trends of storms.

Relevant information also obtained from the radar, related to wind behavior is

described as follows:

• Base Velocity is the radial velocity display of the overall wind field. The motion

of the wind relative to the radar, along the path of the beam (the radial), is not

the direction of the wind, but the portion of the motion of the wind that is moving

either directly toward or away from the radar.
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Figure 2–2: Base Reflectivity from the Doppler radar in San Juan, PR.

2.2 Weather Radar Data

Data from radars generally contains Data from radars generally contain infor-

mation about reflectivity and wind velocity. This information is collected through

radar scans. This is typically done with one axis scanning and the other axis se-

quencing through a number of fixed angles. Usually, two types of scans can be

performed: PPI and RHI. In the PPI (plan position indicator), elevation is stepped

through a sequence of fixed angles while the azimuth is scanned. The RHI (range

height indicator) fixes the azimuth while the elevation angle is moving.

The information obtained from the radar data is stored in files which correspond

to each scan procedure. The files are stored with a special name related to the

radar, date and time. The file name begins with the name of the radar followed by
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Table 2–1: Reflectivity and Rainfall Rate equivalencies

dBz Rain Rate
65 16+
60 8.00
55 4.00
52 2.50
47 1.25
41 0.50
36 0.25
30 0.10
20 Trace

<20 No Rain

the year, month, day, hour, minute, and second at which the data file stored (e.g.

SJU20060124 155702).

Parameters such as range, latitude, longitude, azimuth, elevation, radar and so

on, are stored with the reflectivity information. NetCDF (network Common Data

Form) is a common format used to store data from radars. NetCDF is an interface

for array-oriented data access and a library that provides an implementation of

the interface, supporting the creation, access, and sharing of scientific data. The

following is an example of data Netcdf format:

dimensions:

Azimuth = 367 ;

Gate = 460 ;

variables:

float Azimuth(Azimuth) ;

Azimuth:Units = "Degrees" ;

float BeamWidth(Azimuth) ;

BeamWidth:Units = "Degrees" ;

float GateWidth(Azimuth) ;

GateWidth:Units = "Meters" ;
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float Reflectivity(Azimuth, Gate) ;

Reflectivity:Units = "dBZ" ;

// global attributes:

:TypeName = "Reflectivity" ;

:DataType = "RadialSet" ;

:Latitude = 32.573055267334 ;

:Longitude = -97.3030548095703 ;

:Height = 227.999999999916 ;

:Time = 799875952 ;

:FractionalTime = 0. ;

:ExpiryInterval-unit = "Minutes" ;

:ExpiryInterval-value = "15" ;

:NyquistVelocity-unit = "MetersPerSecond" ;

:NyquistVelocity-value = "53" ;

:vcp-unit = "dimensionless" ;

:vcp-value = "21" ;

:radarName-unit = "dimensionless" ;

:radarName-value = "KTLX" ;

:Elevation = 0.46875 ;

:ElevationUnits = "Degrees" ;

:MissingData = -99900. ;

:RangeFolded = -99901. ;

data:

*******Reflectivity values*********

In this example, the file above corresponds to a single elevation (sweep) of data.

Gate is referred to as the regularly spaced samples and it depends on the pulse width.
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A VCP (Volume Coverage Patterns) consists of the radar making multiple 360◦ scans

of the atmosphere, sampling a set of increasing elevation angles.

Due to the size of the files, data from a set of scans is usually grouped and

compressed in order to minimize the storage resources. However, weather radars

generate large amounts of data which imply expensive procedures for storing and

processing.

2.3 Grid Computing

The term Grid Computing was originated in the early 1990s as a metaphor for

making computer power as easy to access as an electric power Grid. Many definitions

can be found in literature on the grid concept. However, recently I. Foster [3]

summarizes them as follows: A Grid is a system that coordinates resources that are

not subject to centralized control using standard, open, general-purpose protocols

and interfaces to deliver nontrivial qualities of service.

IBM defines Grid computing as the virtualization of distributed computing

and data resources such as processing, network bandwidth and storage capacity, to

create a single system image, granting users and applications seamless access to vast

information technology capabilities2 .

As from these definitions, we can say that Grid Computing is a revolutionizing

model proposed to solve challenging computational problems (protein folding, finan-

cial modeling, earthquake simulation, weather modeling, etc.), by taking advantage

of unused resources from many networked computers, used as virtual computer ar-

chitecture. Grid computing enables the distributed execution of expensive processes

across a parallel infrastructure, performing as many computations as possible over

the grid, than on a single computer.

2 IBM Grid Computing, ”What is grid”, http://www-1.ibm.com/grid/
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Grid computing is based on an open set of standards and protocols as Open Grid

Services Architecture (OGSA), which enable communication across heterogeneous

resources (based on different platforms, hardware and software architectures as well

as computer languages) which are geographically dispersed.

2.3.1 Globus Toolkit

Many organizations have proposed and developed several new technologies that

enable an effective interaction with the grid computing infrastructure. However,

the Globus Toolkit 3 developed by the Globus alliance, has emerged as the pre-

ferred implementation tool to perform critical operations over the grid, becoming

the de facto standard. This toolkit offers software to security, information infras-

tructure, resource management, data management, communication, fault detection,

and portability. Globus toolkit is a fast growth technology, following the open source

strategy, which avoids incompatibility of resources such as data archives, computers,

and networks. The Globus Toolkit is composed from the following set of components:

Common runtime, security, data management, information services and execution

management.

2.3.2 Gridsphere Framework

Grid portals are becoming very popular platforms to provide friendly and sim-

plified interfaces to grid services and resources such as applications, data servers,

application servers, clusters, sensing instruments, and so on. Grid portals, based

on a web portal model, offer external developers, personalization and customization

features through modular, extendable and reusable software components which may

be developed independently from the purpose or the portal architecture [8]. These

3 Globus Alliance, ”Globus Tollkit”, http://www.globus.org
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modules (called portlets) are Java technology based web components, managed by

a portal container which act as an intelligent dispatcher attending process requests

and forwarding the proper response to the client through dynamic content. In ad-

dition portlets provide a presentation layer for Information (or Grid) Systems. The

GridSphere 4 portal framework is a portlet JSR (Java Standard Resource) compliant

container that allows portlet development through a set of classes and tools for web

applications. Furthermore, this framework has included a collection of core services

and portlets, providing easy environment to grid portals development. Figure 2–3

shows the portal architecture previously described.

Figure 2–3: Gridsphere Portal Architecture.

2.4 Galois Field Theory

A finite field is any set of elements (that satisfies the field axioms) with a finite

field order, also known as Galois field in honor of the French mathematician Évariste

4 Gridsphere Project, ”Gridsphere Framework”, http://www.gridsphere.org
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Galois. Galois field has many applications in number theory, algebraic geometry,

cryptography, and coding theory.

The field axioms are a set of properties and rules to validate a finite field existence.

• There is a zero element (0) such that a + 0 = a, ∀a
• There is an identity element (1) such that a · 1 = a,∀a
• There is a multiplicative inverse (a−1) such that such that a · a−1 = 1,∀a 6= 0

• There is an additive inverse (−a) such that a + (−a) = 0,∀a
Addition and multiplication operations must be obey these rules. The field axioms

can be summarized as follows:

Table 2–2: Field axioms summary

Name Addition Multiplication
Commutativity a + b = b + a a · b = b · a
Associativity (a + b) + c = a + (b + c) (a · b) · c = a · (b · c)
Distributivity a · (b + c) = a · b + a· c (a + b) · c = a · c + b · c

Identity a + 0 = a = 0 + a a · 1 = a = 1 · a
Inverses a + (−a) = 0 = (−a) + a a · a−1 = 1 = a−1 · a,∀a 6=

The finite field order is the number of elements it contains. If q > 1 is an

integer, then a finite field of order q exists if q is a prime power, otherwise it does

not exist [9].

The structure theorem states that for finite fields [10] of a given order, there

is exactly one (it is unique up to isomorphism) finite field of size q for each prime

power number q. A Galois field with q elements often has many representations,

however, it is traditionally denoted GF (q) or Fq. Generally in a GF (q), the term

a = b is equivalent to a ≡ b(modq).

Thus, if there is a GF (16) = GF (24) of order 16, then every field with 16 elements

is isomorphic to this field. Note that, a GF (12) with 12 elements does not exist

because 12 is not a prime power.
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2.4.1 Classification of Galois Fields

The field theory establishes that a GF must exist for any prime power. Nonethe-

less, in practical applications such as cryptography only two kinds of field are widely

used:

• The field GF (p) is called a prime finite field of order p, if and only if p is a prime.

The GF (p) field is commonly represented as the set Zp = 0, 1, 2, 3, . . . , p− 1 of

integers modulo p.

• The field GF (2n) is called a binary field, when q = 2n for any positive integer n

(also known as the degree of the field). The GF (2n) consists of the 2n possible bit

strings of length n

In a binary field, when n = 1 we obtain the simplest field GF (2), which consists of

the set 0, 1 of integers modulo 2. The following addition and multiplication tables

(Figure 2–4) must be satisfied as well:

Figure 2–4: Addition an multiplication tables in GF (2).

2.4.2 Polynomial over Galois Fields

When n > 1, the finite field GF (qn) can be internally represented as polynomial

rings to which coefficients belong to GF (q) [9]. Arithmetic operations over GF (q)

(see Section 3.3) are defined as the same as in polynomial arithmetic except that the

operations on the coefficients are performed in GF (q). A polynomial over GF (p)

is usually known as polynomial modulo p. Multiplication and addition operations



17

are performed the same as for polynomials with integer coefficients, but the result

coefficients are reduced modulo p.

2.4.3 Primitive Polynomials

Subfield and extension field concepts must be defined before discussing primitive

polynomials. A subfield is a subset S of elements from a field F which satisfies the

field axioms with the same operations of F . If a field F is a subfield of the field K,

then K is an extension field (or extension, denoted K/F ) of field F (i.e the complex

numbers are an extension of the real numbers).

All elements of an extension field are generated from a field base, by a primitive

polynomial. Furthermore, a polynomial over GF (q) is reducible if it is the result of

product of two smaller degree polynomial over GF (q), thus, a polynomial is non-

reducible, if and only if, it cannot be factored into a product of polynomials of a

lower degree.

A polynomial over GF (q) (excluding the zero polynomial, which has an indeter-

minate degree) has a unique representation as the product of powers of irreducible

polynomials; hence a non-reducible polynomial of degree n over GF (q) must exist

for any prime or prime power q and any positive integer n.

For example, the field GF (23) can be represented as polynomials with degrees

less than 3, through a non-reducible polynomial. There are only two primitive

polynomials of degree 3, over GF (23); these are P (x) = x3 + x + 1 and P (x) =

x3 + x2 + 1.Using the modulus x3 + x2 + 1, the elements of GF (8) can be written

as the set 0, 1, x, x2, x + 1, x2 + x, x2 + x + 1, x2 + 1, Table 2–3, shows the described

example:

Note that, in general, GF (2n) is an extension field of degree n of GF (2), where GF (2)

is called the base field of GF (2n), this implies that addition and multiplication tables

are essentially the same, hence xm ± xm = −xm ±−xm = 0,m = 0, 1, 2, . . . , n− 1.
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Table 2–3: Polynomial representation of GF (23)

Elements & Polynomial representation
P (x) = x3 + x2 + 1

Binary
representation

0modP (x) ≡ 0 000
x0modP (x) ≡ x0 = 1 001

x1modP (x) ≡ x 010
x2modP (x) ≡ x2 100

x3modP (x) ≡ −x2 − 1 = x2 + 1 101
x4modP (x) ≡ −x3−x = x3 +x = (x2 +1)+x = x2 +x+1 111
x5modP (x) ≡ −x4−x2 = x4+x2 = (x2+x+1)+x2 = x+1 011
x6modP (x) ≡ −x5−x3 = x5+x3 = (x+1)+(x2+1) = x2+x 110
x7 ≡ x ·x6 = x · (x2 +x) = x3 +x2 = (x2 +1)+x2 = x0 = 1 –

2.5 Related Works

Current research efforts are being used to develop dynamically adaptive sys-

tems for analyzing and predicting the atmospheric conditions. Weather conditions

often occur suddenly and evolve rapidly in such a way that an adaptive observa-

tion is necessary to perform accurate weather forecasting. Several research projects

are focused on achieving this goal, in fact, multidisciplinary teams across multiple

institutions are involved in this process. Researchers, students and technical staff

from different areas such as meteorology, computer science, social science and other

educational areas focus more attention of their work study efforts in this area to

help mitigate the weather condition impacts through the analysis of current meteo-

rological information. Thus, As a result of this growing interest in this area, weather

forecasting is becoming one of the most important applications in computer science.

