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ABSTRACT 
 

 A new rainfall detection algorithm was developed to overcome challenges 

algorithms like the operational NOAA/NESDIS Hydro-Estimator (HE) present over 

Puerto Rico when detecting rainfall.  The HE, a brightness temperature and numerical 

weather prediction based algorithm, detects about half of the rainfall received throughout 

a year, and when it does, the detection of rainfall is inconsistent.  Part of this may due to 

the fact that the HE uses brightness temperature to discriminate between rain and no rain, 

and a large amount of the rainfall received in Puerto Rico is produced by warm clouds.  

In order to achieve greater accuracy of detection over PR, the new rainfall detection 

algorithm utilizes data from multiple channels of GOES-12 to extract several features 

from clouds (e.g., Brightness Temperature, Visible Reflectance, and Albedo).  These 

features are utilized to perform a supervised classification of the image pixels into 4 

previously defined classes.  The classes were defined using NEXRAD rainfall detection 

information. 

 Radar and satellite information from five heavy storms that occurred from 2003 

to 2007 were used to define the parameters of the algorithm.  Once the algorithm was 

developed a discrete validation was performed to both the cloud classification system and 

the HE using NEXRAD information as ground truth.  The performance of both 

algorithms was measured in terms of rainfall detection and compared.  Warm cloud 

detection capability was also measured and compared between both algorithms. 
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RESUMEN 

Un nuevo algoritmo de detección de lluvias se ha desarrollado para superar retos 

similares a los que presenta la versión operacional del Hidro-Estimador (HE) de 

NOAA/NESDIS sobre Puerto Rico al detectar precipitación.  El HE, un algoritmo basado 

en temperatura de brillantez y datos de predicción numérica, detecta alrededor de la mitad 

de la precipitación recibida a lo largo de un año en Puerto Rico, y cuando lo hace, la 

misma es irregular.  Parte de esto se debe a que el HE utiliza temperatura de brillantez 

para discriminar entre la lluvia y no lluvia, y una gran cantidad de la precipitación 

recibida en Puerto Rico es producto de nubes tibias.  Con el fin de lograr una mayor 

precisión de la detección a través de PR, el  nuevo algoritmo de detección utiliza datos 

provenientes de múltiples canales de GOES-12 para extraer diversas características de las 

nubes (ejemplo, temperatura de brillantez, reflectancia del canal visible y albedo).  Estas 

características se utilizan para llevar a cabo una clasificación supervisada de los píxeles 

de la imagen en 4 clases definidas previamente utilizando información de NEXRAD.  

Información de radar y satélite de cinco tormentas que se produjeron entre 2003 y 

2007 se utilizaron para definir los parámetros del algoritmo.  Una vez desarrollado el 

algoritmo se llevó a cabo una validación discreta con el sistema de clasificación de las 

nubes y el HE, utilizando información de NEXRAD como datos reales de campo.  El 

rendimiento de ambos algoritmos se midió en cuanto a detección de lluvia y luego fueron 

comparados.  La capacidad de detección de nubes tibias también fue medida y se 

compararon ambos algoritmos. 
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1 INTRODUCTION 

 

 

1.1 Problem Statement 
 

 

 Rainfall detection and estimation algorithms based on brightness temperature 

extracted from remotely sensed data, such as the National Oceanographic and 

Atmospheric Administration’s (NOAA) operational version of the Hydro Estimator (HE) 

(Scofield and Kuligowski, 2003), exhibits some problems when rainfall is estimated over 

Puerto Rico (PR).  For instance, the Hydro Estimator, a brightness temperature and 

numerical weather prediction based algorithm, detects about half of the rainfall received 

throughout a year (Harmsen et al., 2008), and when it does, the detection rainfall is 

inconsistent.  This may be due to the following reasons: 1) the algorithm was calibrated 

to work over the continental United States, 2) rainfall detection is based on a brightness 

temperature threshold, 3) a large amount of the rainfall is produced by warm clouds, 4) 

cloud features are extracted from a single satellite channel and weather prediction model 

files for correction, and 5) all of the rain detected is the product of a single relationship 

curve regardless of the type of the cloud.  Figure 1.1 shows that at a given time almost 

half of the rainfall received are produced by warm clouds, and that the HE did not detect 

most of the rainfall detected by National Weather Service’s (NWS) Next Generation 

Radar (NEXRAD) located in Cayey, PR since most of the rainfall was produced by warm 

clouds. 
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Figure 1.1 (Right side) Rainfall detected by NEXRAD.  Pixels in blue represent 

rainfall produced by cold clouds, while red pixels represent rainfall produced by 

warm clouds (Right).  (Left side) HE (green) warm cloud detection issue over Puerto 

Rico.  

 

 

 

1.2 Justification 
 

 

 Being able to detect and estimate rainfall are the key element to protect human 

lives and infrastructure.  Having this information on a timely manner can help to mitigate 

or prevent damage produced by floods.  Remote sensing methods are important because 

they can provide valuable information over areas where rain gauges and other sources of 

hydrological information are scarce and only provide information for a given point.  

