
Iterative Algorithms for Abundance Estimation on Unmixing of

Hyperspectral Imagery

By

Samuel Rosario Torres

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

University of Puerto Rico
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ABSTRACT

Iterative Algorithms for Abundance Estimation on Unmixing

of Hyperspectral Imagery

By

Samuel Rosario Torres

Hyperspectral sensors collect hundreds of narrow and contiguously spaced spectral

bands of data organized in the so-called hyperspectral cube. The spatial resolution of most

Hyperspectral Imagery (HSI) sensors flown nowadays is larger than the size of the objects

being observed. Therefore, the measured spectral signature is a mixture of the signatures of

the objects in the field of view of the sensor. The high spectral resolution can be used to de-

compose the measured spectra into its constituents. This is the so-called unmixing problem

in HSI. Spectral unmixing is the process by which the measured spectrum is decomposed

into a collection of constituent spectra, or endmembers, and a set of corresponding fractions

or abundances. Unmixing allows us to detect and classify subpixel objects by their con-

tribution to the measured spectral signal. In this research, two new abundance estimation

algorithms based on a least distance least square problem and compare it with other ap-

proaches presented in the literature were developed. Algorithm validation and comparison

are done with real and simulated HSI data. HSI Abundance Estimation Toolbox (HABET)

was implemented in the ENVI/IDL environment. Application of the unmixing algorithm

for remote sensing of benthic habitats is presented.
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RESUMEN

Separación de Imagenes Hiperespectrales usando Algoritmos

Iterativos Multiplicativos

Por

Samuel Rosario Torres

Los sensores de Hyperespectral recogen centenares de estrechas y continuas bandas

espectrales de datos organizados en el llamado cubo hyperspectral. La resolución espacial

de la mayoŕıa de los sensores hyperespectrales (HSI) que vuelan hoy en d́ıa es más grande

que el tamaño de los objetos que son observados. Por lo tanto, la señal espectral medida

por el sensor es una mezcla de las señales de los objetos en el campo visión del sensor. La

alta resolución espectral se puede utilizar para descomponer los espectros medidos en sus

componentes principales. Éste es el problema de separación en HSI. La separación espectral

es el proceso por el cúal, el espectro medido por el sensor es descompuesto en una colección

de espectros constituyentes, o endmembers, y un conjunto de fracciones o de abundancias

correspondientes. Separación de HSI permite que detectemos y que clasifiquemos objetos

del subpixel por su contribución a la señal espectral medida. En está investigación, se

desarrollaron nuevos algoritmos para la estimación de abundancia basados en el problema de

distancias mı́nimas de cuadrados mı́nimos y son comparados con algoritmos que se encuentra

en la literatura. Validaciones y comparaciones de los algoritmos son realizados con datos

hyperespectrales reales y simulados. Además, se desarollo un toolbox de estimación de

abundancias HSI (HABET siglas en ingles) en el ambiente de programación ENVI/IDL.

El uso de algoritmos de separación para la observación con satélites hiperespectrales de

habitat bénticos es presentado.
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CHAPTER 1

Introduction

Hyperspectral Imaging (HSI) is used for environmental monitoring and object de-

tection. In HSI hundreds of images are taken at narrow and contiguous spectral bands

providing us with high spectral resolution data that can be used to discriminate between

objects based on their spectral signature [1], [2]. HSI sensors on environmental applica-

tions have high spectral resolution and low spatial resolution so that the measure spectral

signature is a mixture of the spectral signatures of the objects in the field of view of the

sensor [1]. An important problem in HSI processing is to decompose the mixed pixels into

the materials that contribute to the pixel, endmember and a set of corresponding fractions

of the spectral signature in the pixel, abundances, this problem is known as the unmixing

problem [1], [3]. Pixel unmixing has important applications such as object quantification,

mineral identification, plants health, automatic materials detection etc [3], [4]. In addition,

it can be used to generate a better training set for image classification. Most approaches for

unmixing perform endmember extraction and abundance estimation separately with signifi-

cant human interaction, making a very interactive process such as in ENVIr Hyperspectral

Image processing software. The use of iterative algorithms is investigated here to estimate

the abundances of HSI.
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1.1 Problem Statement

HSI sensors provide high spectral resolution order of hundreds of bands but with

relative low spatial resolution. Mixed pixels are consequence of low spatial resolution of HSI

sensor; the measure spectral signature is a mixture of the signatures of the objects of the field

of view of the sensor [2]. In addition, mixed pixels could be as a results of different materials

combined in a homogeneous mixture [3]. Spectral unmixing is the procedure of decompose

the measure spectrum of mixed pixels into a set of originating spectra, endmember, and

a set of corresponding abundance fractions, abundances [1], [3]. When any knowledge of

the endmembers and the abundances is not know, the unmixing process is refered as Full

Unmixing Problem (FUP). When a priory information of the endmembers is known, the

process is referred as Abundance Estimation Problem (AEP). In the literature, different

approaches to solve the unmixing problem are presented but most of them are based on the

Linear Mixing Model (LMM) [1], [3], [5], given by:

b =
n∑

i=1

xiai + w = Ax + w (1.1)

where A ∈ <m×n
+ is the matrix of the endmember where ai is the spectral signature of

the i-th endmember; x ∈ <n
+ is the vector of the abundances; b ∈ <m the measured pixel

spectrum; w is the noise vector; n is the number of endmember and m is the number

of spectral channel of the sensor [1], [3], [6]. Notice that the entries for the variables A

and b are constrained to be positive in order to have physical meaning; in addition, the

abundance vector need to satisfy x ≥ 0 and
∑n xi ≤ 1 or

∑n xi = 1. The LMM assume that

the incident light interact with the surface with only one endmember (no multiple scattering

between endmembers), the total surface area is a linear combination of the abundances of the

endmember as shown in the Figure 1.1 (a) [1], [3]. In other cases, the light interacts with

multiples components i.e. having multiples scattering of the light produced by different

objects, targets from the scene as shown in the Figure 1.2 (b). In the Figure 1.1 (b)
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shows the resulting mixing of the endmembers of the Figure 1.1 (a) using the LMM. In

Figure 1.1: Mixed Pixel Illustration.

the literature, most of the developed algorithms for the unmixing problem don’t estimate

the endmember and the abundances simultaneously. They first estimate the endmembers

by one of the severals methods [5], and then estimate the abundances. The abundance

estimation problem (AEP) can be viewed as constrained a Distance Minimization Problem

DMP given by:

x̂ = arg minxD(b,Ax) (1.2)

subject to x ≥ 0 and
n∑

i=1

xi = 1

where D(b,Ax) is a “distance” function, A is the endmember matrix, b is the pixel observed

and x is the abundance vector. Different distance function lead to solutions with different

properties. In this research, algorithms based on minimization of Least Square Distance

and Kullback-Leibler generalized distance are studied [1], [7].
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Figure 1.2: Mixing Models: (a) Linear Mixing; (b) Non-Linear Mixing.

1.2 Objectives

Main Objective

The main objective of this research was the development and the study of abun-

dance estimation algorithms. More specific objectives were:

• Implement abundance estimation algorithms in the ENVIr environment.

• Study the abundance estimation algorithms performance under different endmembers

and abundances conditions using simulate and real data.

• Comparison of developed algorithms with the methods presented in the literature.

• Develop a software tool to facilitate the use of the algorithms in ENVI.