An as such, Grid computing technologies are being considered as a promising so-

lution in performing the most complex tasks involved in such a scientific challenge

at this one. Grid technologies enable the virtualization of distributed hardware and

software resources in such a way that the users and applications can take advantage

of the available resources in a simple and transparent manner.
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2.5.1 LEAD

Linked Environments for Atmospheric Discovery (LEAD) [11], is a Large In-

formation Technology Research (ITR) Grant funded by the US National Science

Foundation (NSF). LEAD is an IT framework for identifying, accessing, assimi-

lating, forecasting, managing, analyzing, mining and visualizing a broad array of

meteorological data and model output independent of format and physical location.

LEAD is currently led by nine institutions and more than 100 scientists, students

and different members from meteorology, computer science, social science and edu-

cational areas. The LEAD system is dynamically adaptable in terms of time, space,

forecasting and processing:

Adaptation in time and space : Since weather events can appear and evolve

fast, quick update to perform an accurate prediction is extremely important. Up-

dating implies the running of successive forecasts more frequently than usual, in

such a way that a prediction model can be adapted according to the evolution of

the event. Beside this, models can also be adapted using nested grids. However, in

this approach, large regions can be analyzed and then be divided into small regions

in order to perform more detailed scans. LEAD automatically provides generation

of nested domains in a grid context according to the available resources.

Ensemble Forecasting : Ensemble forecasting is a popular methodology in which

several forecasts are generated, instead of just one. Forecasts are produced from dif-

ferent initial conditions, models different from each other, the same model started

at distinct initiation times or when using different physic options within the same

model or when using multiple models. Since ensemble forecasting requires high com-

putational resources which are not desirable in all cases. In summary, LEAD offers

an intelligent and automated adaptation.

Forecast Processing : Current tools used to perform forecasting and weather
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events simulation consist of complex pieces of software. This type of software is gen-

erally developed over long periods of time by expert programmers. In addition, these

programs generally must be configured using many variables, as well as managing

different formats and data types. Thus, portability across computing platforms is

limited, not scalable and very complex to deal with. One of the most important

goals of LEAD is in helping to overcome these limitations by offering simple inter-

action method for the user when using the weather tools. The system capabilities

of LEAD include; a complex array of services; applications; interfaces; and local

and remote resources which are available to users to perform studies of mesoscale

weather as it evolves. LEAD provides several foundational tools composed of a web

portal (the primary user entry point), the ARPS Data Assimilation System (ADAS),

a flexible metadata catalog service (myLEAD), the Weather Research and Forecast

(WRF) and other important tools. LEAD is considered as a workflow orchestration

for on-demand, real time, dynamically adaptive system (WOORDS).

The LEAD system consists of the following principal components:

User subsystem : Composed of the LEAD portal: it is the principal access point

to LEAD technologies.

Data subsystem : Management of data and metadata, numerical model outputs

and user generated information.

Tools subsystem : Composed of all meteorological and IT tools.

Orchestration subsystem : Permits users the management of data flows and

model execution streams and permits them to create and mine output. It also

provides a connection between the software and the processes for continuous or on-

demand applications.

LEAD Grid : Consists of all distributed computing systems over six of the nine

institutions involved in the project.
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The LEAD system can be catalogued as a Service Oriented Architecture (SOA).

SOAs are widely deployed in the commercial enterprise sector and they are the foun-

dation for many scientific grid technologies. The LEAD SOA includes technologies

and tools, such as, Globus toolkit, Unidata’s Local Manager (LDM), Open-Source

Project for a Network Data Access Protocol (OpenDap) and the OGSA Data Access

and Integration (OGSA-DAI) service.

The LEAD portal is based on the NSF National Middleware Initiative Open

Grid Computing Environment Portal toolkit (OGCE). This portal allows users au-

thentication through proxy identity certificates, based on the Globus GSI model.

Once user identity is verified, the LEAD grid, its services and resources will be

made available for its users.

2.5.2 DCAS Network

Sensing of the atmosphere today, entails the uses of long range and high power

radars in order to study meteorological phenomena. However, due to the earth’s

curvature, radars are limited to the observation of only approximately 72% of the

troposphere below 1 Km, as shown in Figure 2–5. The meteorological conditions in

the lower troposphere are under sampled. The observations of the lower atmosphere

are important in estimating rainfall, as well as in the forecasting of flash floods.

The Research Center CASA 5 is operating to overcome the negative effects

of the Earth’s curvature and natures obstructions, such as, mountains and man-

made physical obstacles like, buildings by employing low-cost networks of Doppler

radars that operate at short range. In this manner, appearance and evolution of

atmospheric phenomena at the lower atmosphere can be observed by the previously-

mentioned systems. Rather than relying on a single radar to provide long range

5 Gridsphere Project, http://www.casa.umass.edu



22

Figure 2–5: Current state of atmosphere sampling

(hundreds of kilometers) coverage, DCAS proposes to mosaic (see Figure 2–6) the

output of lower power shorter range (tens of kilometers) radars [DPR]. This new

approach is called DCAS, Distributed Collaborative Adaptive Sensing.

DCAS aims to radically change the radar paradigm, integrating remote sensing

with multiple technologies, such as microwave engineering, electronics engineering,

computer science and/or networking. DCAS network instruments can be located

on building tops, communication towers and any suitable existing structure. These

small radars are communicate between them, and rapidly can be easily adapted to

their sensing mode in order to perform accurate tracking of weather changes.

Figure 2–6: DCAS Network in Puerto Rico’s western region.
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Since the radars’ range is reduced, the power peak required for operation is also

reduced. Such reduction enables the usage of solid-state power amplifiers into the

transmitter system. Additionally the radar frequency can be shifted from a lesser

attenuated S-Band to a higher frequency such as X-Band. This change of frequency

allows the reduction of the overall size of the radar antenna, while maintaining the

same beamwidth. All these modifications lead to smaller, cheaper radars with low-

power, which can be fed with batteries instead the connection to the local power

grid (”off the grid” concept).

One of the most important features of the DCAS systems is the end-user in-

teraction. The radars operate collaboratively within a dynamic IT infrastructure,

adapting to changing atmospheric conditions in a manner that meets competing end

user needs. These features introduce a dramatic change from current technologies.

2.5.3 Distributed Data Storage

Distributed data storage is a technique widely used for storing single data sets

across multiple nodes from an organized architecture, such as, in cluster or grid form.

Distributed data storage systems involve several techniques for the quick storage,

search and retrieval of the more commonly used large sets of files. These systems

aim to preserve the information, guaranteeing the availability of the data in event of

a failure which could be caused by an application, a service, a single node, multiple

nodes and/or even in case of the fault of the user.

Most of these systems improve availability by providing full replication. How-

ever, a few systems employ erasure-resilient correction codes require less space. A

possible alternative to these approach systems is the redundancy schemes known as

threshold schemes or information dispersal protocols. In these schemes, data sets are

encoded, replicated and divided into multiple pieces of data which can be stored in
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multiple nodes. Furthermore, a data set can only be retrieved if there are a defined

number of pieces available.

Some examples of distributed data storage systems, including the previously men-

tioned features, are:

• PASIS : Perpetually Available and Secure Information System [12] is a framework

for demonstrating perpetually available information systems that guarantee the

confidentiality, integrity, and availability of stored data even when some storage

nodes fail to function correctly or when they are not available for use. PASIS is

sponsored by the US Air Force and is led by the Carnegie Mellon University. The

PASIS objective is creating survivable storage systems that are perpetually available

(information availability in presence of failures), perpetually secure (integrity and

confidentiality should always be enforced), and graceful in degradation (information

access and performance should degrade gracefully, as system components fail). In

the PASIS project many different techniques for encoding and distribution are

experimented. Based on such tests, several models of performance, security, and

availability of stored data, are proposed. These models enable to perform an

engineering analysis and identify the encoding and distribution schemes which

best meet the overall requirements for a particular storage system.

• Free Haven : The Free Heaven 6 project aims to deploy a system for distributed,

anonymous, persistent data storage which is robust, against attempts by powerful

adversaries to find and destroy the stored data. This project began in 1999 and is

being lead by several MIT students. It is oriented towards storing different kinds

of documents while preserving the anonymity of the publisher, the readers and the

storage servers. The main research goals of the project are anonymity accountabil-

ity (without sacrificing anonymity), persistence (only the publisher determines the

6 Free Haven Project, http://www.freehaven.net/”
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document lifetime), and flexibility (the system continues to operate as peers dy-

namically join or leave). The system is based on a group of interconnected servers

in which each server hosts data from another server instead of saving its own data

in other servers. In this approach, a document is divided into shares, where a

subset (any k of n) is sufficient to recovery of the document, and where each share

negotiates for a server to publish that share onto the group of servers.

• Ocean Store : OceanStore [13] is a global persistent data store designed to scale

for billions of users. It provides a consistent, highly-available, and durable storage

utility atop an infrastructure comprised of un-trusted servers. This project is led

by John Kubiatowicz from the Computer Science Division at the University of

California at Berkeley. Using this system, the unit of storage is the data object and

all client data in the network is replicated and encrypted so that the hosting server

cannot read the data object. To improve availability, each data object is divided

into n fragments and recoded into kn fragments, and is further spread across many

servers. Data size is increased by the factor of k, however, the original data can

be reconstructed from any n fragments.

• GFS : The Google File System is the distributed file system designed which sup-

ports large distributed data-intensive applications. GFS is widely deployed within

Google as the storage platform and it can be extensive for research and develop-

ment efforts that require large data sets. GFS provides high availability using two

simple, yet effective strategies; fast recovery; and replication. The entire system

is based on many clusters which are composed of a single master and multiple

chunkservers. Files are divided into fixed-size chunks, which are identified by an

unalterable and globally unique 64 bit chunk handle. Each chunk is stored as a

plain Linux file on a chunkserver and in order to improve reliability; each chunk
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is replicated on multiple chunkservers. The master maintains all file system meta-

data and clients interaction with the master for metadata operations. A technical

paper with detailed information about GFS is presented in [14].



CHAPTER 3

RADAR DATA AVAILABILITY AND

RELIABILITY

Implementation of redundancy schemes is a common strategy to enhance reli-

ability in data storage [12]. Two different redundancy strategies have been imple-

mented and analyzed: A simple replication scheme [15] and the Information Disper-

sal Algorithm (IDA) [16]. This chapter describes the details of the implementation

of such redundancy strategies.

3.1 Replication Algorithm

The initial approach in order to provide reliability is known as splitting or

striping technique [17][18]. Thereafter, the replication technique was added to over-

come its limitations [19]. In the replication method, a file F is striped into m

blocks of size |F |/m, where |F | is the size of the original file. Blocks are labeled as

{B1, B2, B3, . . . , Bm}. Each block Bi(1 ≤ i ≤ m) is replicated r times in such a way

that the total number of blocks is n = m× r and the storage spending is r×|F |. To

recover the original file, m blocks are required. However, in this procedure the label

of the block must be taken into consideration. Thus, the redundancy (r − 1)%, is

only effective if at least one block Bi exists. If all blocks with label i are damaged,

corrupt or unavailable, the original file will not be recovered.

Assuming that blocks have independent probability of failure p, the recovery prob-

ability, also referred as access reliability, is determined by:

27
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p(a) =
m∏

k=1

pk(a) (3.1)

Where pk(a) is the recovery probability for each blocks subset of r replicas with

label i {Bi1, Bi2, Bi3, . . . , Bir} and can be represented as

pk(a) =
r−1∑
i=0

(
r

i

)
pi(1− p)r−i (3.2)

The replication algorithm is implemented as follows:

1. Divide the file size |F | into m, in such a way that each block will be |F |/m bytes.

Let rd be the residue of the division operation. If rd > 0 then the last block

will have rd extra bytes. Thus, padding is not necessary to make |F | divisible by

m. This feature inserts at least one block with a higher size, but if m is small in

comparison with |F |, this effect is not significant.

2. Assign an ID label for each block and write them as separate files. The two first

bytes in each file correspond to the label Bi, in such a way that, up to 216 blocks

can be permitted.

3. Write the labeled block r times in order to reach n = m× r blocks in total.

4. After the labeled files are ready, they must be distributed in n nodes or according

to the established data distribution strategy. The complete path of these files will

be registered in a log file.

5. In order to recover the file F, the existence of at least m blocks must be verified.

When a file is found using the log file with the complete path, the two first bytes

are read to identify the block label. If none of the blocks labeled as Bi is labeled,

the recovery operation is not possible; otherwise, the first block Bi found is taken.

The whole original file is recovered putting together these files in an organized

manner.
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Figure 3–1: Replication example with m = 4 and r = 3

Figure 3–1 illustartes an example with four blocks an three replicas per block.

In this case p(a) ≈ 0.77 with a 200% redundancy, and p = 0.4.

3.2 Information Dispersal Algorithm

The information dispersal algorithm (IDA) was proposed as a fault-tolerance

technique to be used in secure and reliable storage systems. In the basic approach,

a file F is striped into n blocks of size |F |/m, where |F | is the size of the file and

m is the number of blocks required to recover the file F . A set of secret keys are

used to disperse the file, providing confidentiality to the information. Since m ≤ n,

the redundancy level given by (n/m − 1)%, can be selected to be smaller than the
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replication technique. The storage spending is |F | × (n/m). An important feature

of this technique is that any m blocks will reconstruct the file and, as a result, labels

will not be necessary for each block. Additionally, IDA tolerates up to r failures,

where r = n−m. Hence, IDA guarantees a higher availability.