Information provided by these methods, especially radar and satellite data, may be used 

for flood forecasting, and numerous applications in the hydrometeorological sciences 

(Vila and Velasco, 2002) and by the agricultural community.  With this motivation, 
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researchers have developed several algorithms to detect and estimate rainfall utilizing 

satellite data.   

 The Hydro-Estimator (HE) algorithm (Scofield and Kuligowski, 2003), was 

designed to operate over the continental United States (U.S.) and satisfactory results have 

been reported.   

  

1.3 Objectives 
 

 

 This study has various objectives; including 1) to create a cloud classification 

system to improve rainfall detection; 2) to identify remotely sensed variables that may 

improve detection of rainfall, especially rainfall produced by clouds with brightness 

temperature over 235K; 3) to develop a rainfall detection algorithm, which combines a 

cloud classification system and multiple remotely sensed variables obtained from 

geostationary satellite; 4) to validate the performance of the algorithm using NEXRAD 

data as ground truth. 

 

1.4 Summary of the Following Chapters 
 

 

 Chapter 2 presents the literature review for this study.  Various rainfall detection 

alternatives are described as well as five popular rainfall algorithms.  This discussion is 

oriented to rainfall detection techniques implemented on the following algorithms: 

Hydro-Estimator, GMSRA, PERSIANN, PERSIANN-CCS and SCaMPR. 
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The third chapter deals with the methodology pertinent to this work; experiments 

and data analysis related to the rainfall detection improvements.  Details are offered on 

the implemented supervised classification method as well as the steps taken to: a) identify 

the classes for rainfall detection, b) select the training data set for the supervised 

classification, c) develop the process to determine, which variables enhance rainfall 

detection over Puerto Rico, d) get remotely sensed products to be studied, and e) measure 

rainfall detection performance.  

Results of every step mentioned on chapter 3 are presented in Chapter 4 as well as 

rainfall detection performance obtained by the developed algorithm.  Finally in the fifth 

and final chapter Conclusions, Recommendations and Future Work are presented. 
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2 Literature Review 
 

 

There exist several methods, instruments and sensors to detect and measure 

rainfall.  Some of these are ground based (e.g., rain gauges and radars) while others are 

mounted over satellite platforms (e.g., imagers and sounders).  Sections 2.1, 2.2 and 2.3 

presents instruments used in this study to develop and validate the rainfall detection 

algorithm.  Section 2.4 presents algorithm that in some way take advantage of the 

presented instruments. 

 

2.1 Rain Gauges 
 

 Rain gauges are instruments that offer ground level measurements of precipitation.  

The presence of these has been recorded in history since the Korean Chosun Dynasty 

(1392–1910), and accredited to King Sejong who lived from 1397 to 1450 and was the 

fourth king of the Chosun Dynasty (Jung, 2001).  All rain gauges were of the non-

recording type until Sir. Christopher Wren (1632-1723) invented the first automatic 

tipping bucket.  Unlike the previous versions of the rain gauges Wren’s invention 

recorded the measurements (Biswas, 1967).  In order to measure rainfall every time the 

tipping bucket emptied it triggered a mechanism, which punched holes in a paper.  The 

number of holes punched is proportional to the amount of rainfall.  Automatic tipping 

bucket rain gauges are still being utilized for rainfall studies.  Agencies such as the 

National Weather Service, the U.S. Geological Survey, the U.S. Army Corps of 

Engineers state districts, the National Park Service, and the U.S. Forrest Service have 
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been using rain gauges for rainfall measurements and studies (Habib, 2008).  Figure 2.1 

presents an example of state of the art tipping bucket rain gauge.  In Puerto Rico 125 rain 

gauges are distributed over the entire island, which collects rainfall measurements every 

15 minutes (USGS, 2011).  Rainfall data recorded by this rain gauge network is available 

since January 2000.  Smaller rain gauge networks have also been installed in PR for 

rainfall related studies.  In the following section an example of these small-scale rain 

gauge networks is described. 

 

Figure 2.1 Inside view of a state of the art tipping bucket rain gauge (Source: 

http://www.novalynx.com/images/tipping-bucket-large.jpg). 

 

On 2006, a tipping bucket rain gauge network was installed near the University of 

Puerto Rico’s Mayagüez Campus (UPRM) in western Puerto Rico.  It was installed using 

a Ground Positioning System (GPS) instrument to locate the rain gauges within a 

Geostationary Operational Environment Satellite (GOES) pixel; an area of 4km x 4km 

(figure 2.2).  The network consists of 28 rain gauges; 16 installed on July 2006, and 12 
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installed on June 2007 (Harmsen et al., 2008) each one equipped with a data logger that 

enables rainfall data to be recorded every 5 minutes.  The data logger recording 

frequency can be adjusted (e.g., 10mins, 20mins, 30mins, etc.).  The area selected 

corresponding to a GOES pixel was divided into 16 evenly distributed squares of 1km x 

1km (figure 2.3) where the first 16 rain gauges were located using the assistance of a 

ground positioning system (GPS).  The other 12 rain gauges installed on 2007 were 

distributed within a subwatershed of the Añasco River (Harmsen et al., 2008). 