1.3 Hyperspectral Imagery

Spectroscopy is the study of electromagnetic radiation, is derived from spectro-

photometry, the measure of photons as a function of wavelength [8]. Imaging spectroscopy

is a technique for obtaining a spectrum in each position of spatial positions (observed area)

so that any one spectral wavelength can be used to make a recognizable image [8]. Imaging

spectroscopy has many names in the remote sensing community, including imaging spec-
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Table 1.1: HSI Sensor Characteristics
Spectral Resolution Spatial Resolution Number of Bands Spectral Range

AVIRIS 10nm 4-20m 224 0.4-2.45µm
HYDICE 10nm 1-4m 210 0.4-2.5µm
Hyperion 10nm 30m 220 0.4-2.5µm

trometry, hyperspectral, and ultraspectral imaging. A hyperspectral sensor take images at

narrow and contiguous spectral band (order of hundreds of bands) providing us with high

spectral resolution data [2]. Figure 1.3 shows how HSI sensor scan an area and shows how

the acquired data can be represented or interpreted as a data cube. HSI data provides

us with information for better discrimination of the objects and the material observed [2].

Hyperspectral data is constantly used in detection and target recognition in many environ-

mental applications such as vegetation stress, mineral detection, etc [2]. Some examples of

the HSI sensors are the Airborne Visible/Inflared Imaging Spectrometer (AVIRIS) [4], [9],

Hyperspectral Digital Imagery Collection Experiment(HYDICE) [4] and Hyperion [9]. The

AVIRIS sensor has a spectral resolution of 10nm, taking 224 contiguous bands in the spec-

tral range of 0.4µm to 2.45µm, with 4-20m of spatial resolution (depending of the altitude).

AVIRIS was designed by NASA Jet Propulsion Laboratory (JPL). The sensor capabilities

of Hyperion are 220 spectral bands from 0.4µm to 2.5µm at 10nm spectral resolution with

a 30m spatial resolution and was designed by NASA [9]. Hyperion is a spaceborne HSI

sensor. HYDICE is an airborne sensor with 210 spectral bands covering wavelengths of

0.4µm to 2.5µm at 10nm resolution with 1m to 4m of spatial resolution (depending of the

aircraft altitude). HYDICE was developed by Hughes Danbury Optical Systems. The Table

1.1 show a summary of the capabilities of the sensor mentioned above.

1.4 Thesis Outline

The thesis is organized as follow. In Chapter 2, the Abundance Estimator Algo-

rithms are presented. The basic derivation of EMML, ISRA, NNLS, CLSPSTO, NNSLO

and NNSTO are discussed. Chapter 3 presents the HSI Abundance Estimation Toolbox
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Figure 1.3: Hyperspectral Imagery Illustration.

(HABET). Chapter 4 presents application and performance analysis of the algorithms ap-

plied to simulated and real data. Simulated HSI data and real HSI data (Enrique Reef HSI)

were used for the experiments. Chapter 5 presents the conclusions and recommendations

for future work.



CHAPTER 2

Abundance Estimation Problem

In this chapter, the unmixing problem is presented as a distance minimization

problem. Solutions that enforce different constraints are presented also. In all the cases, the

resulting algorithm is based on solving distance minimization problem. Different algorithms

based on least square and Kullback-Leibler distances are presented.

2.1 Background and Literature Review

The unmixing problem has been studied since the early days of remote sensing [6].

Solutions for this problem have confronted some limitations in the past as: limited spectral

signature sampling from the targets, knowing a priori the endmembers, computational

complexity plus other problems such as storage, equipment, etc [6]. With the development

of hyperspectral sensors, few hundred of the electromagnetic spectrum at high spectral

resolution are sample, in addition, with the increasing advance with computer technologies

fast processing and large storage capability are accessible.

Pixel unmixing algorithms can be separate into two main areas Endmember De-

termination and Abundance Estimation algorithms as shown in Figure 2.1. Endmember

determination methods require of a trained analyst to interaction with the algorithms or a

priori information for the algorithms [3], in addition, some algorithms found in the literature

use dimension reduction algorithms to reduce the data, resulting in several steps process

[3], [5]. Abundances estimation methods are highly automated, little human interaction is

7
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Figure 2.1: Unmixing Diagram Process

required for the algorithms to execute. The most common type of abundances estimation

algorithm found, assume the endmembers are known and only estimate the abundances

[3]. In the literature, unsupervised algorithms that first estimate the endmember then the

abundances are found. Others algorithms found estimate both quantities simultaneously

[3]. In addition, in the literature other algorithms that first estimate the endmembers and

then the abundances are presented [5].

Some methods for endmember determination are Pixel Purity Index (PPI) inte-

grated in the Environment Visualization Image (ENVI) software developed by RSI, Man-

ual Endmember Selection Tool (MEST), Multiple Endmember Spectral Mixture Analysis

(MESMA) which are describe in [5]. PPI and MEST use dimensionality reduction al-

gorithms in order to improve performance, in PPI the dimension reduction algorithm is

Minimum Noise Fraction (MNF) and for MEST is Principal Component Analysis (PCA).

The PPI approach is based in geometry of convex sets and works making projection of the

data sets into random vectors and counting the numbers of pixels in the extremes of the

vectors, one important thing about this method is that actually do not find the last list of

endmembers [5]. The MEST method has similar concepts to PPI, first reduce the dimension

of the data using PCA to finds N orthogonal directions (eigenvectors) then the number of

endmember to find are N +1, and the algorithms display the projection of N-D space of the

spectral data means [5]. The main disadvantage of the PPI and MEST is dimension reduc-

tion because increase the computation time in the algorithm, also the supervise nature of
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the algorithms. The MESMA is based in the LMM to estimate abundances of endmembers,

but this method requires extensive spectral libraries which is its main draw [5].

For abundance estimator algorithm are based on solving a DMP. The Expectation

Maximization Maximum Likelihood (EMML) algorithm [10] used for the reconstruction

of emission tomography images is used in [11] for abundance estimation. The Image Space

Reconstruction Algorithm (ISRA) was [12] for use of image reconstruction in emission

tomography in [1] present the ISRA algorithm for the use of unmixing HSI data. The

EMML and ISRA algorithms are iterative algorithms, meaning that depend on the previous

iteration for the next one, both algorithms guarantee the convergence and positive values

in the results of the abundances. The unmixing problem normally is an overconstrained

problem (m >> n) meanwhile in the image reconstruction problem for emission tomography

is an underconstraint problem (i.e. n > m) [1]. The Non Negative Least Square method

(NNLS) was introduced first in [7] by Lawson and Hanson and was used to find non

negative solutions to a linear system. The NNLS algorithm is base on Active Sets Strategy,

the idea of this method is if it find a negative solution xi, set the xi = 0, remove the column

i from the data set re-estimate the solutions if all positive stops if not repeat the the process

of setting to zero the xi and removing the column i. The EMML, ISRA and NNLS are

iterative algorithms that only satisfy the positive constraint. Chang in [13] present a series

of unmixing algorithms, some of them only satisfy the sum to one constraints, also he

described a full constraint algorithm for the unmixing problem. The Chang least square

positive sum to one algorithms was included in this research for the comparison purpose.

2.2 Unmixing Problem

Abundance estimation is the problem of estimating the set of corresponding frac-

tions that indicate the proportion of each endmember present in the pixel of a hyperspectral

image [1], [3]. The abundance estimation problem, the endmembers are known a priori.

There are different methods to obtains the endmember using algorithms such as Pixel Pu-
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rity Index, ground truth or expert analysis [3], [5]. The algorithms developed in this work

are based in the LMM discussed in Chapter 1.

The abundance estimation problem (AEP) can be view as a Distance Minimization

Problem, where minimize the distance between the measured spectral response and its

estimates, the LMM prediction as follows:

x̂ = arg minxD(b,Ax) (2.1)

subject to x ≥ 0 and
n∑

i=1

xi = 1 or
n∑

i=1

xi ≤ 1

where D(b,Ax) is a distance measure. Different algorithms presented in the literature

consider none or some of the constraints. Using different distance measures would lead to

different estimates. The most common distance function used in the literature is:

Least Square: LS(Ax,b) = ‖Ax− b‖2
2 (2.2)

a second distance (actually a generalized distance [1]) studied in this research is given by:

Kullback-Leibler: KL(Ax,b) =
m∑

i=1

(aT
i x log(

aT
i x

bi
) + bi − aT

i x) (2.3)

LS(Ax,b) is a distance but KL(Ax,b) is not a distance perse because do not satisfy the

triangularity inequality [1]. An important property of both distance functions is convexity.