When blocks have independent probability of failure p, the access reliability, is

determined by:

p(a) =
n−m∑
i=0

(
n

i

)
pi(1− p)n−i (3.3)

Let F= b1, b2, b3,. . . be a file, where bi is an integer taken from a certain range

[0 . . . (2B − 1)]. If bi is two bytes long, as in the actual implementation, then

0 ≤ bi ≤ 65535. Let q be a prime number greater than bi. Each bi is an ele-

ment of the finite field Zq where all arithmetic operations are done in mod q. Since

q > (2B − 1), this implies an excess of one bit per byte when integers greater than

(2B − 1) are obtained, this requires a storage space increment. In order to avoid the

waste of space, all bi values are represented as polynomials with binary coefficients

(bBxB + bB−1x
B−1 + . . .+ b1x+ b0) and use a larger degree non-reducible polynomial

p(x) instead of the prime q [20]. The polynomial must suffice (p(x) ∈ Z2[x]) in such

a way that all operations can be done in the finite field E = GF (2B). GF refers to

the ”Galois Field”.

In order to disperse F , a set of n vectors a1, a2, a3, . . . , an ∈ E must be chosen,

each of length m, such that every subset of m different vectors is linearly indepen-

dent. These vectors are the keys that will be used to disperse every block of the

file. Let An×m be a matrix whose ith row is ai. The file is divided into sequences

of length m (b1, b2, b3, . . . , bm) and the dispersal operation is achieved mapping each

sequence bj into a new sequence of n elements using An×m.
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An×m ·




b1

...

bm




=




c1

...

cn




Each resulting element ci is stored in a separate block of file.

In order to reconstruct the file, m blocks are required (s1, s2, s3, . . . , sm) and the

recovery operation is performed as follows: let Bm×m be a matrix whose rows are

(as1, as2, as3, . . . , asm)T . To recover the first m elements of F , the first element from

each different block is needed. The whole file is obtained mapping sequences of m

elements from each block into sequences of m elements using the inverse of Bm×m.

B−1
m×m ·




c1

...

cm




=




b1

...

bm




Note that the inverse of the Bm×m matrix is guaranteed since the rows of matrix

A are mutually independent, which implies that any submatrix (in this case Bm×m)

is not singular and thus invertible by deleting n−m rows of An×m.

An An×m matrix (n = m + r) with the properties above mentioned is the

Vandermonde matrix. Let the rows of the Vandermonde matrix be indexed from 0

to n− 1. The ith row of this matrix is defined as:

i0, i1, i2, i3, . . . , im−1

By definition, this matrix has the property that any submatrix formed by delet-

ing r rows of An×m, is invertible. Additionally, any matrix derived from this matrix

by a sequence of elementary matrix transformations, will maintain this property

[21].
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Finally, a non-reducible polynomial must be chosen, for the current implemen-

tation, the polynomial p(x) of degree B over GF (2B), when B = 16 is

p(x) = x16 + x12 + x3 + x + 1

The implementation of the IDA involves several operations over finite fields. In

this case over GF (216). IDA is implemented as follows:

1. Create the dispersal matrix Am×m which must obey the properties described above.

2. Divide the file F into sequences of m elements, where each element is 2 bytes of

length. Note that |F | must be divisible by m, therefore, padding must be added.

In order to disperse the file, each sequence is multiplied by the matrix A to obtain

the new sequences. The first block will have the 1st element from the each new

sequence. The second block will have the 2nd element from that sequence and so

forth.

3. A unique tag for each block must be established before these are written as separate

files. This tag correspond to the ith row of matrix A. This tag is necessary to choose

the correct B matrix recovery.

4. After the tagged files are ready, they must be distributed in n nodes or according to

the established data distribution strategy. The two first bytes of each file are used

to identify the correspondent row. Thus a maximum of 216 blocks are permitted.

The complete path of these files will be registered in a log file.

5. In order to recover the file F , the existence of at least m blocks must be verified;

this condition is necessary and will suffice in achieving the recovery operation.

The two first bytes of each file are read to identify the row of the matrix A. The

algorithm chooses the first m files and creates the recovery matrix B with the rows

which were found. Then, the inverse of the B matrix is calculated.

6. Reconstruct the first sequence of m elements from the original file multiplying the

matrix B−1 by the sequence formed by all the first elements from each file found.
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Similarly, the second sequence from the original file is obtained, thus transforming

the sequence containing all of the second elements from each file and so forth.

7. Finally, padding must be removed, if necessary, to obtain the original size of the

file

Figure 3–2: Replication example with n = 12 and m = 4

Figure 3–2 shows an example of the IDA behavior when n = 12 and m = 4. In

this case, p = 0.4 and p(a) ≈ 0.98, which has a better result than the reliability of

the replication algorithm, with the same redundancy of (200%).
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3.3 Implementation of Galois Fields Arithmetic

Arithmetic operations in finite fields are very different from classic arithmetic.

Since a Galois field has a finite number of elements, the result of operations such

as addition (+), subtraction, multiplication (·) and division (except by zero), must

be remaining within the field. As mentioned is section 2.4 a finite field must satisfy

properties and rules of the field axioms.

3.3.1 Addition and Subtraction

In a finite field GF (2m), addition and subtraction operations are very simple;

they are identical and can be calculated using the logical XOR operation.

Example:

Polynomial Binary
f(x) = x3 + x + 1 f = 1011

g(x) = x2 + 1 g = 101
f(x) + g(x) = x3 + x2 + x f(x)⊕ g(x) = 1110

f(x) = x3 + x + 1 f = 1011
g(x) = x3 + x2 g = 1100

f(x) + g(x) = x2 + x + 1 f(x)⊕ g(x) = 0111

Note that under traditional addition operations, the first equation outcome

must be x3 + x2 + x + 2, but the x0 coefficient becomes 0 and is dropped when the

answer is modulo 2 reduced.

Since addition and subtraction can be performed using the exclusive OR opera-

tion, their implementation is reduced to the execution of the bitwise XOR operation

between the binary representations of the polynomials.

/* Addition of two numbers in a GF(2^16)*/

word gfaddition(word a, word b){
return a^b;

}
/* Subtraction of two numbers in a GF(2^16)*/
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word gfsubtraction(word a, word b){
return a^b;

}

Note: word is a 16-bits user defined type and is equivalent to unsigned short one.

3.3.2 Multiplication

The multiplication operation is more complex that of the addition in a GF (2m).

Since the result of this multiplication must remain within the field, the operation

must be calculated as a modular multiplication. Thus, it is executed in modulo

primitive polynomial form, which is then used to define the finite field.

Modular multiplication is the most critical operation which affects the efficiency

of the algorithms. In this document, two techniques to implement modular multipli-

cation are discussed: the Rijndael’s algorithm [22] and the logarithm look-up-tables.

Rijndael’s Algorithm

Rijndael’s Algorithm has been selected by the U.S. National Institute of Stan-

dards and Technology (NIST) as the candidate encryption system for the Advanced

Encryption Standard (AES). In the description of the Rijndael block cipher, a tech-

nique to perform the multiplication procedure in Galois Fields is encountered. Ri-

jndael uses a characteristic two finite field, also known as Rijndael’s Galois field

GF (28), defined by the primitive polynomial x8 + x4 + x3 + x + 1. The procedure

for the multiplication in the GF is as follows:

• Take any two elements from the field, a and b, and define a product p.

• Set the product to 0.

• Make a copy of a and b.

• Run the following loop eight times:
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1. If the low bit of b is set, execute the xor operation between the product p

and a.

2. Assure that the MSB of a is set to 1 (one) or to 0 (zero).

3. Rotate a, one bit to the left, discarding the high bit, and set the low bit value

to zero.

4. If the MSB of a is 1 (one) prior to this rotation, execute the xor operation

between a and the hexadecimal number 0x1b.

5. Rotate b, one bit to the right, discarding the low bit, and making the MSB

has a value of 0.

• The product p now contains the product of a and b.

Note: MSB represents the most significant bit, defined as the eighth bit from left to

right.

The method described above assumes operations in Galois Fields with 28 ele-

ments and it has a defined primitive polynomial. In the current project, the selected

polynomial generator is set to x8 +x4 +x3 +x2 +1 whose equivalent value is binary

1000101101 or decimal 285. This polynomial is also a non-reducible polynomial

order 255 over GF (28). In order to scale this procedure to GF (216) with a different

primitive polynomial, some modifications are required. The Rijndael’s Algorithm

(also known as AES) is a bit more complicated than addition and involves several

operations. The procedure can be performed using the following code:

/* Multiplication of two numbers in GF(2^8) defined by the polynomial

x^8 + x^4 + x^3 + x + 1 */

byte gfmultiply(byte a, byte b) {
byte p = 0;

byte counter;

byte hibit set;

for(counter = 0; counter < 8; counter++) {
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if((b & 1) == 1)

p ^= a;

hibit set = (a & 0x80);

a <<= 1;

if(hibit set == 0x80)

a ^= 0x1b; /* x^8 + x^4 + x^3 + x + 1 */

b >>= 1;

}
return p;

}

Multiplication using the Look-up Table Approach

Operations such as multiplication, division, exponentiation and inversion can

be accelerated using the look-up table approach [23] [24].

Table look-ups are based on the idea of computed logarithm and inverse log-

arithm tables in the finite field GF (2n). These logarithm functions are described

in their discrete sense. We denote this function as "gflog" and "gfantilog", re-

spectively. This implementation is based of the fact that the inverse logarithm of

an integer k is equal to the inverse logarithm of (kmod(2n − 1)). Since all non-zero

elements of GF (2n) can be represented as the power of a primitive element w, the

gflog function is defined as follows:

k = gflog(wk), wk ∈ GF (2n), k ∈ {1, 2, . . . , 2n − 1}
Similarly the gfantilog function can be defined as:

wk = gfantilog(k) = gfantilog(gflog(wk)), wk ∈ GF (2n), k ∈ {1, 2, . . . , 2n−
1}

Thus, the product of any two elements of GF (2n) can be reduced to a traditional

addition operation and three table look-ups:

w1 ∗ w2 = gfantilog(gflog(w1) + gflog(w2))mod(2
n − 1), w1, w2 ∈ GF (2n)
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To perform the modular multiplication, the appropriate integer values for gflog

and gfantilog tables must be present. These tables for both 8 and 16 bits, can be

generated using the following routines:

/* This routines generate the the logarithm and antilogarithm tables

for GF(2^8) and GF(2^16) */

#define PPoly8 0435 /* Octal Notation for X^8+X^4+X^3+X^2+1 */

#define GFs8 256 /* Define this GF size */

#define PPoly16 0210013 /* Octal Notation for X^16+X^12+X^3+X+1 */

#define GFs16 65536 /* Define this GF size */

static byte GFlog8[GFs8], GFantilog8[GFs8]; /* 8 bits arrays*/

static word GFlog16[GFs16], GFantilog16[GFs16]; /* 16 bits arrays*/

void logtables 8(){
int i,b;

for (i = 0; i < GFs8; i++) {
GFlog8[i] = GFs8-1; /* Fill array with 255 */

GFantilog8[i] = 0; /* Fill array with 0 */

}
b=1;

for (i = 0; i < (GFs8 - 1); i++) {
GFlog8[b] = j;

GFantilog8[j] = b;

b = b << 1;

if (b & GFs8)

b = (b ^ PPoly8) & (GFs8 - 1);

}
}
void logtables 16(){
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/* identical to logtables 8 function;

appropriate variables must be replaced */

}
These routines can be executed at the beginning of the process so they can used

to perform the required GF operations. However, in practical experimentations,

quick computing of the arithmetic operations is achieved using pre-computed tables

instead of dynamically generate ones. Furthermore, In order to store the log arrays,

the memory requirement is approximately 512 bytes for n = 8 and 256 Kbytes when

n = 16. Thus, with a moderated memory usage the product of the two elements in

a GF , can be performed in a quick manner, and with a more consistent speed.

Once the log tables are obtained, the procedure to multiply two numbers is

performed as follows:

/* Multiplication of two numbers in a GF(2^16) defined by

the primitive polynomial X^16+X^12+X^3+X+1 */

word gfmultiply(word a, word b){
unsigned int sum;

word c;

if (a == 0 || b == 0) {
c = 0;

}
else {

sum = (word) (GFlog16[a] + GFlog16[b]);

if (sum >= GFs16-1) /* Performs the mod operation */

sum -= GFs16-1;

c = GFantilog16[sum];

}
return c;
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}

3.3.3 Division

Like the multiplication process, the division operation is performed following

the look-up table approach. The result from dividing any two numbers of a GF (2n)

is obtained by an integer subtraction, instead of addition in the same multiplication

procedure.

The modular division can be implemented as follows:

/* Division procedure in a GF(2^16) defined by the prime

polynomial X^16+X^12+X^3+X+1 */

word gfdivide(word a, word b){
unsigned int sum;

word c;

if (a == 0 || b == 0) {
c = 0;

}
else {

sum = (word) (GFlog16[a] - GFlog16[b]);

if (sum >= GFs16-1) /* Performs the mod operation */

sum -= GFs16-1;

c = GFantilog16[sum];

}
return c;

}
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3.3.4 Multiplicative Inverse

Multiplicative inverse operation plays an important role in cryptography and is

often referred to as the reciprocal. Every number except zero (0) has a reciprocal.

The reciprocal of a number a ∈ GF (2n) can be calculated using the log and antilog

tables technique. The next procedure can be followed in order to find the reciprocal

a−1:

• Look up the GFlog of a.

• Subtract the value of a from 255.

• Look up the GFantilog of the previous result.

The multiplicative inverse can be implemented as follows:

/* Reciprocal for any number in a GF(2^16) */

word gfmulinv(word number) {
if (number == 0) /* 0 has not reciprocal and it is self inverting*/

return 0;

else

return GFantilog16[255 - GFlog16[number]];

}

3.4 Improving Computation Time

As previously discussed in section 3.3, multiplication is the most critical opera-

tion over GF , which can be accelerated using look-up tables. Therefore, the routine

for implementing modular multiplication can be modified using different techniques.

The modifications must be focused towards the memory management and the length

of the string. These techniques are listed and described as follows:

1. Memory Allocation (MMA): In this technique, the entire data file is copied

into the memory, using a single system call to allocate memory. The manipulation
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of the data is performed as if the data were local variables.

Advantage : bit string readings are preformed quite fast.

Disadvantage : the block of allocated memory must be as large as the size of the

file.

2. Memory Mapping (MAP): In this technique, the data file is mapped (i.e. not

copied) into the memory. MM creates a one-to-one correspondence between data in

the file and data in the mapped memory region [25]. Additionally, MM eliminates

buffering in order to save memory space.

Advantage : bit string readings are preformed quite fast.

Disadvantage : memory maps can only be performed in UNIX based systems

which affects the code portability across platforms.

3. File-Read Loop (FRL): In this technique, the bit strings of the file are read

using a file-read loop instead of copying or mapping the data into the memory.

Thus, the block of allocated memory is as large as the length of the bit string.

Advantage : memory resources can be used to perform other processes in the

server.

Disadvantage : bytes of the file are read in an iterative way, which implies many

system calls.

These techniques were implemented using both, bit strings of 8 and 16 bits of length.

This parameter is important because it determines the length of the vectors that

are operated by the dispersion matrix (see section 3.2).



CHAPTER 4

GRID IMPLEMENTATION AND RADAR

INTEGRATION

This chapter presents a detailed description of the Grid-service based system

implementation and how radar network is integrated with the grid resources and ser-

vices. We provide an overview of the available infrastructure as well as a description

of the portlets and services developed.

4.1 Grid Infrastructure

The PDCLab Grid Testbed, deployed at the University of Puerto Rico-Mayaguez,

is an experimental grid designed to address research issues, such as the effective in-

tegration of sensor and radar networks into grid infrastructures. The PDClab grid

test-bed components run CentOS 4.2 and the Globus Toolkit 4.0.1. The Globus

Toolkit 4.0.1 includes, among other components, services, such as a security infras-

tructure (GSI), data transport service (GridFTP), execution services (GRAM), and

Information services (MDS).

• The Grid Security Infrastructure is used by the Globus Toolkit for authentica-

tion and secure communication. GSI is implemented using public key encryption,

X.509 certificates, and the secure sockets layer (SSL) communication protocol and

incorporates single sign-on and delegation.

• The Monitoring and Discovery Service (MDS) is used to discover, publish and

access both static and dynamic information from different resources in a compu-

tational grid. MDS uses the Lightweight Directory Access Protocol (LDAP) to

43
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access such information on the different grid components and provides a unified

view of the disparate grid resources.

• The Globus Resource Allocation Manager (GRAM) is used for allocation and man-

agement of resources on the computational grid using a Resource Specification

Language (RSL) to request resources. GRAM also updates the MDS with infor-

mation as to the availability of grid resources. The GRAM API can be used to

submit a job, query the status of a job, and cancel a job. A GRAM service runs

on each resource that is part of the grid and that is responsible for interfacing with

the local site resource management system (e.g. OpenPBS, Condor).

• GridFTP is a secure, high-performance and robust data transfer mechanism used

to access remote data. In addition to GridFTP, Globus provides Globus Replica

Catalog to maintain a catalog of dataset replicas so that, instead of duplicating

large datasets, only necessary pieces of the datasets are stored on local hosts. The

Globus Replica Management software provides the replica management capabilities

for data grid by integrating the replica catalog and GridFTP.

The computational resources available on the Grid testbed include:

• An IBM xSeries Linux cluster with 64 nodes, dual-processor at 1.2GHz, 53GB of

memory and 1TB of storage.

• Eight (8) IA-64 Itanium servers, dual processor at 900 MHz, each with 8GB of

memory and 140GB of SCSI Ultra 320 storage.

• Two (2) IA-32 Pentium IV servers, dual processor at 3 GHz, each with 1GB of

memory and 120GB of ATA-100 storage.

• One (1) IA-32 Pentium III server, dual processor at 1.2 GHz with 2GB of memory

and 40Gb of SCSI Ultra 160 storage.

• One (1) IA-32 Xeon server, dual processor at 2.8 GHz, L2 Cache 1MB with 1GB

of memory and one 230 GB RAID of storage (STB Server).
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4.2 Grid-Service Based System Architecture

The grid-service based system which is used is composed of several compo-

nents, such as data replication algorithms, data transportation protocols, and web

components that must interact into the grid computing environment. In turn, the

components of the system involve a variety of elements, including C routines, Java

classes, scripts, descriptors and grid tools. Thus, an adequate configuration and syn-

chronized operation of those components are required to enable a capable structure

that supports the processes of the implemented applications. We can group these

elements in four principal modules: The distributed storage system; the Grid portal

interface; the Grid connection interface; and the Services for end-users.

Figure 4–1: Proposed Grid-service based system

Figure 4–1 shows an overview of the Grid-Service based system structure. Raw

data from radars are sent to a data server via wireless communication. GridFTP is
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used to improve data transport from the data server to the PDCLab Grid Testbed.

And data exchange between server and Grid testbed is authenticated using Grid

Security Infrastructure (GSI).

Figure 4–2 shows the integration of the Mayaguez node with the grid testbed. In-

terconnections and the interfaces which can be identified.

Figure 4–2: Mayaguez Radar Integration

4.3 Distributed Storage System

One of the main goals of the DCAS system is the radar data availability, mean-

ing that an end-users may interact with the network by receiving and requesting

meteorological data, where and when they require it. In order to achieve this goal,

a distributed storage system was developed which is composed of a replication algo-

rithm (previously discussed in chapter 3) to provide access reliability, and grid tools

to improve data distribution into the grid.

As mentioned before, weather radars generate large amounts of data which

imply expensive procedures for storing and processing. As an example, we can
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consider the magnetron-based radar, located at the top of the Stefani building at the

University of Puerto Rico - Mayaguez, the approximated data rate can be calculated

from the radar specifications:

• Max Range: 30 km

• Resolution: 150 m

• Gates: MaxRange/Resolution = 200

• Sampling Average: (1/2) ∗Beamwidth = 1deg

• Total Samples: Gates ∗ 360 = 72000

If the acquisition board has a 16 bits resolution, 7200 samples are multiplied by

2 bytes, add headers, labels and other information related to the NetCDF format,

and the results are raw-data files of ≈ 200KB per sweep. TThe R.P.M of the radar

is 3; this implies 3 sweeps per minute, this translates into 600KB per minute, 36MB

per hour and 864MB per day. Using IDA to perform the data replication, data size

can be multiplied by 1.25, 1.5, 2, , (n/m). With a redundancy of 100%, the data rate

per minute is 12MB, 72MB per hour, and therefore ≈ 1.7GB per day. Considering

the storage resources of the server (see section 4.1), a distributed storage system,

involving a redundancy scheme, provides a more reliable solution than a local storage

system.

The distributed storage system function can be summarized as follows: Data

files are dispersed using the Information Dispersal Algorithm; the redundancy level

is determined by the number of nodes on the grid testbed and the desired access

reliability (see section 5.2 for more details); blocks, generated by IDA, are sent to

the grid testbed using gsiftp protocol (supported by the GridFTP tool), in a 1:1

distribution, meaning a block of file per node; original files are erased from the

server to save storage resources and the data remains distributed in the grid; data is

identified by the scan date, and daily sets are registered in log files which are kept in

the server; information related to the dispersed data is registered in index files, for
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the recovery process; when a specific file is required at the server, the system looks

for the requested file in the index files to determine if the file exists; the required

blocks are returned from the grid testbed to the server using GridFTP; and finally,

the recovery operation can be performed and the request file will be made available.

4.4 Grid Portal Interface

The Grid Portal interface ensures a transparent mechanism for accessing re-

sources and grid services. Gridsphere is the selected framework to which develops

the STB Grid portal. The developed portlets provide a presentation layer for the

manipulation of both, processed data and raw-data from radar, and for the services

for end-users. Additionally, portlets make the visualization of weather information,

such as reflectivity possible, in order to estimate rainfall rate over the western area

of Puerto Rico.

Figure 4–3: Gridsphere Portal Interface

The modification of the portal presentation layer and core portlets, included in

the basic installation are made possible by Grisphere. Figures 4–3 and 4–4 show

the basic gridsphere portal and the customized STB portal. Note that gridsphere
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provides portlets to the user account manager which keeping managed in the STB

portal design to improve controlled access to certain resources and services which

will be explained further on.

Figure 4–4: STB Grid Portal Interface

4.4.1 Data Management

Users can access raw-data from radars through the grid portal. Files containing

the raw-data are stored using the Netcdf (as known as NC) format. The data man-

agement portlets permit end-users to download the data in such a way that they

can obtain an exact copy of a file or a set of files. To avoid the server overload,

raw data request is restricted to registered users only. Raw-data does not provide

comprehensible information; it requires additional tools for extraction and process-

ing. As a result, this feature is designed for advanced users (like students, teachers

and researchers) who have the adequate software and previous knowledge of data
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from radars. These kinds of users are able to request an account from the portal

administrator.

Figure 4–5: Data management portlet

Figure 4–5 shows the data management portlets. Once the user has been logged

into the portal, the raw data request portlest are made available. The initial portlet

shows a single selection form that permits the selection of the date of interest and

then all available data is listed. Then, the data set selected can be downloaded as a

compressed file.

4.4.2 Weather Information

The grid portal provides current rainfall estimates over the western area of

Puerto Rico through reflectivity displays. This information is unrestricted and is
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available for anyone who accesses the portal. Figure 4–6 shows how the base reflec-

tivity information corresponding to a sweep is plotted over the Mayaguez area.

Figure 4–6: Base reflectivity portlet

Figure 4–7 shows a portlet used to display a set of base reflectivity over the

Mayaguez area. This portlet performs the animation of the data set and includes

loop controls and zooming. The base reflectivity loop is useful in facilitating the

tracking of meteorological phenomena.
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Figure 4–7: Base reflectivity animation portlet

4.4.3 Services for end-users

Netcdf data is written as binary files, thus, it can not be read by users as

plain text, and specialized software is required for its interpretation. There are

several libraries, plugins, programs and a variety of tools to manipulate NC files,

however, installation, configuration and usage of these tools can be very complex

for inexperienced users. Additionally, due to format flexibility, the structure of

the files varies, depending on the implementation procedure. And so, to perform

a specific task, one or more software tools are needed. For example, there is not
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available software to generate the reflectivity plots from the radar raw-data. So, a

Java class was developed using more basic classes and libraries for NC manipulation.

Additionally, a similar class was developed to convert NC to ASCII.

To facilitate the manipulation of the raw-data from DCAS network nodes, two

very useful services were implemented. These services allow end-users the execution

of processes over the raw-data available in the storage system. Thus, users can

upload its data sets from a local machine to the server, and process them. The

available processes are:

• NCtoJPG: Rainfall rate plots are available in the Grid portal; but older plots are

not maintained in to safe storage. Using the grid portal, users can send out from

date data sets to the grid and, then, receive the corresponding reflectivity plots.

• NCtoASCII: Through use of the grid portal, users can convert the NC files to text

files. This tool eliminates the utilization of extra software for data manipulation.

Figure 4–8: Services for end-users example

Figure 4–8 shows how raw-data is sent from a local machine to the server and

how output files are sent back to the user.
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4.5 Grid Connection Interface

Grid connection interface includes the necessary tools for the integration of the

radar network to the grid computing technologies. In order to achieve this process,

the first step included the installation of the Globus toolkit in the STB server to

enable the utilization of the grid resources and services. The second step included

the deployment of a gigabit link between server and PDC grid, to secure fast data

transport. The following sections offer a description of the necessary tools and

procedures to perform data management and service requests.