The next sections are presented some algorithms for the abundance estimation.

In addition, the discussion of the problems inherit in each algorithms in their approach to

solve the abundance estimation problem are presented.

2.2.1 Unconstrained Least Square Algorithm (ULS)

The first estimator is solution of 2.1 using the LS cost function and no constraints

with is given by:

x̂ULS = (ATA)−1ATb (2.4)
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The main advantage of this approach is that it is very simple to implement and run fast.

Its main disadvantage is that negatives values for the abundance could be obtained, having

no physical meaning [3]. In addition, the resulting estimate may not satisfy the sum to one

restriction (i.e.
∑

xi = 1).

2.2.2 Sum to One Only Least Square Algorithm (STOLS)

In the previous section, the direct solution algorithm for LS was presented (2.4).

Direct solution of least square problem including the sum to one constraints (
∑

xi = 1) can

be estimated. The Lagrangian function for this problem is given by:

L(x, λ) =
1
2
‖ Ax− b ‖2

2 +λ(1Tx− 1) (2.5)

where λ is the lagrange multiplier. Deriving the L(x) respect to x, δL(x,λ)
δx obtain the

following:

x̂STO = x̂ULS + (ATA)−1λ1 (2.6)

where λ =
1− 1T x̂ULS

1T (ATA)−11

where, x̂ULS is the solution of the unconstraint problem (eq. 2.4) and 1 = [1, 1, 1, ..., 1]T

is a vector of ones of n dimensions. This approach still very simple to implement but the

resulting abundances may be negatives resulting in a solution with no physical meaning [1],

[3].

Chang Least Square Sum To One Algorithm (CLSSTO)

Other alternatives have been used by other authors as Chang to utilize least square

to estimate the abundance for the desire pixel. The technique applied by Chang is know as

quadratic penalty [13]. First lets define V (x):

V (x) = (b−Ax)T (b−Ax) + λ2(1− 1Tx)2 (2.7)
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The idea of this technique is based on incrementing lambda to force the constraint to be

satisfied. In [13], the solutions for the sum to one constraint and with full constraints are

presented. Lets rewrite the 2.7 in the following form:

min ‖b̄− Āx‖ (2.8)

where b̄ =
[

b λ

]T

and Ā =
[

AT λ1

]T

and λ is the weight as λ is increased the

sum to one constraint is enforced. Following the same approach as with unconstraint least

square (eq. 2.4) the following solution is obtained:

x̂CSTO = (ĀT Ā)−1ĀT b̄ = (ATA + λ2I)−1(ATb + λ21) (2.9)

The Chang least square sum to one (CLSSTO) algorithm is described in [13]:

CLSSTO Algorithm:

1. Set λ = 10000 and set ε = 0.001 (ε is a value to determinate closeness to zero)

2. Compute x̂
CSTO

from equation 2.9

3. If | 1T x̂− 1 |> ε then increase λ and go to 2

4. else x̂ is the solution.

The variable ε is set to a value close to zero the sum to one conditions is closer to one,
∑

xi ≈ 1. In the algorithm as the value of λ increase, the sum to one constraints is enforced

more strongly [13]. Similar to the algorithm (2.6) estimates with not physical meaning when

may arise. The CLSSTO algorithm is the same algorithm of Linear Unmixing described in

ENVI.
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2.2.3 Positive Constraint Only Algorithms

In the literature, algorithms considering non negative constraints only of the equa-

tion 2.1 are founded, the simplification of problem is:

x̂ = arg minxD(b,Ax) (2.10)

subject to x ≥ 0.

Using the Lagrange function L(x,u) = D(b,Ax)− uTx and the (2.10) the optimal condi-

tions for x using the Kuhn-Tucker conditions (presented in [14]) are.

∇xL(x,u) = ∇xD(b,Ax)− u = 0 (2.11)

For j=1, 2, ..., n ujxj = 0 (2.12)

The optimal points x satisfy the equation (2.11) and (2.12). Solving for the equation (2.12)

a generalized multiplicative positive algorithm is obtained:

∂D(b,Ax)
∂xj

xj = 0,For j=1, 2, ..., n. (2.13)

Having this generic multiplicative algorithms, different objective distance function as (2.2)

or (2.3) can be used to derive a multiplicative iterative algorithm.

Image Space Reconstruction Algorithm (ISRA)

Using the Least Square objective function (eq. 2.2) in the derivation of the equation

(2.13) obtain the following results:

m∑

i=1

(aT
i x− bi)aijxj = 0 =⇒ x̂k+1

j = x̂k
j

∑m
i=1 biaij∑m

i=1 aijaT
i x̂

, for j=i, ..., n (2.14)

the Image Space Reconstruction Algorithm (ISRA). In our case the matrix A ∈ <m×n
+ is

the endmember matrix, b ∈ <m
+ is the pixel in observation and x̂ is the abundance vector.
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Notice from the ISRA algorithm that if the initial values of the vector x̂ as positive is

remains positive if abundance reach zero is stay at zero. A general pseudo code for ISRA:

ISRA Algorithm

1. Initialize x̂0, ε and ρ

2. while (error ≥ ε) and (stop ≥ ρ) do

(a) estimate x̂ using eq. (2.14)

(b) error = ‖ Ax̂k − b ‖2

(c) stop = ‖ x̂k+1 − x̂k ‖ / ‖ x̂k ‖

3. return x̂

This pseudo code assume that x̂ is a non negative initial vector, A is a non negative

endmember matrix. The algorithm stop when the error is less than ε or when the estimated

abundance is very similar to the previous one (i.e. x̂k+1 very similar to x̂k), determined

by ρ. Convergence for the ISRA algorithm have been proved in [1] and other works, in

addition if the system Ax = b has a solution (consistent system) the algorithm converge to

the solution but in general were noise is present in the system Ax 6= b (inconsistent system)

the algorithm converge to a minimum of the distance solution of LS(b,Ax).

The advantage of this algorithm is “simple” to implement in software and hardware,

a vector form evaluation that with new days Digital Signal Processor could take advantage

of this algorithm. The convergence rate of the ISRA is slow as is shown in the Table 4.1.

Different methods can be use to accelerate the convergence rate for the ISRA algorithm. In

the work of Meidunas [11], Block Iterative Method are used to speed up convergence rate

of EMML. In this work, Relaxation technique to accelerate the convergence rate of ISRA

were used. The ISRA accelerated (ISRAA) iterative algorithm:

x̂k+1
j = (1− w)x̂k

j + wx̂ISRA (2.15)
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where x̂ISRA is the basic ISRA estimation and w is the relaxation parameter, if w > 1

then is a overrelaxation parameter, in the case where w < 1 then is call underrelaxation

parameter, if w = 1 obtain the original ISRA algorithm.

Non Negative Least Square Algorithm (NNLS)

Other iterative technique to solve the abundance estimation problem with Least

Square is Active Sets Strategy [14]. Lawson and Hanson develop an algorithm based in

active set strategy for Non Negative Least Square (NNLS) [7]. The idea behind the active

set strategy is to divide the the constraint into two groups: the set acting as active (℘)

and the set acting as inactive set (Z ) [14]. The set working as inactive, Z, would be

ignore to find the solution of LS [14]. The NNLS is an simplification of the Least Square

problem with Linear Inequality Constraints (LSI). The LSI Problem state as follow, Let

A ∈ <m×n,b ∈ <m,G ∈ <m×n,h ∈ <m:

min ‖ Ax− b ‖ , subject to Gx ≥ h (2.16)

The Kuhn-Tucker Theorem for the LSI problem [7]: An n-vector x̂ is a solution for the

LSI Problem if and only if there exists an m-vector ŷ and a partitioning of integer 1 to m

into subsets ℘ and Z such that:

GT ŷ = AT (Ax̂− b) (2.17)

r̂i = 0 for i ∈ z, r̂i > 0 for i ∈ ℘ (2.18)

ŷi ≥ 0 for i ∈ z, ŷi = 0 for i ∈ ℘ (2.19)

where r̂ = Gx̂− h. (2.20)
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Based only in the non negative constraints of the LSI problem, similar to (2.10) using the

LS objective function, the NNLS Problem:

min ‖ Ax− b ‖ , subject to x ≥ 0. (2.21)

The constitution of the Kuhn-Tucker Conditions for the NNLS Problem (eq. 2.21) are [7]:

xi > 0 if j ∈ ℘;xi = 0 if j ∈ Z (2.22)

wi = 0 if j ∈ ℘; wi ≤ 0 if j ∈ Z (2.23)

w = AT (b−Ax) (2.24)

the solution is: A℘x ∼= b

The NNLS algorithm described of Lawson and Hanson [7] as follows:

1. Let the set P = null and Z = {1,2,...,n}, x̂ = 0.

2. Let w ∈ <n, w = AT (b−Ax).

3. If Z is empty or max(wi) ≤ 0 then go to 12.

4. Find t ∈ Z such that wt = max{wj :j ∈ Z}.

5. Move index t from set Z to set P.

6. Let AP denote by m × n matrix defined by

(a) Column j of AP = {Column j of A if j ∈ P or 0 if j ∈ Z}

(b) Compute z as solution of the least square problem APz ∼= b

(c) Set zj = 0 if j ∈ Z

7. If x̂j > 0 ∀j in P set x̂ = z and go to step 2

8. Find index q ∈ P such that x̂q/(x̂q − zq) = min{x̂j/(x̂j − zj) : zj ≤ 0, j ∈ P}

9. Set α = x̂q/(x̂q − zq)

10. Set x̂ = x̂ + α(z− x̂)
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11. Remove from the set P and add to the set Z all j ∈ P where xj = 0 and go to step 6

12. End Algorithm

13. x̂ is the solution of the NNLS

The convergence of the NNLS algorithm has been proven in [7]. Is shown in [7] the maximum

number of iterations for the NNLS is n, the number of endmembers.

Expectation Maximization Maximum Likelihood Algorithm (EMML)

Similar to previous section, the Kullback-Leibler objective distance function is used

into the equation (2.13) to obtain the EMML iterative multiplicative algorithm:

m∑

i=1

(1− bi

aT
i x

)aijxj = 0 =⇒ x̂k+1
j = x̂k

j

∑m
i=1(

biaij

aT
i x̂

)
∑m

i=1 aij
, For i=1, ..., n (2.25)

The EMML algorithm have the property if the initial values of x are positive its remains

positive, in addition it converges to a the minimum distance solution [1]. A pseudo code

for the EMML algorithm:

1. Initialize x̂0, ε and ρ

2. while (error ≥ ε) and (stop ≥ ρ) do

(a) estimate x̂ using eq. (2.25)

(b) error = KL(Ax̂,b)

(c) stop = ‖ x̂k+1 − x̂k ‖ / ‖ x̂k ‖

3. return x̂

In addition, similar to ISRA this algorithm is “simple” to implement in software and hard-

ware, a vector form evaluation that with DSP could take advantage of this algorithm.

Using the relaxation technique presented in the previous section, the EMML ac-

celerated algorithm (EMMLA) is obtained:

x̂k+1
j = (1− w)x̂k

j + wx̂EMML (2.26)
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where w is the relaxation parameter and x̂EMML is the basic EMML estimation. Similar

to the ISRA pseudo code, assume that x̂ is a non negative vector, A is a non negative

endmember matrix. The algorithm stop when the error is less than ε or when the estimated

abundance is very similar to the previous one (i.e. x̂k+1 very similar to x̂k), determined by

ρ.

2.2.4 Fully Constrainted Algorithms

Non-Negative Sum Less or Equal to One (NNSLO)

When enforcing the sum-to-one and the non negative constraints algorithms with

both constraints doesn’t consider the dark pixels as possible spectral signature obtained by

a hyperspectral sensor. To include the dark pixels other type of constraints is used, sum

less or equal to one to find solutions to the unmixing problem. Using the sum less or equal

to one and non negative constraints the problem to solve is the following:

min‖Ax− b‖ subject to x ≥ 0 and 1Tx ≤ 1. (2.27)

Lets transform equation (2.27) to a Least Distance Problem (LDP) [7]. First, let:

QTA =




R

0


 ; c = QT b =




c1

c2




be the QR decomposition of A. Using the matrix Q and R from the QR decomposition

and rewriting equation (2.27) as follows:

min ‖Rx− c1‖ subject to x ≥ 0,1Tx ≤ 1 (2.28)
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Notice that x̂ULS = R−1c1. Define:

z = Rx̂− c1 ⇒ x̂ = R−1(z + c1) = R−1z + x̂ULS (2.29)

Substituting the equation (2.29) in the equation (2.28) obtain the following:

min ‖z‖ subject to Gz ≥ g (2.30)

where G =
[

I −1

]T

R−1, g =
[
−x̂T

ULS
1T x̂ULS − 1

]T

, I ∈ <n×n is the identity

matrix and 1T = (1 1 ... 1). This is called a least distance problem (LDP) in [7]. Now that

the original problem (eq. 2.27) was transformed to an LDP (eq. 2.30), the Theorem 5.2.1

from [15] that is proven in [7] to solve the LDP as a Non Negative Least Square Problem

(eq. 2.21) can be used. An state as follow: Considering the least distance problem 2.30, let

u be the solution to the non negative constraint problem (NNLSP):

minu ‖Eu− f‖ subject to u ≥ 0, (2.31)

where E =
[

GT gT

]T

, f =
[

0 1

]T

(0 = (0 0 ... 0) vector of n zeros. Let r = Eu− f ,

if ‖r‖ = 0 there are no solution (i.e Gx ≥ g is inconsistent), else the vector z is defined as:

x̂ = x̂ULS −R−1z where zi = −ri/rn+1, for 1 ≤ i ≤ n and is the unique solution to (2.30),

hence, the estimate of x̂ can be done using equation (2.29).

A new algorithm based of the problem 2.27 was presented, using the results 2.30

and 2.31 the sum less or equal to one algorithm (NNSLO) for abundance estimation:

Algorithm NNSLO LS

1. Compute a QR decomposition of A, A = Q




R

0


, compute c = QTb =




c1

c2


.

2. Compute x̂ULS = R−1c1
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3. Set G =
[

I 1

]T

4. Set f =
[

0 1

]T

5. Set g =
[
−x̂T

ULS
1T x̂ULS − 1

]T

6. Set E =
[

GT gT

]T

7. Set r = Eu− f , where u is the solution of the NNLS problem 2.31 E, f

8. Set ẑ = {−ri/rn+1}, 1 ≤ i ≤ n

9. x̂ = x̂ULS + R−1ẑ

The NNSLO LS algorithm solves the unmixing problem when dark pixels are con-

sidered, satisfying the non negative and sum less or equal to one constraints. Notice that

NNLS problem can be solved with any of the algorithms introduced previously of NNLS.