4.5.1 Data Management

The functions of the distributed data storage system were previously described

in section 4.3, so they are skipped at this stage. The following procedure describes

the manner in which to perform the data distribution on the PDC grid:

1. Execute the IDA (dispersal mode) over each raw-data file stored in the server, in

such a way that n chunks are obtained.

2. Check if the required credential to access the grid is valid. If it has expired, then

the renewal will be necessary. Select n nodes from all the available nodes on the

grid.

3. Send the chunks to the grid using a 1:1 distribution, using gsiftp as the transport

protocol. Use the globus-url-copy command, for example:

globus-url-copy gsiftp://proc.uprm.edu/data/dcas/node1/

file:///data/dcas/node1/20060512-080523.n-000.ida

4. Register in separate log files all the information related to the dispersed files, such

as path, name, size and IDA settings.

5. Delete the original raw-data file.

Example: Log file content
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232892 # File size in bytes

116446 # Added redundancy in bytes

0 #Padding in bytes

4 # n

2 # m

/data/dcas/node1/20060523-025818.nc-000.ida

/data/dcas/node1/20060523-025818.nc-001.ida

/data/dcas/node1/20060523-025818.nc-002.ida

/data/dcas/node1/20060523-025818.nc-003.ida

In reply user requests for distributed data on the grid testbed, the procedure is

similar:

1. Check if the requested file(s) have been distributed into the nodes. This informa-

tion is extracted from the log files.

2. Check for a valid credential. Select m nodes from the n nodes used in the dispersal

operation.

3. Retrieve the chunk files from the using GridFTP

globus-url-copy file:///data/dcas/node1/

gsiftp://proc.uprm.edu/data/dcas/node1/20060512-080523.nc-000.ida)

4. Execute IDA (retrieve mode) over the retrieved chunk of files.

5. Allow user to download the reconstructed files and then delete them.

4.5.2 Services for end-users

Services for end-users involve execution of a process over a single file or over a

set of files. For instance, a set of NC files can be uploaded with a NCtoJPG request.

Data is processed and the output files are made available for downloading, using

the grid portal. This entire procedure is transparent for the users, but may indicate

issues which may need scrutiny. The server may process each file and then reply
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to the output files; nevertheless, the server could be receiving data from the radar

network or replying to other user requests at the same time.

Figure 4–9: Job submission architecture

In order to avoid a crash due to an overload of simultaneous tasks, remote job

execution is introduced. The server can submit a simple job or a multi-job to the grid

testbed, instead the routine performance of simple local jobs only. Job submission

is supported by Globus through GRAM. The Grid Resource Allocation Manager

provides services for launching a job on a particular resource, check its status, and

retrieves its results when it is complete. Additionally, PBS (Portable Batch System)

is used as a job scheduler. Figure 4–9 shows the job submission architecture:



CHAPTER 5

RESULTS AND ANALYSIS

This chapter presents the results obtained after experimentation. Initially the

methodology used for each set of experiments is described. A set of experiments

have been carried out with the aim to compare replication and dispersal algorithms

and thus determine the advantages and the disadvantages of each one. A comparison

between local and remote job execution is also presented.

5.1 Methodology

Redundancy schemes implemented are evaluated in terms of reliability and

execution. Initially, a study of performance is presented where the access reliability

was the metric selected. Next, a set of data with various sizes is used to accomplish

a complete analysis of the effect of data size on execution time. The elapsed time

(process + user + system) measurements are used to make a comparison between

different techniques used to minimize the execution time. Finally, the advantages

and the disadvantages of local and remote job submission are discussed.

5.1.1 Redundancy Schemes Evaluation

For our performance A performance analysis of the redundancy algorithms pro-

vides a solid selection criterion to determine what is the suitable scheme to be

integrated with the distributed storage system. According to the DCAS system

goals, the more relevant results are the ones related to reliability as well as storage

resource consumption and execution time.

57



58

Study of Reliability

Prior to the experimental results, a reliability study allows establishing the be-

havior of each algorithm when the nodes fail to occur. We take into consideration the

total number of blocks after applying redundancy (TB), the size of each block (BS)

and the added redundancy (AR) as parameters and measure the access reliability

(R). In each case the storage spent (SS) required to perform redundancy.

Figure 5–1: Reliability vs Added Redundancy comparison. a) m = 5, p = 0.4, b)
m = 10, p = 0.6

Information dispersal algorithm shows a better access reliability than the repli-

cation algorithm. As a reference point, for an access reliability R = 0.9 when

the probability of failure is p = 0.4, m = 5, the added redundancy for IDA is

AR = 120%, while in the replication approach the added redundancy must be ap-

proximately AR ≈ 300% (Figure 5–1(a)). Note that, for replication algorithm, the

AR increment is every 10%, because the redundancy is performed using multiplica-

tion with integer numbers.

Figure 5–1(b) shows the behavior of the algorithms when the probability p =

0.6 and m = 16. The reliability of replication approach is quite deficient if the

probability failure increments.
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Note that, as shown in Figure 5–1, the reliability for IDA is improved when m

is incremented compensating a higher probability of failure. However, the reliability

for replication is downgraded if the number of blocks is incremented and is worse

still if p is higher. In contrast, a higher number of m involves a even higher number

of total blocks (TB) and a reduction in the block size (BS). A small BS can be

desirable to obtain weightless blocks to send them over a loaded network. In turn, a

higher TB involves a higher number of nodes, if the node-block relationship is 1 : 1.

Redundancy is an important feature to be taken into account when radar data

must be manipulated, because the size of this data is usually large. Therefore, a

proper redundancy must be selected to avoid storage overhead.

Data Size Vs Elapsed Time

Considering the calculations of data rate described before (section 4.3), next

testing is achieved with a wide data size range that includes values between 1MB

and 1000MB. In order to improve elapsed time measurements, a comparison point

is established. Suppose that a minimum access reliability of 90 %. If p = 0.4,

is required to provide data availability in the DCAS network an access reliability

R ≥ 0.9 can be obtained with the following settings:

• Replication: if m = 8, r = 5, therefore, AR = 400% and R = 0.921.

• IDA: if m = 8, r = 10, therefore, AR = 125% and R = 0.942.

Even though the added redundancy is lower for IDA than Replication Algo-

rithm, the elapsed time required to complete dispersal and recovery operations in

IDA is significantly higher than Replication approach. Figure 5–2 shows a com-

parison between dispersal and recovery operations for both algorithms with several

data sizes. As is shown in Figure 5–2(b), the replication algorithm is a lot faster

than IDA in both replication and recovery operations. Note that, when a file of size

1GB is required to be distributed, IDA takes long about 20 minutes and replication

algorithm only takes 3.5 minutes.
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Figure 5–2: Data Size vs. Elapsed Time comparison. a)IDA, b)Replication

Results shown in Figure 5–2 are obtained using the look-up table approach,

with log table generation in running time, memory allocation and bit strings of

length 16 (labeled in Figure 5–3 as ”IDA-OLD”). To reduce the IDA execution time,

different techniques were considered previously in section 3.4. Additionally, routines

to perform the operations over GF were modified. All modifications are related with

the memory management and programming. For instance, the following function:

void testfunction(word* a, word* b, word* c ){
c = gfmultiply(a,b);

}
shows a lower computation time than the next function

word testfunction (word a, word b){
word c;

c = gfmultiply(a,b);

return c;

}
Figure 5–3 shows the results obtained with each technique, in the dispersal

operation. The number 8 and 16 in the legend represents the bit string used.
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Figure 5–3: Techniques to improve IDA execution time

Note that, 8FRL is the enhanced version of IDA-OLD. They show a similar

behavior with data size < 800MB, but the main difference occurs at 900MB and

1000MB where the elapsed time is reduced ≈ 2min and ≈ 2.5min respectively.

Techniques using memory allocation present a good response, even better than FRL

techniques. However, MMA produces an unacceptable time of computation. Mem-

ory mapping technique allows processing data size larger than 800MB without time

reduction. MAP presents the better performance than MMA and FRL, whit data

sizes smaller than ≈ 500MB. The most representative reduction was obtained with

the FRL technique. However, this reduction is not enough and some modifications

are required.

Techniques to improve the IDA execution time can be enhanced using pre-

computed look-up tables instead of dynamically generated tables. Figure 5–4 shows

the results after performing such modifications.

The behavior of the different techniques is similar to the results shown in Figure

5–4. However, a relevant reduction of time is obtained with each technique. Again,
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Figure 5–4: IDA with pre-computed tables

the most significant reduction was obtained with the FRL technique when the bit

string is 2 bytes of length. For example, the introduction of pre-computed tables

allows a reduction of ≈ 7 minutes in the dispersal operation for a 1000MB file.

An additional set of IDA experiments was performed for data sizes between

10MB and 100MB, as well as data sizes lower than 10MB. Figures 5–5 and 5–6

show the results for those tests. As shown in Figures 5–5 and 5–6 MAP and MMA

techniques have a very similar behavior. This occurs because, with small files, copy

or mapping operations use the same system resources. In general the 16 bits FRL

offers better results than the other techniques, when data files are > 500MB. The

MMA technique can be used for files < 500MB instead of MAP, because MMA does

not affect the code portability and it can be implemented in different platforms.
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Figure 5–5: IDA, dispersal mode - Up to 100 MB

Finally, we present a comparison between the implemented IDA and the Reed-

Solomon1 (RS) algorithm. RS has similar properties as IDA and it requires opera-

tions over GF too. As shown in Figure 5–7 Reed-Solomon presents a better response

in terms of execution time with files < 800MB. However, RS algorithm does not

support large data files.

5.2 Local Job Vs Remote Job

On of the most important concepts On of the most important concepts related

with the implemented services is the execution management. Process involvement

in the current grid system implementation can be executed as local or remote jobs.

Advantages and disadvantages of each one are discussed in this section. First, we

consider a single job; this is for example a conversion from NC file to JPEG or to

ACII file. Server could execute this process locally but it can be executed by another

1 Plank J., ”Reed-Solomon”, http://www.cs.utk.edu/ plank/plank/gflib/
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Figure 5–6: IDA, dispersal mode - Up to 10 MB

node in the grid. Figure 5–8 shows the resources used when NCtoJPG process is

executed in the server and when it is executed in the grid. Figure 5–8(a) shows

that the local execution is faster (3 times more) than remote execution if we are

processing a single file. The multi-job test was performed with 6 files which imply 6

different jobs. Execution over the grid of the multi-job was achieved using GRAM,

meanwhile in the local execution, each job ran sequentially. Upon executing the

experiments, only four nodes were available, including the STB server. The total

time used in a local submission is half the total time used in a distributed execution.

In terms of process time, a multi-job executed in the server shows a better response

than a multi-job executed over the grid. However, a local-job involves more resources

usage than remote-jobs. Figure 5–8(b) shows the percentage of the CPU usage by

the current job. Similar results are obtained for NCtoASCII process. Figure 5–9(a)

shows the elapsed time and figure 5–9(b) shows the percentage of the CPU usage,

for local and remote submission. Single job and multi-job are considered in the

comparison.
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Figure 5–7: IDA vs Reed-Solomon comparison

A more general experiment was performed, using 4 nodes from the grid and

a set of files from 1 to 10. The results show that the execution over the grid (for

multiple files) takes approximately 2 times more than an execution on the server.

This approximation remains true, even if when the amount of files to be processed

is increased.

For example, in Figure 5–10(a) the time elapsed for five (5) files processed over

the grid is ≈ two (2) times slower than a single job executed on the server. The

process selected was NCtoJPG. Further studies show that a similar result is obtained

when the required files are equal 8, 9, or 10. However, the CPU consumption (Figure

5–10(b)) is very quite high (≈ 97%) when a local job is executed, and is close to

1%, when a remote job is performed. In an attempt to reduce of the elapsed time

for the multijob on the grid, limiting factors must be taken into account:

1. The total execution time is limited by the number of the nodes available in the

grid.
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Figure 5–8: Resources used for NCtoJPG

Figure 5–9: Resources used for NCtoASCII

2. The stage-in and stage-out procedures required to perform multijobs on the grid,

due to the fact that, in these procedures, the input file is sent from the STB server

to the node selected by the scheduler, and the output file is sent back from the

node to the server. This communication time cannot be modified and depends of

the amount of traffic and the load of the network.

In general, a local job can be submitted when the designated process involves

a single execution (i.e. a single file). However, running the process on the grid is
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Figure 5–10: Resources used for NCtoJPG process. a) Elapsed Time, b) Percentage
of CPU usage.

quite useful when the submitted task requires multiple or repetitive executions (i.e.

processing of a data set) where a lower CPU usage is required.



CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this thesis we presented the implementation of a grid-service based system

that enables the integration of weather radar network and grid computing technolo-

gies. As an important requirement of this integration, a distributed storage system

was developed using redundancy algorithm to improve data management. A grid

portal to provide a simplified interface to developed applications and grid resources

was implemented as well. Finally, services for end-users were designed in order to

allow data manipulation.

6.1 Conclusions

The conclusions of this thesis can be summarized as follows:

• Implementations of two redundancy schemes to perform radar data management

were presented. The reliability was the metric selected since it is an important

parameter in the DCAS systems. At this stage, information dispersal algorithm

shows a better data reliability than replication algorithm with less storage spend-

ing.

• Several techniques to enhance IDA execution time were discussed. Algorithms

using file-read loop present an important reduction of the response times without

affect to the portability. Techniques memory-based also show a time reduction,

but with portability constraints.

• Radar system integration with grid computing technologies has been discussed as

well. Experimental results demonstrate the feasibility of such interaction, when
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independent and non grid based applications can be integrated to the grid infras-

tructure with minimum requirements.

• Tests over the distributed storage system included data exchange between server

and grid-testbed, using IDA as redundancy scheme, and GridFTP as transport

protocol with GSI support. Integrity of the radar data was preserved successfully.

• The grid-service based provides basic services for data manipulation. Processes

for these services can be locally executed or executed over the grid. Experimen-

tal results demonstrate that remote or distributed execution; represent a suitable

alternative to multi-job submission. In addition, it was shown that local multiple

jobs submission implies a large resource usage.

6.2 Future Work

In order to achieve the main goals of the CASA research center, a revolutionary

engineering prototype has been proposed, which involves weather-sensing networks

operating collaboratively within a dynamic IT infrastructure based on distributed

and adaptive computational resources. The grid-service based system presented in

this thesis, offers a fundamental piece of the entire IT infrastructure required by

the DCAS project. Additionally, this system allows not only integration of the

grid resources with weather networks, but also it will become the window to show

all the CASA staff efforts to modify the current weather sensing systems. Some

modifications to the structural parts from the developed system could be relevant

for further requirements; they can be summarized as follows:

• DCAS approach establishes that the end-users may interact with the radars net-

work where and when they require it. In order to achieve this goal, a faster response

time from the server to users’ requests is required. Thus, one of the main research

topics of the current project was the reduction time of the redundancy scheme al-

gorithm, used in the distributed storage system. In section 5.2 several techniques
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were proposed to reduce the IDA execution time, and the results show that it is

fast enough to establish a good response time. However a similar algorithm (i.e

Reed-Solomon) shows a better behavior in presence of files < 800MB. Therefore,

a second redundancy scheme algorithm could be implemented into the storage sys-

tem, in such a way that the grid-service base system can dynamically select the

appropriate algorithm, in accord of the data size.

• One of the most important features of the grid-service based system developed is

the manipulation of the radars data. Thus, either downloading or data processing

will be available to end-users in order to extract meteorological information. Since

weather algorithms can generate erroneous results when they process corrupted

data, the integrity of such data must be maintained throughout any operation,

such as transfer, storage, and retrieval. Preliminary tests show that the raw-data

was preserved successfully with these operations; however, integrity verification

is not automatically checked in the current deployment before recovery, so an

appropriated technique to achieve this task is proposed as a future work.

• DCAS prototype operates over an information technology infrastructure, which

involves distributed computation and grid computing technologies. Grid technolo-

gies enable the dynamic creation and destruction of services, through the Open

Grid Services Architecture. It was shown that redundancy schemes can be used

to improve reliability in distributed storage systems. Additionally the algorithm

developed to perform the data distribution and retrieval can be extended to any

kind of file more than data from radars. This algorithm is completely configurable

and portable; so, its implementation as grid service can be useful to allow data

management in current or future projects.
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APPENDIX A

INFORMATION DISPERSAL ALGORITHM

A.1 Galois Field Arithmetic Library

/* File: gf16lib.h Description: This library contains the

implementation of arithmetic operations over a Galois Field (2^16).

The functions available are:

gf_single_multiply: Multiplication of two numbers in a GF(2^16), type int

gf_single_multiplyw: Multiplication of two numbers in a GF(2^16), type word

gf_single_divide: Division procedure in a GF(2^16)

gf_make_vandermonde: Creation of the Vandermonde’s Matrix (Dispersal matrix)

gf_invert_matrix: Performs a matrix inversion, over a GF(2^16)

get_alfam: Obtains the new vectors for the file dispersion using the dispersal matrix

get_alfas: Obtains the original vector for file retrieval using the recovery matrix

matsel: Creates the recovery matrix from the rows which correspond to each block found

These routines use the look-up table approach to improve the

computational time. Author:

Diego M. Arias

University of Puerto Rico at Mayaguez

diego.arias@ece.uprm.edu

*/

#ifndef GF16LIB_H #define GF16LIB_H #include "luptable32.h" //Call

for the Look-up tables #define prim_poly_16 0210013 //Octal Notation

for X^16 + X^12 + X^3 + X + 1

typedef unsigned short word; size_t W_SIZE = sizeof(word); typedef

unsigned char unit; static int Modar_nwm1 = 65535;

int gf_single_multiply(int xxx, int yyy) {

unsigned int sum_j;

word zzz;

if (xxx == 0 || yyy == 0) {

zzz = 0;

} else {

sum_j = (int) (GFlog16[xxx] + (int) GFlog16[yyy]);

if (sum_j >= Modar_nwm1) sum_j -= Modar_nwm1;

zzz = GFantilog16[sum_j];

}

return zzz;

}

word gf_single_multiplyw(word xxx, word yyy) {

unsigned int sum_j;

word zzz;

if (xxx == 0 || yyy == 0) {

zzz = 0;

} else {

sum_j = (int) (GFlog16[xxx] + (int) GFlog16[yyy]);

if (sum_j >= Modar_nwm1) sum_j -= Modar_nwm1;

zzz = GFantilog16[sum_j];

}

return zzz;
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}

int gf_single_divide(int a, int b) {

int sum_j;

if (b == 0) return -1;

if (a == 0) return 0;

sum_j = GFlog16[a] - GFlog16[b];

if (sum_j < 0) sum_j += Modar_nwm1;

return (int) GFantilog16[sum_j];

}

/* gf_make_vandermonde function was originally written by James S.

Plank plank@cs.utk.edu http://www.cs.utk.edu/~plank

*/

int *gf_make_vandermonde(int rows, int cols) {

int *vdm, i, j, k;

if (rows >= Modar_nwm1 || cols >= Modar_nwm1) {

fprintf(stderr, "Error: gf_make_vandermonde: %d + %d >= %d\n",

rows, cols, Modar_nwm1);

exit(1);

}

vdm = (int *) malloc(sizeof(int) * rows * cols);

if (vdm == NULL) {

perror("Malloc: Vandermonde matrix");

exit(1);

}

for (i = 0; i < rows; i++) {

k = 1;

for (j = 0; j < cols; j++) {

vdm[i*cols+j] = k;

k = gf_single_multiply(k, i);

}

}

return vdm;

}

/* gf_invert_matrix function was originally written by James S.

Plank plank@cs.utk.edu http://www.cs.utk.edu/~plank

*/

int *gf_invert_matrix(int *mat, int rows) {

int *inv;

int *copy;

int cols, i, j, k, x, rs2;

int row_start, tmp, inverse;

cols = rows;

inv = (int *) malloc(sizeof(int)*rows*cols);

if (inv == NULL) { perror("gf_invert_matrix - inv"); exit(1); }

copy = (int *) malloc(sizeof(int)*rows*cols);

if (copy == NULL) { perror("gf_invert_matrix - copy"); exit(1); }

k = 0;

for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

inv[k] = (i == j) ? 1 : 0;

copy[k] = mat[k];

k++;

}

}

/* First -- convert into upper triangular */

for (i = 0; i < cols; i++) {

row_start = cols*i;

/* Swap rows if we ave a zero i,i element. If we can’t swap, then the

matrix was not invertible */

if (copy[row_start+i] == 0) {

for (j = i+1; j < rows && copy[cols*j+i] == 0; j++) ;

if (j == rows) {

fprintf(stderr, "gf_invert_matrix: Matrix not invertible!!\n");

exit(1);



74

}

rs2 = j*cols;

for (k = 0; k < cols; k++) {

tmp = copy[row_start+k];

copy[row_start+k] = copy[rs2+k];

copy[rs2+k] = tmp;

tmp = inv[row_start+k];

inv[row_start+k] = inv[rs2+k];

inv[rs2+k] = tmp;

}

}

/* Multiply the row by 1/element i,i */

tmp = copy[row_start+i];

if (tmp != 1) {

inverse = gf_single_divide(1, tmp);

for (j = 0; j < cols; j++) {

copy[row_start+j] = gf_single_multiply(copy[row_start+j], inverse);

inv[row_start+j] = gf_single_multiply(inv[row_start+j], inverse);

}

}

/* Now for each j>i, add A_ji*Ai to Aj */

k = row_start+i;

for (j = i+1; j != cols; j++) {

k += cols;

if (copy[k] != 0) {

if (copy[k] == 1) {

rs2 = cols*j;

for (x = 0; x < cols; x++) {

copy[rs2+x] ^= copy[row_start+x];

inv[rs2+x] ^= inv[row_start+x];

}

} else {

tmp = copy[k];

rs2 = cols*j;

for (x = 0; x < cols; x++) {

copy[rs2+x] ^= gf_single_multiply(tmp, copy[row_start+x]);

inv[rs2+x] ^= gf_single_multiply(tmp, inv[row_start+x]);

}

}

}

}

}

/* Now the matrix is upper triangular. Start at the top and multiply down */

for (i = rows-1; i >= 0; i--) {

row_start = i*cols;

for (j = 0; j < i; j++) {

rs2 = j*cols;

if (copy[rs2+i] != 0) {

tmp = copy[rs2+i];

copy[rs2+i] = 0;

for (k = 0; k < cols; k++) {

inv[rs2+k] ^= gf_single_multiply(tmp, inv[row_start+k]);

}

}

}

}

free(copy);

return inv;

}

void get_alfas(int *a, word *b, word *prod, int rows, int cols) {

int i, j;

for(i=0;i<rows;i++)

prod[i]=0;

for(i=0; i<rows; i++)

for(j=0; j<cols; j++)

prod[i] ^= gf_single_multiplyw(a[i*cols+j], b[j]);
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}

void get_alfam(int *a, word *b, word alfa[0], int rows, int cols) {

int j;

alfa[0]&=0x0;

for(j=0; j<cols; j++)

alfa[0]^=gf_single_multiplyw(a[rows*cols+j], b[j]);

}

int *matsel(int *mat, int *list, int cols) {

int i,j;

int *res;

res = (int *) calloc(cols*cols,sizeof(int));

for(i=0; i<cols; i++)

{

for(j=0; j<cols; j++)

res[i*cols+j]=mat[list[i]*cols+j];

}

return res;

}

#endif

A.2 Information Dispersal Algorithm (IDA) Implementation

/* File: dispersal16.h Description:

Procedures to implement the Information Dispersal Algorithm.

This version is based on a GF(2^16).

The functions available are:

DisperseFile: Disperses a file F into n chunks, using the "fread" function.

No memory allocation required.

DisperseFile: Disperses a file F into n chunks, using memory allocation.

RecoveryFile: Peforms the original file F retrieval.