Non Negative Sum To One (NNSTO)

Based on NNSLO algorithm a new algorithm considering non negative and sum to

one constraints was derived. First let modify the (2.1) as follows:

min ‖Ax− b‖ subject to x ≥ 0 and x1 = 1−
n∑

i=2

xi (2.32)

Now lets transforms equation (2.32) to a inequality constrained problem:

min ‖Ax− b‖ subject to x ≥ 0,1Tx ≤ 1 (2.33)

where x = [x2, ..., xn]T , A = [a2 − a1, ...,an − a1] and b = b− a1. The equation (2.33) can

be solve with NNSLO to estimate x and x1 = 1 − 1Tx. In this new algorithm, the sum

to one and non negative constraints are satisfied, also solving the abundance estimation in

this fashion the possibility of dark pixels are considered.
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The new algorithm for the problem (2.32) based on NNSLO, the NNSTO LS for

abundance estimation with all constraints:

Algorithm NNSTO LS

1. Set A = [a2 − a1, ...,an − a1] and b = b− a1

2. Estimate x using the NNSLO algorithm

3. x̂ =
[

(1− 1T x) xT

]T

The convergence of this algorithm was proven in [7]. The NNSTO algorithm solve

the unmixing problem when dark pixels are considered, in addition satisfying the non neg-

ative and sum to one constraints.

Chang’s Least Square Fully Constrainted (CLSPSTO)

In a similar fashion of the CLSSTO algorithm, Chang use quadratic programming

to include the non negative constraints in the solution. However, the problem that Chang

is solving is given by:

minx{(b−Ax)T (b−Ax)} subject to 1Tx = 1 and sign(x)Tx = 1 (2.34)

where sign(x) = xi
|x| if xi 6= 0 or 0 if xi = 0. Including the combination of the 1Tx = 1 and

sign(x)Tx = 1 in the derivation of the solution guarantee the sum to one and non negative

constraint [13]. The quadratic penalty function is given by:

V (x) = (b−Ax)T (b−Ax) + λ2
1(1− 1Tx)2 + λ2

2(1− sign(x)Tx)2 (2.35)

Which Chang’s solve as a linear least square problem:

min ‖b̄− Āx‖ (2.36)



22

where b̂ =
[

bT λ1 λ2

]T

, Â =
[

AT λ11 λ21

]T

, λ1 and λ2 are the weight to force

the sum to one and non negative constraints respectively. Similar to unconstraint least

square, the direct solution to equation (2.36):

x̂CLSPSTO = (ĀT Ā)−1ĀT b̄ (2.37)

Chang’s least square fully constrained algorithm is given by (CLSPSTO):

CLSPSTO Algorithm

1. Set λ1 = 10000, λ2 = 10000, ε1 = 0.01 and ε2 = 0.01.

2. Compute x̂CLSPSTO using eq. (2.37).

3. If not all x̂CLSPSTO are non negative remove the signature āi from Ā or set āi =

āi ∗ 10000 if (x̂CFC )i has the most negative value.

4. If | 1T x̂CLSPSTO−1 |> ε1 then increase λ1 and if | sign(x̂CLSPSTO)T x̂CLSPSTO−1 |> ε2

then increase λ2 and go to step 2.

Else x̂CLSPSTO is the solution.

Increasing the value of λ1 force the sum to one restriction and increasing λ2 force the non

negative values [13]. Convergence of this algorithm has not been shown.

2.3 Conclusions

In this Chapter, different iterative algorithms for the abundance estimation prob-

lem were presented. Solutions to the AEP with no constraints, sum to one only, positive

only, positive with sum less or equal to one and positive with sum to one constraints were

studied. In addition, properties of the algorithms such as convergence.



CHAPTER 3

HSI Abundance Estimator

ToolBox (HABET)

In this Chapter, the HSI Abundance Estimator Toolbox (HABET) graphical user

interface (GUI) to facilitate the use of the developed abundance estimation routines pre-

sented in this research is described. The interface was developed in ENVI/IDL and runs in

versions greater than 3.6 and 5.6 respectively.

3.1 HABET Main Images Routines Description

The main purpose of designing a toolbox in ENVI/IDL is to facilitate the use

and interaction with the processing HSI data using the abundance estimation algorithms

presented in this research. In addition, developing the routines under the ENVI/IDL en-

vironment give the advantage of using the vast routines of ENVI for HSI data processing.

Figure 3.1 shows the way that HABET interacts with the HSI data and the abundance

estimation routines, the toolbox gets the HSI data form memory (i.e. disk or virtual mem-

ory) and the toolbox transfers it to the selected abundance estimation routine to produce

the abundance estimate maps. The abundance estimation routines included in the toolbox

are shown in the Figure 3.1. The process abundance estimation is shown in the Figure 3.2,

first the user using the toolbox select the HSI data to be processed (Phase 1), once having

23
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the HSI data the user select the endmembers data corresponding to the HSI data (Phase

2) and finally the user select the abundance estimation method to generate the abundance

image map (Phase 3).

Figure 3.1: HABET Data Flow

The main routines for abundance estimation of this toolbox are shown in Figure

3.1, these are ISRA, NNLS, EMML, NNSLO and NNSTO. The ISRA algorithm was imple-

mented similar as presented the section 2.2.3 of Chapter 2, this routine assumes that the

endmembers are in <m×n
+ and the HSI data are in <k×m

+ (k is number of pixels), this routine

returns an abundance estimation map. The NNLS algorithm used a routine downloaded

from the web (http://hesperia.gsfc.nasa.gov/∼schmahl/nnls/index.html) which is an imple-

mentation based on the algorithm described in section 2.2.3, this routine was wrapped with

other routine to facilitate its use and passing fewer arguments than in the original writ-

ten code and making it more similar to the other methods implemented. NNLS algorithm

have the same assumptions as ISRA. The EMML algorithm have the same assumptions

as ISRA also described in the section 2.2.3 of Chapter 2. NNSLO algorithm was imple-

mented as the algorithm described in section 2.2.4, have the same assumption as ISRA.
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Figure 3.2: HABET Abundance Estimation Process

To implement this routine, a QR method for rectangular matrices have to be used, a QR

method from the web (http://astrog.physics.wisc.edu/∼craigm/idl/math.html) was down-

loaded due IDL does not have a QR method for rectangular matrices implemented, also

have the same assumptions as ISRA. The NNSTO algorithm was developed as described in

the section 2.2.4. In this algorithm, the similar QR problem as NNSLO is confronted and

use the same QR method used for NNSLO also this method have the same assumptions

as ISRA. The routines implemented return an abundance estimation map of the given HSI

data and the corresponded endmembers. To run this toolbox the user only type Unmix-

ingHSIGUI (name of the main gui routine) in the command prompt of IDL and close similar

as common types of windows in the x button (or selecting exit under file menu).

3.2 HABET ToolBox

The HSI Abundance Estimator ToolBox (HABET) includes some basic operations

to facilitate the users to use the abundance estimation routines, for example: open HSI

files, showing images, data information. Figure 3.3, shows the main GUI of HABET, three

regions identified, Region 1, Region 2 and Region 3 are image display area, files opened
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Figure 3.3: HSI Abundance Estimation ToolBox Main GUI

and endmembers (or bands) of the selected open file respectively. The user first select the

file to later select the endmember to be displayed, i.e. selecting an option form the drop

list menu, this update the endmember drop list menu corresponding to the selected file

and the users can select endmember to be displayed form the endmember drop list menu.