Author:

Diego M. Arias

University of Puerto Rico at Mayaguez

diego.arias@ece.uprm.edu

*/

#ifndef DISPERSAL16_H #define DISPERSAL16_H #include <stdio.h>

#include <stdlib.h> #include <sys/stat.h> #include <assert.h>

#include <time.h> #include <string.h> #include "gf16lib.h"

void DisperseFile(int n, int m, char *filename) {

int *vdm,rows,cols,sz,padding;

long i,k,blocksize,orig_size;

char *buf_file, *log_file;

struct stat buf;

FILE *f,*flog,*fin;

word *alfas,*bcol;

word *ftemp;

rows = n;

cols = m;

if (stat(filename, &buf) != 0) {

perror(filename);

exit(1);

}

sz = buf.st_size;

printf("File Size: %d bytes -- Blocksize: %d bytes -- Residue: %d\n",sz,sz/m,sz%m);

orig_size = buf.st_size;

if (sz % (m*W_SIZE) != 0) {

sz += m*W_SIZE - (sz % (m*W_SIZE));

}

blocksize = sz/m;

padding=m*blocksize-(orig_size);

printf("New Size: %ld bytes -- New Blocksize: %ld bytes -- Padding: %d bytes\n",m*blocksize,blocksize,padding);
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vdm=gf_make_vandermonde(rows, cols);

bcol=(word *) calloc(cols,W_SIZE);

alfas=(word *) calloc(1,W_SIZE);

printf("\nReading data\n");

f = fopen(filename, "rb");

if (f == NULL) { perror(filename); exit(EXIT_FAILURE);}

printf("\nData ready to process\n");

buf_file = (char *) malloc(sizeof(char)*(strlen(filename)+50));

if (buf_file == NULL) { perror("malloc - buf_file"); exit(EXIT_FAILURE); }

word *drow=(word *) malloc(W_SIZE);

if (drow == NULL) { perror("malloc - drow"); exit(EXIT_FAILURE); }

ftemp = (word*) calloc(blocksize/2,W_SIZE); //Array filled with zeros

if (ftemp == NULL) { perror("malloc - ftemp"); exit(EXIT_FAILURE); }

log_file = (char *) malloc(sizeof(char)*(strlen(buf_file)+50));

if (log_file == NULL) { perror("malloc - log_file"); exit(EXIT_FAILURE); }

sprintf(log_file, "%s-log.txt", filename);

flog = fopen(log_file, "w");

if (flog == NULL) { perror(log_file); exit(EXIT_FAILURE); }

fprintf(flog, "%ld\n", orig_size);

fprintf(flog, "%ld\n", blocksize);

fprintf(flog, "%d\n", padding);

fprintf(flog, "%d\n", n);

fprintf(flog, "%d\n", m);

printf("\nProcessing Data\n");

/*** this procedure do not need memory allocation ***/

for(k=0; k<rows; k++)

{

fseek(f, 0L, SEEK_SET);

sprintf(buf_file, "%s-%04ld.ida", filename, k);

fprintf(flog, "%s\n", buf_file);

fin = fopen(buf_file, "wb");

if (fin == NULL) { perror("Can not create block file"); exit(EXIT_FAILURE);}

drow[0]=k;

fwrite(&drow[0], W_SIZE, 1, fin);

for (i=0; i<(blocksize)/2; i++)

{

fread(bcol,W_SIZE,cols,f);

get_alfam(vdm,bcol,&ftemp[i],k,cols);

}

fwrite(ftemp, W_SIZE, blocksize/2, fin);

fclose(fin);

}

fclose(f);

free(vdm);

free(bcol);

free(alfas);

free(ftemp);

fclose(flog);

free(buf_file);

free(log_file);

free(drow);

}

void DisperseFile2(int n, int m, char *filename) {

int *vdm,rows,cols,sz,padding;

long i,j,k, blocksize, orig_size;

char *buf_file, *log_file;

struct stat buf;

FILE *f,*flog,*fin;

word *alfas,*bcol;

rows = n;

cols = m;

if (stat(filename, &buf) != 0) {

perror(filename);

exit(1);

}

sz = buf.st_size;

printf("File Size: %d bytes -- Blocksize: %d bytes -- Residue: %d\n",sz,sz/m,sz%m);
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orig_size = buf.st_size;

if (sz % (m*W_SIZE) != 0) {

sz += m*W_SIZE - (sz % (m*W_SIZE));

}

blocksize = sz/m;

padding=m*blocksize-(orig_size);

printf("New Size: %ld bytes -- New Blocksize: %ld bytes -- Padding: %d bytes\n",m*blocksize,blocksize,padding);

vdm=gf_make_vandermonde(rows, cols);

bcol=(word *) calloc(cols,W_SIZE);

alfas=(word *) calloc(rows,W_SIZE);

printf("\nReading data\n");

word *mydata = (word*) calloc(cols*blocksize/2,W_SIZE); //Array filled with zeros

if (mydata == NULL) { perror("malloc - mydata"); exit(EXIT_FAILURE); }

f = fopen(filename, "rb");

if (f == NULL) { perror(filename); exit(EXIT_FAILURE);}

fread(mydata,1,orig_size,f); //Read all file

fclose(f);

printf("\nData ready to process\n");

buf_file = (char *) malloc(sizeof(char)*(strlen(filename)+50));

if (buf_file == NULL) { perror("malloc - buf_file"); exit(EXIT_FAILURE); }

word *drow=(word *) malloc(W_SIZE);

if (drow == NULL) { perror("malloc - drow"); exit(EXIT_FAILURE); }

printf("\nProcessing Data\n");

log_file = (char *) malloc(sizeof(char)*(strlen(buf_file)+50));

if (log_file == NULL) { perror("malloc - log_file"); exit(EXIT_FAILURE); }

sprintf(log_file, "%s-log.txt", filename);

flog = fopen(log_file, "w");

if (flog == NULL) { perror(log_file); exit(EXIT_FAILURE); }

fprintf(flog, "%ld\n", orig_size);

fprintf(flog, "%ld\n", blocksize);

fprintf(flog, "%d\n", padding);

fprintf(flog, "%d\n", n);

fprintf(flog, "%d\n", m);

word *ftemp = (word*) calloc(blocksize/2,W_SIZE); //Array filled with zeros

if (ftemp == NULL) { perror("malloc - ftemp"); exit(EXIT_FAILURE); }

/*this procedure require memory allocation*/

for(k=0; k<rows; k++)

{

sprintf(buf_file, "%s-%04ld.ida", filename, k);

fprintf(flog, "%s\n", buf_file);

fin = fopen(buf_file, "wb");

if (fin == NULL) { perror("Can not create block file"); exit(EXIT_FAILURE);}

drow[0]=k;

fwrite(&drow[0], W_SIZE, 1, fin);

for (i=0; i<(blocksize)/2; i++)

{

for(j=0; j<cols; j++)

{

bcol[j]=mydata[i*cols+j];

}

get_alfam(vdm,bcol,&ftemp[i],k,cols);

}

fwrite(ftemp, W_SIZE, blocksize/2, fin);

fclose(fin);

}

printf ("Iterations => %ld\n",k*i);

free(vdm);

free(mydata);

free(bcol);

free(alfas);

free(ftemp);

fclose(flog);

free(buf_file);

free(log_file);

free(drow);

}
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void RecoveryFile(char *filename) {

int i, j, *vdm, *inv, fav, *list, *newvdm;

int rows, cols, blocksize, orig_size, padding;

char *log_file, *line, *out_file;

char (*nfiles)[128];

FILE *f, *flog, *fout;

word *myid, *alfas, *bcol;

const char *suffix = "-log.txt";

size_t log_file_len = strlen(filename) + strlen(suffix) + 1;

log_file = malloc(log_file_len);

if (log_file == NULL) { perror("malloc - log_file"); exit(EXIT_FAILURE); }

strcpy(log_file, filename);

strcat(log_file, suffix);

line = (char *) malloc(sizeof(char)*(128));

if (line == NULL) { perror("malloc - line"); exit(1); }

fav=0;

myid=(word *) malloc(W_SIZE);

flog = fopen(log_file, "r");

if (flog == NULL) { perror(log_file); exit(1); }

fscanf(flog, "%d\n", &orig_size);

fscanf(flog, "%d\n", &blocksize);

fscanf(flog, "%d\n", &padding);

fscanf(flog, "%d\n", &rows);

fscanf(flog, "%d\n", &cols);

nfiles=calloc(rows,sizeof(*nfiles));

if (nfiles == NULL) { perror("malloc - nfiles"); exit(EXIT_FAILURE); }

for(i=0;i<rows;i++)

sprintf(nfiles[i]," ");

list=(int *) malloc(rows*sizeof(int));

if (list == NULL) { perror("malloc - list"); exit(EXIT_FAILURE); }

for(j=0; j<rows; j++)

list[j]=-1;

for(i=0; i<rows; i++)

{

fscanf(flog,"%s\n",line);

f = fopen(line, "rb");

if (f == NULL) { perror(" is unavailable"); continue;}

else

{

fread(myid,W_SIZE,1,f);

list[fav]=i;

sprintf(nfiles[fav],line);

fav++;

}

fclose(f);

}

fclose(flog);

printf("Files: %d\n",fav);

if(fav<cols)

{ perror("Number of files insufficient"); exit(EXIT_FAILURE); }

printf("O_Size: %d - Blk_Size: %d - Padd: %d - Rows: %d - Cols: %d\n",orig_size, blocksize, padding, rows, cols);

word *mydata = (word*) calloc(cols*blocksize/2,2); //Array filled with zeros

if (mydata == NULL) { perror("malloc - mydata"); exit(EXIT_FAILURE); }

printf("\nCollecting Data: %d\n",cols);

/*Begin - Collect mydata*/

for(i=0; i<cols; i++)

{

f = fopen(nfiles[i], "rb");

if (f == NULL) { perror("File unavailable");exit(EXIT_FAILURE);}

else

{

fread(myid,W_SIZE,1,f);

fread(mydata + i * (blocksize/2), sizeof (word), blocksize/2, f);

}

fclose(f);

}

/*End - Collect mydata*/
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vdm=gf_make_vandermonde(rows, cols);

newvdm=matsel(vdm, list, cols);

inv=gf_invert_matrix(newvdm, cols);

free(vdm);

bcol=(word *) calloc(cols,W_SIZE);

alfas=(word *) calloc(cols,W_SIZE);

out_file = (char *) malloc(sizeof(char)*(strlen(filename)+30));

if (out_file == NULL) { perror("malloc - out_file"); exit(EXIT_FAILURE); }

sprintf(out_file, "%s.rida", filename);

fout = fopen(out_file, "wb");

if (fout == NULL) { perror(out_file); exit(EXIT_FAILURE); }

printf("\nProcessing Data\n");

for(i=0; i<(blocksize/2)-1; i++)

{

for (j=0; j<cols; j++)

{

alfas[j]=0;

bcol[j]=mydata[i+(blocksize*j)/2];

}

get_alfas(inv, bcol, alfas, cols, cols);

fwrite(alfas, W_SIZE, cols, fout);

}

/*To remove padding if it exists*/

i=(blocksize/2)-1;

for (j=0; j<cols; j++)

{

alfas[j]=0;

bcol[j]=mydata[i+(blocksize*j)/2];

}

get_alfas(inv, bcol, alfas, cols, cols);

fwrite(alfas, 1, (cols*2)-padding, fout);

free(mydata);

free(myid);

free(bcol);

free(alfas);

free(inv);

free(fout);

free(nfiles);

}

#endif

A.3 User Interface for IDA Program

/* File: idacodec16.h Description:

User interface for the Information Dispersal Algorithm implementation.

This version is based on a GF(2^16).

Author:

Diego M. Arias

University of Puerto Rico at Mayaguez

diego.arias@ece.uprm.edu

*/

#include <stdlib.h> #include "dispersal16.h"

void message() {

printf("**********************************************************\n");

printf("* Error: Incorrect Number of Parameters *\n");

printf("* Dispersal: dispersal -d n m file_input -->To Disperse *\n");

printf("* Recovery: dispersal -r file_input --> To Recovery *\n");

printf("* Written by: Diego M. Arias -- 2005 *\n");

printf("**********************************************************\n");

}

int main(int argc, char *argv[]) {

char option;
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if (argc < 3 ) //Minimal 3 args. to the Recovery Operation

option = ’h’;

else if ((argc > 3 && argc < 5) || argc >5) //Minimum 5 args. to the Dispersal Op.

option = ’b’;

else

option = argv[1][1];

switch (option)

{

case ’d’:

DisperseFile(atoi(argv[2]), atoi(argv[3]),argv[4]);

printf("\nDisperse done successfully\n");

break;

case ’e’:

DisperseFile2(atoi(argv[2]), atoi(argv[3]),argv[4]);

printf("\nDisperse done successfully\n");

break;

case ’r’:

RecoveryFile(argv[2]);

printf("\nRecovery done successfully\n");

break;

case ’h’:

message();

break;

case ’b’:

message();

break;

default:

message();

break;

}

return 0;

}



APPENDIX B

DISTRIBUTED STORAGE SYSTEM

B.1 NC Files Generator & Dispersal Operation

#!/bin/bash

# File: datemul.sh

# Description: Emulates the data radar files and data rate, performs dispersal operation using IDA

# and distributes the chunks generated over the grid in a distribution 1:1 using GridFTP

# Functions:

# gendata: Copy randomly a file from the seeds source to the raw data directory.

# Performs Dispersal operation using IDA with redundancy = 100

# Copy each chunk to the available nodes, 1 chunk per node

# Each NC file is generated and distributed every Tr seconds

# Author:

# Diego M. Arias

# University of Puerto Rico at Mayaguez

# diego.arias@ece.uprm.edu

## raw data path, node1 = Mayaguez Radar

## Data from node1 must be

here fpath="/data/dcas/node1/"

## creates a log file which contains all dispersed files per day

(creates an index)

logfile="${fpath}logs/‘date +%Y%m%d‘.log"

## if the log file does not exist, create it if [ -e $source ]; then

sleep 0

else

touch $logfile

fi

## n: number of chunks

## m: minimal number of chunks required to

reconstruct the original file

## Tr seconds

n=4

m=2

Tr=20

## Checking Grid-Proxy-Init

/data/dcas/./checkproxy.sh 2>/data/dcas/stblogs/gprxerr.txt

function gendata {

## Generates random number between 0 and 9

RANGE=9

FLOOR=0

number=0 #initialize

while [ "$number" -le $FLOOR ]

do

number=$RANDOM

let "number %= $RANGE"

done
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## random source: data00 - data02 - data03 ... data09

source="/stbradar/data0${number}.nc"

## new filename in format yy/mm/dd-hh/mm/ss

datename="‘date +%Y%m%d‘-‘date +%H%M%S‘.nc"

newfilename="/data/dcas/node1/${datename}"