Figure 3.4 shows a sample of the menu options for abundance estimation, separated into

two classification: positive estimators where only considers the non negative constraints

and Positive with Sum to one where considers in addition of non negative, sum to one or

sum less or equal to one constraints. Figure 3.5 and Figure 3.6 are the gui’s to obtain the

HSI data and the endmembers. The interface are similars, Region 1 is where the users can

select the HSI data or the endmembers in case if the data was previously opened else the

users can open the corresponding data with the associate button in the Region 2, open

file. Figure 3.7 shows the tab of files information, the user selecting a file from Region 1 it

show the corresponding file information in Region 2. HABET will require further testing

for analysis and bugs corrections.
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Figure 3.4: Abundance Estimation Organization Menu

Figure 3.5: Open and File Selection GUI
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Figure 3.6: Open and Endmember Selection GUI

Figure 3.7: File Information
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In this Chapter, the HSI Abundance Estimator ToolBox (HABET) were pre-

sented. Description of the main routines as ISRA, NNLS, EMML, NNSLO, NNSTO were

presented. In addition, the interaction of HABET between the routines and the HSI data

and the windows of selecting the HSI data and endmembers were presented.



CHAPTER 4

Algorithms Analysis and

Validation

In this chapter, real and simulated HSI data is used to test and compare the

abundance estimation algorithms, introduced previously. Synthetic data was generated

using endmembers from the U.S. Geological Survey (USGS) spectral data base and the

web. The HSI data used for the validation of the algorithms is taken by Hyperion HSI

sensor in the La Parguera area. The routines implemented were in Environment for Image

Visualization (ENVI) that run under Iterative Definition Language (IDL) version 3.5 and

5.5 respectively. The simulations were run in a Pentium 4 machine with 2.2Ghz and 1GB

of RAM running Windows XP Operative System.

The results shown in the Tables 4.1-4.4 are generated averaging the results of every

band for each algorithm. The results for each band is the average of eleven repetitions of

abundance estimations (for time, iterations, time/iterations). The leafs synthetic data

consists of a pixel of 2151 bands. The number of bands used for leafs each experiments are:

2151, 215, 107, 71, 53, 43, 35, 30, 26, 23, 21, 19, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6,

5. The minerals synthetic data consists of a pixel of 420 bands. The number of bands used

for minerals experiments are: 420, 210, 140, 105, 84, 70, 60, 52, 42, 30, 20, 15, 10, 8, 7,

6, 5. The overrelax parameter used for the leafs was 13 and for minerals was 3.5. These

30
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parameter were determined by trial and error. The implementation of the ISRA, ISRAA,

NNLS, EMML and EMMLA algorithms where include a normalization (i.e. x̂ = x̂/1T x̂) in

trial and error test shown better convergence rate.

4.1 Synthetic Data Experiments

The experiments consists in estimating the abundance of a synthetic mixed pixel

using the algorithms: EMML, EMMLA, ISRA, ISRAA, NNLS, NNSLO, NNSTO and

CLSPSTO. The purpose of this experiment is to determinate which algorithms converge

faster and find a reasonable abundance estimate. Synthetic HSI pixel was created using

know endmembers and generating a positive random distributed abundance vector x.

4.1.1 Experiment 1: Similar Spectral Signature

Figure 4.1: Leaf Endmembers

The first experiment consists in abundance estimation with similar spectral signa-

tures for the endmembers. The leafs endmembers used for the experiments are: dandelion,

trefoil, pansy and clover. The spectral signature of the leafs endmembers shown in the
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Figure 4.1. The leafs endmembers data has 2151 bands from 350-2500nm. The abundances

for each the the leafs are: Clover 0.12578, Trefoil 0.134351, Pansy 0.554631 and Dandelion

0.185238. The resulting mixed pixel used for the experiment is shown in the Figure 4.2.

Figure 4.2: Mixed Pixel using Leafs Endmember

The timing results of the algorithms are presented in the Table 4.1. As it shows,

the CLSPSTO algorithm converge faster than the others also the NNSLO is in the same

order of magnitude. CLPSTO took one iteration to find the solution similar to NNSLO and

NNSTO. In addition, the time by iterations of the ISRA is faster but with the same order

of magnitude of ISRAA and EMML (10−5).

Table 4.1: Timing Results for Leafs HSI Data (without noise)
EMML ISRA EMMLA ISRAA NNLS CLSPSTO NNSLO NNSTO

Time (sec) 10.0E-2 8.47E-2 2.58E-2 3.54E-2 3.01E-3 1.09E-4 6.76E-4 1.35E-3
Avg.]

Iterations
1.07E+3 1.41E+3 2.77E+2 5.63E+2 4 1 1 1

T ime(sec)
Iterations

8.55E-5 6.06E-5 19.26E-5 6.31E-5 75.27E-5 10.91E-5 67.64E-5 135.3E-5
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4.1.2 Experiment 2: Similar Spectral Signature with Noise

The second experiment consists in adding noise to the leafs mixed pixel to estimate

the abundances. The idea behind of this experiment is to simulate an pixel more similar to

the pixel taken by a HSI sensor. The noise added is Gaussian Noise with N(0, α2I) where

α is the 1 percent of maxi|bi| (of the original mixed pixel). The resulting pixel is shown in

the Figure 4.3.

Figure 4.3: Mixed Pixel using Leafs Endmember (with noise)

The results of the second experiment are shown in the Table 4.2. The CLSPSTO

algorithm converge faster to find the solution only in 3.42E-4 seconds, NNSTO and NNSTO

are in the same order of magnitude. NNSTO took only 1 iteration average to converge. The

time by iteration ISRA is the faster but ISRAA, EMML and EMMLA have the same order

of magnitude (10−5).
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Table 4.2: Timing Results for Leafs HSI Data (with noise)
EMML ISRA EMMLA ISRAA NNLS CLSPSTO NNSLO NNSTO

Time (sec) 1.08E-1 9.49E-2 3.55E-2 5.51E-2 3.63E-3 3.42E-4 8.00E-4 6.84E-4
Avg.]

Iterations
1.14E+3 1.45E+3 4.12E+2 9.25E+2 4 1.52 1.36 1

Time(sec)
Iterations

8.81E-5 6.72E-5 9.20E-5 6.83E-5 9.03E-4 2.18E-4 7.564E-4 6.836E-4

4.1.3 Experiment 3: Different Spectral Signature

The third experiment consists in abundance estimation using different spectral

signatures. The endmember the spectral signature of heulandite GDS3, azurite WS316,

actinolite NMNH80714 and ammonioalunite NMNH145596 was used. The spectral signa-

ture of the minerals used are shown in the Figure 4.4. The minerals endmembers data

consist of 420 bands range from 0.3951-2.56nm. Similar to the first experiment, the same

generated abundance vector was used, where ammonioalunite 0.12578, actinolite 0.134351,

azurite 0.554631, heulandite 0.185238. The mixed pixel used for the experiment is shown

in the Figure 4.5.

Figure 4.4: Minerals Endmembers
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Figure 4.5: Mixed Pixel using Minerals Endmembers

The results of the third experiment are shown in the Table 4.3. In this experiment,

the same pattern was observed that CLSPSTO converge faster than the other algorithms

in only one iteration. In addition, NNSLO and NNSTO are in the same order of magnitude

and took only one iteration. The EMMLA took less time by iteration but EMML, ISRA

and CLSSTO are in the same order of magnitude.

Table 4.3: Unmixing Results for Minerals HSI Data
EMML ISRA EMMLA ISRAA NNLS CLSPSTO NNSLO NNSTO

Time (sec) 2.17E-2 5.45E-3 7.21E-3 1.42E-3 2.42E-3 2.51E-4 6.68E-4 8.40E-4
Avg.]

Iterations
3.24E+2 8.36E+1 1.10E+2 1.88E+1 4 1 1 1

T ime(sec)
Iterations

6.84E-5 5.93E-5 5.44E-5 2.19E-4 6.06E-4 2.51E-4 6.68E-4 8.40E-4

4.1.4 Experiment 4: Different Spectral Signature with Noise

The fourth experiment consist in adding noise to the minerals mixed pixel to

estimate de abundances. The noise added is Gaussian Noise with N(0,α2I) where α is the

1 percent of maxi|bi| (of the mineral mixed pixel). The mixed pixel with noise is shown in
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the Figure 4.6.