## new file from a random source

if [ -e $source ]; then

cp $source $newfilename

cp $source ${fpath}sourcenc/first.nc

fi

targetfile="${newfilename}"

## List of available nodes

server1="proc.ece.uprm.edu"

server2="devzero.ece.uprm.edu"

server3="pdcgrid-32-01.ece.uprm.edu"

server4="/data/dcas/node1/" ## local server

## Dispersal Operation using IDA

${fpath}./dispersal16 -d $n $m $targetfile

echo "$targetfile" >> $logfile

## Distribution over the grid using gsiftp protocol

globus-url-copy -vb file:///${targetfile}-0000.ida gsiftp://${server1}:2811/data/dcas/node1/${datename}-0000.ida;

globus-url-copy -vb file:///${targetfile}-0001.ida gsiftp://${server2}:2811/data/dcas/node1/${datename}-0001.ida;

globus-url-copy -vb file:///${targetfile}-0002.ida gsiftp://${server3}:2811/data/dcas/node1/${datename}-0002.ida;

## remove original file and *.ida

rm ${targetfile}

rm ${targetfile}-0000.ida

rm ${targetfile}-0001.ida

rm ${targetfile}-0002.ida

rm ${targetfile}-0003.ida

}

while : do

gendata

sleep Tr

done

B.2 Data Generator Interface

#!/bin/bash

##

# File: gendata.sh

# Description: Start / Stop datemul.sh

# Author:

# Diego M. Arias

# University of Puerto Rico at Mayaguez

# diego.arias@ece.uprm.edu

##

MINPARAMS=1 EXECUTABLE=datemul.sh

if [ -e $EXECUTABLE ] then

echo "Data Generator manager"

else

echo "File: $EXECUTABLE not found!"

exit 1

fi

if [ "$1" = "start" ] ## Start datemul.sh

then

echo "Starting Data Generator"

exec ./$EXECUTABLE &

elif [ "$1" = "stop" ] ## Stop datemul.sh

then

echo "Stopping Data Generator"

killall -e $EXECUTABLE
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else

echo "Command not recognized"

fi

if [ $# -lt "$MINPARAMS" ]

then

echo "datemul start -- To Start Data Generator"

echo "datemul stop -- To Stop Data Generator"

echo

fi

echo "--Written by DMA"

B.3 Data Retrieval Using IDA & GridFTP

#!/bin/bash

##

# File: updater.sh

# Description: Performs retrieval operation using GridFTP

# and reconstruct the original file from the found chunks using IDA.

# Functions:

# checkf: Performs a search for the chunks that correspond to the requested file(s).

# Copy found chunks to the raw data directory.

# Performs Retrieval operation using IDA

# Copy the reconstructed file to the download directory

# Author:

# Diego M. Arias

# University of Puerto Rico at Mayaguez

# diego.arias@ece.uprm.edu

##

## raw data path, node1

mpath="/data/dcas/node1/"

## List of the requested files

rfile="/data/dcas/node1/downs.out"

## Checking Grid-Proxy-Init

/data/dcas/./checkproxy.sh 2>/data/dcas/stblogs/gprxerr.txt

## List of the available nodes

server[0]="proc.ece.uprm.edu"

server[1]="devzero.ece.uprm.edu"

server[2]="pdcgrid-32-01.ece.uprm.edu"

server[3]="/data/dcas/node1/" #local server

function checkf {

cat $rfile | while read line

do

ind=0

while [ $ind -lt 3 ]; do

## Search for chunks over the grid using gsiftp protocol

globus-url-copy gsiftp://${server[${ind}]}:2811${line}-000${ind}.ida file:///${mpath}

let ind=ind+1

done

## Retrieval Operation using IDA

/data/dcas/node1/./dispersal16 -r "${line}"

cp "${line}.rida" "/data/dcas/node1/download/${line: -18}"

## Removes the chunks in the local node

rm ${line}.rida

rm ${line}-0000.ida

rm ${line}-0001.ida

rm ${line}-0002.ida

done

}

checkf
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SERVICES FOR END-USERS

C.1 NetCDF to ASCII Conversion

/*

File: NCtoASCII.java

Description:

NC to TXT conversion.

Author:

Diego M. Arias

University of Puerto Rico at Mayaguez

diego.arias@ece.uprm.edu

*/

import java.io.IOException; import ucar.ma2.*; import ucar.nc2.*;

import java.io.*;

public class NCtoASCII {

static String fileName = "example.nc";

/**

* Prints schema (structure) of an existing netCDF file with a

* specified file name.

*

* @param args name of netCDF file to be read. */

public static void main(String[] args) {

if (args.length == 1)

fileName = args[0];

String fileNameout=fileName.substring(0,fileName.lastIndexOf("."))+".txt";

try

{

DataOutputStream fout = new DataOutputStream(new FileOutputStream( fileNameout));

NCdump.print(fileName+" -vall",fout);

fout.close();

}

catch ( IOException iox )

{

System.out.println("Problem with TXT");

}

}

}

C.2 Reflectivity Plots from NetCDF Files

/* File: PlotNetcdf.java Description:

Procedures to generate reflectivity plots from NetCDF (NC) files

The functions available are:

DisperseFile: Disperses a file F into n chunks, using the "fread" function.

No memory allocation required.

DisperseFile: Disperses a file F into n chunks, using memory allocation.
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RecoveryFile: Peforms the original file F retrieval.

Author:

Alexis Perez & Diego M. Arias

University of Puerto Rico at Mayaguez

diego.arias@ece.uprm.edu

*/

//package image;

import javax.swing.*; import java.awt.*; import java.awt.geom.*;

import java.net.*; import java.applet.*; import java.awt.image.*;

import java.io.*; import javax.imageio.ImageIO;

//NetDCF

import ucar.ma2.*; import ucar.nc2.*;

import java.lang.Math;

public class PlotNetcdf {

static String fileName = "test/example.nc";

static String backimage = "test/mayaguez.jpg";

/** Creates a new instance of PlotNetcdf */

public PlotNetcdf() {

}

public static void main(String[] args) {

boolean doConstraints = true;

boolean doConsistency = true;

boolean doHeuristics = true;

boolean doSoft = true;

boolean showStates = false;

//Check for arguments

String arg = args[0];

if (arg != null) {

fileName=arg;

}

arg = args[1];

if (arg != null) {

backimage=arg;

}

try {

//Open NC file

NetcdfFile nc = NetcdfFile.open(fileName);

//Read Azimuth from the file

Variable azimuth = nc.findVariable("Azimuth");

Array az = azimuth.read();

float[] azimuthArray = (float[]) az.copyTo1DJavaArray();

//Read Elevation from the file

Variable elevation = nc.findVariable("Elevation");

Array el = elevation.read();

float[] elevationArray = (float[]) el.copyTo1DJavaArray();

//Conversion of Azimuth to Degrees and Radians

double[] azimuthRadiansArray = new double[azimuthArray.length];

for(int i=0;i<azimuthArray.length;i++){

azimuthRadiansArray[i] = Math.toRadians(azimuthArray[i]);

}

ucar.nc2.Dimension gate = new Group(nc, null, "gate").findDimension("maxCells");

int gasize = gate.getLength();

//Read Reflectivity from the file

Variable zh = nc.findVariable("ZH");

Array z = zh.read();

short[] zhArray = (short[]) z.copyTo1DJavaArray();

Attribute scale = zh.findAttribute("scale_factor");
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int k = 0;

double[][] zhDoubleDimensionArray = new double[azimuthRadiansArray.length][gasize];

for(int i=0;i<azimuthRadiansArray.length;i++){

for(int j=0;j<gasize;j++){

zhDoubleDimensionArray[i][j] = zhArray[k]*.01;

k++;

}

}

try{

nc.close();

}

catch(java.io.IOException e){

System.out.println("Error closing input file");

}

// Set a new image - 800px x 800px

Draw t = new Draw(800, 800, backimage);

t.setScale(0, 0, 800, 800);

double x = 0.0;

double y = 0.0;

int spot = 0;

for(int i=1;i<=azimuthArray.length;i++){

for(int j=1;j<=gasize;j++){

//A conversion from Cartesian Coordinates to Spherical Coordinates is performed.

x = (j*1.1) *Math.sin(azimuthRadiansArray[i-1])* Math.cos(elevationArray[i-1] * (Math.PI/180));

y = (j*1.1) *Math.cos(azimuthRadiansArray[i-1])* Math.cos(elevationArray[i-1] * (Math.PI/180));

t.moveTo(x+400, y+400);

if (zhDoubleDimensionArray[i-1][j-1] > 0 && zhDoubleDimensionArray[i-1][j-1] < 77.5){

t.setColor(setReflectivityColor(zhDoubleDimensionArray[i-1][j-1]));

if(j<50){

t.spot(2);

}

else if(j>=50 && j<100){

t.spot(3);

}

else if(j>=100 && j<150){

t.spot(4);

}

else

t.spot(6);

}

}

}

//save as JPG image

t.save(fileName.substring(0,fileName.lastIndexOf(’.’) + 1)+"jpg");

}catch(java.io.IOException e){

System.out.println("Error reading netcdf file");

}

}

//Relation between Reflectivity values and the Pixel Color

public static Color setReflectivityColor(double val){

float[] hsb = new float[3];

if (val>72.5 && val<=77.5){

hsb = Color.RGBtoHSB(255, 255, 255, hsb);

}

else if (val>67.5 && val<=72.5){

hsb = Color.RGBtoHSB(148, 0, 211, hsb);

}

else if (val>62.5 && val<=67.5){

hsb = Color.RGBtoHSB(255, 0, 255, hsb);

}

else if (val>57.5 && val<=62.5){

hsb = Color.RGBtoHSB(184, 0, 0, hsb);
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}

else if (val>52.5 && val<=57.5){

hsb = Color.RGBtoHSB(216, 0, 0, hsb);

}

else if (val>47.5 && val<=52.5){

hsb = Color.RGBtoHSB(255, 0, 0, hsb);

}

else if (val>42.5 && val<=47.5){

hsb = Color.RGBtoHSB(255, 140, 0, hsb);

}

else if (val>37.5 && val<=42.5){

hsb = Color.RGBtoHSB(255, 215, 0, hsb);

}

else if (val>32.5 && val<=37.5){

hsb = Color.RGBtoHSB(255, 255, 0, hsb);

}

else if (val>27.5 && val<=32.5){

hsb = Color.RGBtoHSB(0, 128, 0, hsb);

}

else if (val>22.5 && val<=27.5){

hsb = Color.RGBtoHSB(0, 204, 0, hsb);

}

else if (val>17.5 && val<=22.5){

hsb = Color.RGBtoHSB(0, 255, 0, hsb);

}

else if (val>12.5 && val<=17.5){

hsb = Color.RGBtoHSB(0, 0, 255, hsb);

}

else if (val>7.5 && val<=12.5){

hsb = Color.RGBtoHSB(0,153, 255, hsb);

}

else if (val>2.5 && val<=7.5){

hsb = Color.RGBtoHSB(0, 255, 255, hsb);

}

else if (val>-2.5 && val<=2.5){

hsb = Color.RGBtoHSB(102, 102, 102, hsb);

}

else if (val>-7.5 && val<=-2.5){

hsb = Color.RGBtoHSB(153, 153, 102, hsb);

}

else if (val>-12.5 && val<=-7.5){

hsb = Color.RGBtoHSB(204, 204, 153, hsb);

}

else if (val>-17.5 && val<=-12.5){

hsb = Color.RGBtoHSB(102, 51, 102, hsb);

}

else if (val>-22.5 && val<=-17.5){

hsb = Color.RGBtoHSB(153, 102, 153, hsb);

}

else if (val>-27.5 && val<=-22.5){

hsb = Color.RGBtoHSB(204, 153, 204, hsb);

}

else if (val>-32.5 && val<=-27.5){

hsb = Color.RGBtoHSB(204, 255, 255, hsb);

}

else{

hsb = Color.RGBtoHSB(255, 255, 255, hsb);

}

return Color.getHSBColor(hsb[0], hsb[1], hsb[2]);

}

}
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This thesis describes the integration of radar network and grid computing technolo-

gies to provide a set of grid services to manipulate and store data from different

radars, to execute algorithms on different platforms in a transparent way to end

users, and to provide secure access to storage systems and instruments. The solution

approach considered is a grid-based system which includes a Grid Portal Interface,

a distributed storage to radar data management, and Grid services implementing

distributed algorithms to process data radar information.

A major requirement of this system is data availability and reliability. Consequently,

have been implemented two redundancy schemes to perform the data management

of the network: A simple Replication Algorithm and the Information Dispersal Al-

gorithm (IDA). Experimental results show that IDA provides better reliability and

less storage spending than the traditional replication algorithm. Furthermore, under

the same conditions, the redundancy in the replication technique is three times or

more than IDA, when the reliability required is over 90%. IDA is normally used

to perform security deployments where message encryption is required. Thus, this

algorithm has been modified to enable large file management in order to satisfy the

large amount of data generated by radars.