Figure 4.6: Mixed Pixel using Minerals Endmember (with noise)

Table 4.4: Unmixing Results for Minerals HSI Data with Noise
EMML ISRA EMMLA ISRAA NNLS CLSPSTO NNSLO NNSTO

Time (sec) 4.03E-2 3.18E-2 6.22E-3 1.04E-2 2.93E-3 8.56E-5 1.71E-4 9.95E-4
Avg.]

Iterations
6.10E+2 6.15E+2 9.67E+1 1.91E+2 4 1 1 1

Time(sec)
Iterations

7.35E-5 5.50E-5 5.52E-5 5.71E-5 7.31E-4 8.56E-5 1.711E-4 9.947E-4

The Table 4.4 shown the results of this experiment. The same behavior in CLSP-

STO was observed, faster convergence and only one iteration to converge, in addition,

NNSLO and NNSTO converge only in one iteration. This case EMML, EMMLA, ISRA,

ISRAA and CLSPSTO have the same order of magnitude (around 10−5).

4.2 Experiments with Real Data: Enrique Reef

In this section, results of applying the abundance estimation algorithms described

in Chapter 2 to real data taken with the Hyperion sensor [9] over Enrique Reef in La Par-
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guera Puerto Rico are presented. The Enrique Reef is part of the La Parguera in southwest

coast of Puerto Rico in the Municipality of Lajas. The Figure 4.7 shows an aerial photo

of La Parguera. The Enrique Reef data used for this experiment consists of first 92 bands

Figure 4.7: La Parguera: Lajas, PR

(of Hyperion sensor) from 435-890nm with a spatial resolution of 30 meters. The data

was pre processed with Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes

(FLAASH) [16] to remove atmospheric effects in the data. Figure 4.8 shows a color com-

posite using Hyperion data of Enrique Reef. For experiments comparison, a high resolution

image (1m) taken by the IKONOS sensor was used, is shown in Figure 4.9. The degradation

cause by the low spatial resolution in Hyperion is clearly observed. In the Hyperion image,

any of the spatial features are not easily to identify compare as IKONOS image. Figure

4.10 shows the classification map of Enrique Reef from done by Dr. Armstrong in 1982 [17].

In Figure 4.10, four objects of interest are identified: thalassia, reef flat, rhizophora and

sand lagoon. The rest of the area of the image is deep sea water. The PPI method of ENVI

to extract the endmembers from the Enrique Reef HSI data was used. The endmembers

samuelr


samuelr
Enrique Reef
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selected, sand, coral, rhizophora (mangrove), thalassia (sea grass) and water are shown in

the Figure 4.11.

The results shown in the following sections, the images include an color bar indi-

cating the range of values of the estimated abundances for each images. Red pixels color

represent a greater abundance values and blue pixels color represent less abundance val-

ues. The residual images presented are estimated as follows: ‖Ax̂− b‖/‖b‖ where x̂ is the

abundance estimates of the different algorithms. Other results presented in this work is the

summation of the estimated abundances to observe if the sum to one behavior in different

pixels.

Figure 4.8: Enrique Reef Image from Hyperion HSI Sensor

4.2.1 Unconstrained Least Square Results

Figures 4.12-4.16 show the results for unconstrained least squares. The abun-

dance estimates for water, coral and rhizophora (mangrove) are more closer visually to the

IKONOS image. ULS results shown that negative abundance estimation are obtained also

do not satisfy the sum to one constraints as shown in Figure 4.18. Most of the highest
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Figure 4.9: Enrique Reef Image collected with IKONOS Sensor (1 meter resolution)

Figure 4.10: Classification Map of Enrique Reef
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Figure 4.11: Enrique Reef Endmembers

residual estimates are from the water areas.
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Figure 4.12: Sea Grass Abundance Estimates using ULS
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Figure 4.13: Coral Abundance Estimates using ULS
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Figure 4.14: Mangrove Abundance Estimates using ULS
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Figure 4.15: Sand Abundance Estimates using ULS
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Figure 4.16: Water Abundance Estimates using ULS
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Figure 4.17: Residual Abundance Estimates using ULS
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Figure 4.18: Summation of Abundance Estimates
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4.2.2 Sum to One Least Square Results

This section shows the results obtained with the STOLS algorithm, the Figures

4.19 to 4.23 shown the abundance results. The results obtained in this experiment, only

satisfy the sum to one constraints as shows Figure 4.25 but negatives abundance estimated

values are obtained as are shown in Figure 4.20. In addition, the highest abundances

residuals estimates are in the coral areas.
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Figure 4.19: Sea Grass Abundance Estimates using STOLS
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Figure 4.20: Coral Abundance Estimates using STOLS
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Figure 4.21: Mangrove Abundance Estimates using STOLS
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Figure 4.22: Sand Abundance Estimates using STOLS
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Figure 4.23: Water Abundance Estimates using STOLS
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Figure 4.24: Residual Abundance Estimates using STOLS
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Figure 4.25: Summation of Abundance Estimates
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4.2.3 EMML Results

The abundance estimates for the EMML algorithm are shown in the Figures 4.26

to 4.30. The results obtained shows a better definition in the coral, water and mangrove. In

addition, the abundance estimates satisfy the nonnegative constraints. The highest residuals

estimates where obtained in the coral and mangrove areas.
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Figure 4.26: Sea Grass Abundance Estimates using EMML
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Figure 4.27: Coral Abundance Estimates using EMML
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Figure 4.28: Mangrove Abundance Estimates using EMML
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Figure 4.29: Sand Abundance Estimates using EMML
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Figure 4.30: Water Abundance Estimates using EMML
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Figure 4.31: Residual Abundance Estimates using EMML
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Figure 4.32: Summation of Abundance Estimates
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4.2.4 ISRA Results

The abundance estimates for the ISRA algorithm are shown in the Figures 4.33 to

4.37. The results obtained with ISRA were similar to those of EMML. In the coral, mangrove

and water abundance images, Figures 4.34, 4.35 and 4.37 are better distinguished in the

corresponds area. In addition, the estimates satisfy the nonnegativity constraint. The

residuals estimates obtained are similar to the ones obtained with EMML.

0.00/0.00

0.01/0.20

0.21/0.40

0.41/0.60

0.61/0.80

0.81/1.00

1.01/1.20

1.21/1.40

5 10 15 20 25 30 35 40 45

5

10

15

20

25

Figure 4.33: Sea Grass Abundance Estimates using ISRA
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Figure 4.34: Coral Abundance Estimates using ISRA
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Figure 4.35: Mangrove Abundance Estimates using ISRA
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Figure 4.36: Sand Abundance Estimates using ISRA
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Figure 4.37: Water Abundance Estimates using ISRA
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Figure 4.38: Residual Abundance Estimates using ISRA
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Figure 4.39: Summation of Abundance Estimates
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4.2.5 NNLS Results

In this section, results for the NNLS algorithm for the Enrique Reef HSI Data

are presented. The abundances estimates for sea grass, coral, mangrove, sand and water

are shown in the Figures 4.40 to 4.44. The results obtained with NNLS are similar to

those of EMML and ISRA. In the coral, mangrove and water abundance images, Figures

4.41, 4.42 and 4.44 are better distinguished similar to EMML and ISRA. In addition, the

color bar of the abundance images shows the abundances obtained by the algorithm satisfy

the nonnegative constraints also the residual estimates obtained with NNLS are similar to

EMML and ISRA.
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Figure 4.40: Sea Grass Abundance Estimates using NNLS
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Figure 4.41: Coral Abundance Estimates using NNLS
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Figure 4.42: Mangrove Abundance Estimates using NNLS
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Figure 4.43: Sand Abundance Estimates using NNLS



55

0.00/0.00

0.01/0.20

0.21/0.40

0.41/0.60

0.61/0.80

0.81/1.00

1.01/1.20

1.21/1.40

5 10 15 20 25 30 35 40 45

5

10

15

20

25

Figure 4.44: Water Abundance Estimates using NNLS
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Figure 4.45: Residual Abundance Estimates using NNLS
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Figure 4.46: Summation of Abundance Estimates
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4.2.6 CLSPSTO Results

The CLSPSTO abundances estimates are presented in this section. Figures 4.47 to

4.51 shows the abundances estimates of the Chang’s algorithm [13]. Abundance estimates

obtained for coral, Figure 4.48 and for mangrove, Figure 4.49 are similar to ISRA, EMML

and NNLS. The sand (Figure 4.50 and sea grass (Figure 4.47 results are more similar to some

of the areas of IKONOS image (Figure 4.9). Figure 4.50 of sand estimates and Figure 4.47

of sea grass are more likely to the IKONOS image. In addition, the abundance estimates

that satisfy all the constraints.
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Figure 4.47: Sea Grass Abundance Estimates using CLSPSTO
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Figure 4.48: Coral Abundance Estimates using CLSPSTO
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Figure 4.49: Mangrove Abundance Estimates using CLSPSTO
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Figure 4.50: Sand Abundance Estimates using CLSPSTO
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Figure 4.51: Water Abundance Estimates using CLSPSTO
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Figure 4.52: Residual Abundance Estimates using CLSPSTO
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Figure 4.53: Summation of Abundance Estimates
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4.2.7 NNSLO Results

In this section, the results for the NNSLO algorithm for the Enrique Reef HSI

Data are shown. The abundances estimates for sea grass, coral, mangrove, sand and water

are shown in the Figures 4.54 to 4.58. The abundance estimation objects are very similar to

the areas of the IKONOS image. In addition, observing the images color bar the abundance

estimates obtained by the algorithm satisfy the nonnegative constraints. Figure 4.60 shows

the sum less or equal to one constraints, most of the areas of the image have values above

0.9, some cases values around 0.6 are observed most of this values are in the coral regions

but we also observe some in the water and the sea grass.
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Figure 4.54: Sea Grass Abundance Estimates using NNSLO
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Figure 4.55: Coral Abundance Estimates using NNSLO
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Figure 4.56: Mangrove Abundance Estimates using NNSLO
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Figure 4.57: Sand Abundance Estimates using NNSLO
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Figure 4.58: Water Abundance Estimates using NNSLO
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Figure 4.59: Residual Abundance Estimates using NNSLO
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Figure 4.60: Summation of Abundance Estimates
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4.2.8 NNSTO Results

In this section, the results for the NNSTO algorithm for the Enrique Reef HSI

Data are presented. The abundances estimates for sea grass, coral, mangrove, sand and

water are shown in the Figures 4.61 to 4.65. The abundance estimation of coral, mangrove

and sea grass are very similar to the results of NNSLO. The estimation results of water and

sand are more similar to IKONOS image. Similar to NNSLO, with NNSTO the algorithms

obtains abundance estimates satisfying the nonnegative and the sum to one constrains as

shown in Figure 4.67. In addition, the abundance residual estimates are similar to NNSLO.
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Figure 4.61: Sea Grass Abundance Estimates using NNSTO



63

−0.00/0.00

0.01/0.20 

0.21/0.40 

0.41/0.60 

0.61/0.80 

0.81/1.00 

1.01/1.20 

1.21/1.40 

5 10 15 20 25 30 35 40 45

5

10

15

20

25

Figure 4.62: Coral Abundance Estimates using NNSTO
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Figure 4.63: Mangrove Abundance Estimates using NNSTO
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Figure 4.64: Sand Abundance Estimates using NNSTO
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Figure 4.65: Water Abundance Estimates using NNSTO
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Figure 4.66: Residual Abundance Estimates using NNSTO
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Figure 4.67: Summation of Abundance Estimates
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4.3 Conclusions

In this Chapter, different experiments with synthetic and real data to study the

behavior of the abundance estimation algorithms were presented. The synthetic experiment

results showed that CLSPSTO algorithms converged faster than the other algorithms in one

iteration (in most cases). In the test of time by iterations, ISRA algorithm run faster per

iteration than the other algorithms in most cases.

Using the direct approaches, ULS and STOLS to solve the AEP does not produce

abundance estimation with the desired constraints for the Enrique Reef HSI data. In general

ISRA, EMML and NNLS produce similar abundance estimation results, the estimation for

water, coral reef and mangrove agree visually with are similar to the IKONOS image. In

addition, CLSPSTO, NNSLO and NNSTO produce good estimation of water, coral reef and

mangrove. CLSPSTO produce a better abundance estimation of sea grass compared with

ISRA, EMML and NNLS also NNSLO and NNSTO produce sea grass estimation closer to

the IKONOS image. The abundance estimation results for sand obtained with NNSLO and

NNSTO are more closer to IKONOS image than the results obtained with CLSPSTO. Also

the results of NNSLO and NNSTO are very similar in the abundance estimation of coral

reef, sea grass and mangrove this is because NNSTO is derived from NNSLO. NNSLO and

NNSTO differs in the water and sand estimates. Water estimation with NNSTO it gives

more weight in areas where are sand and sea grass than NNSLO.



CHAPTER 5

Conclusions and Future Work

The purpose of this work was to study the behavior of abundance estimator algo-

rithms using synthetic and real HSI data. The integration of the non negative and sum to

one or sum less than one constraints as part of the solutions for the abundance estimation

problem have been presented in this work, as they are ISRA, NNLS, EMML and CLSP-

STO. Two new algorithms to tackle the abundance estimation problem were presented: one

considering dark pixels, sum less or equal to one and non negativeness constraints, NNSLO;

another considering non negative and sum less or equal to one constraints NNSTO.

In this research, simulation experiments with synthetic HSI data to study the

algorithm convergence behavior under controlled situations were performed. The results

obtained of the experiments led to conclude that CLSPSTO is faster than the others al-

gorithms (order of magnitude of 10−4) and converge in one iteration in most cases. ISRA

algorithm run faster per iteration than the others algorithms.

Based on the results obtained from the abundances estimation for Enrique Reef

HSI data the algorithms with non negative and sum less or equal to one and non negative

and sum to one, NNSLO, CLSPSTO and NNSTO respectively, agree visually with high res-

olution IKONOS image of the area. Considering the residual images presented, NNSLO and

NNSTO algorithms obtained better estimation than CLSPSTO. Including the constraints

in the abundance estimation problem, sum to one, sum less to one and non negative con-
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straints provide a better abundance estimates in addition to the estimates have physical

meaning.

5.1 Future Work

In this research, the abundances estimation problem a part of the unmixing prob-

lem was only address, this let to future work in the following topics to be studied:

• More experimentation with better ground truth for validation of the algorithms.

Choosing better ground truth (endmembers) help us to have a better abundance

estimation, in addition, of having a sample closer to the objects of the observed area.

• Abundance Estimation plus Endmember Estimation to solve the Unmixing Problem.

Solving the Unmixing Problem with no a priori information has been an interesting

problem, in addition of develop automatic algorithms to solve the unmixing problem

with little human interaction.

• Convergence time: accelerations methods for faster convergence to perform real time

unmixing. Having real time algorithms we can include in sensors for instantaneous

unmixing estimations.

• Study of water effects of subsensing objects in hyperspectral images and removing the

water column before running the abundances estimation algorithms.

• Image registration with ENVI/IDL to validate the results using images of IKONOS.
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