 

Figure 2.2 Location of rain gauge network installed at western Puerto Rico  

(Source: Harmsen et al., 2008). 

 

 

Figure 2.3 Location of rain gauges installed on western Puerto Rico within a GOES 

pixel (Source: Harmsen et al., 2008). 
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2.2 GOES 
 

 

 NOAA’s Geostationary Operational Environmental Satellites (GOES) are 

satellites designed to provide remotely sensed information on a near-real time basis for 

continuous monitoring, but not limited, of the earth atmospheric conditions (OSO, 2011).  

This is possible given that these satellites orbit the earth on a geosynchronous orbit, 

which enables them to always view the same portion of the earth.  GOES satellites are 

fixed on the geosynchronous plane, which lies at 35,000km (22,300miles) above the earth.  

This altitude allows the satellites to be able to capture the earth full disk (OSO, 2011).  

NOAA runs two of these geostationary satellites over the equator; GOES- East known as 

GOES-12 (GOES-13 after April 14, 2010) and GOES-West known as GOES-11.  GOES- 

East is located at the longitude 75W while GOES-West is located on the longitude 135W 

(NOASIS, 2011b). 

 GOES-12/13 imager (figure 2.4), one of the two instruments aboard of the 

platform, consists of a five channel (i.e., one visible, four infrared) imaging radiometer 

designed to sense radiant and solar reflected energy from sampled areas of the earth.  The 

visible channel is centered at 0.65µm; the infrared channels are centered at 3.9µm, 6.9µm, 

10.7µm, and 13.3µm.  The visible channel has a 1km x 1km resolution while infrared 

channels have a 4km x 4km resolution, except for the fifth channel (known as 6), which 

has a resolution of 4km x 8km.  This summarized on table 2.5. 
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Figure 2.4 GOES Imager (Source: NOAASIS, 2011a). 

 

 

TABLE 2.1 GOES Imager Channels. 

Channel 1 2 3 4 6 

Wavelength 0.5 – 0.7µm 3.8 – 4.0µm 5.7 - 7.3µm 10.2 – 11.2µm 12.9 – 13.7µm 

Resolution 1km x 1km 4km x 4km 4km x 8km 

 

 

2.3 NEXRAD 
 

 

Next Generation Weather Radar system (NEXRAD) consists of 159 Weather 

Surveillance Radar-1988 Doppler (WSR-88D) sites spread throughout the United States 

and United States territories (i.e., Guam and Puerto Rico) (figure 2.5).  These radars are 

managed by the National Weather Service (NWS), Air Force Weather Agency (AFWA) 
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and Federal Aviation Administration (FAA) (NCDC, 2005).  Puerto Rico has one of these 

NEXRAD radars located at Cayey, Puerto Rico, identified as TJUA (figure 2.6), at the 

latitude 18.12ºN and longitude 66.08ºW, and at an altitude of 2794 ft (851.6m) (CWOP , 

2011).  It has a frequency of 2.7GHz and a maximum horizontal coverage of 462.5km 

enabling it to scan the entire island every 6 minutes.  Thanks to efforts from the National 

Server Storms Laboratory (NSSL) from the National Ocean and Atmospheric 

Administration (NOAA) level II NEXRAD data (i.e., base reflectivity, base velocity, and 

base spectrum width) for Puerto Rico was collected, distributed and archived (Kelleher et 

al. 2007); level III data (i.e., composite reflectivity, storm mean relative velocity, one-

hour precipitation, storm total precipitation, among other processed products) is available 

since 2000 (NCDC, 2005). 

 

Figure 2.5 NEXRAD sites over U.S. and U.S. Territories (Source: 

http://noaasis.noaa.gov/NOAASIS/ml/imager.html). 
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Figure 2.6 Location of NEXRAD (TJUA), Cayey, Puerto Rico. 

 

 

2.4 Rainfall Estimation Algorithms 
 

 

 Rainfall estimation algorithms can provide rainfall information for those places 

where other rainfall estimation techniques such as rain gauges and radars cannot, or 

suffer from poor performance.  In the following sections five popular rainfall algorithms 

will be discussed.  Although the discussed algorithms where created for rainfall 

estimation, cloud rainy pixels detection aspects and classification efforts will be 

emphasize. 

 

 

2.4.1 Hydro-Estimator  
 

 

 The National Oceanic and Atmospheric Administration (NOAA) National 

Environmental Satellite, Data and Information Service (NESDIS) Hydro-Estimator (HE) 

(Scofield and Kuligowski, 2003) is a numerical weather prediction and brightness 

temperature-based algorithm developed to provide rainfall estimates on a near-real timely 

matter.  It relies on infrared (IR) remotely sensed imagery and National Centers for 
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Environmental Prediction (NCEP) North American Model (NAM) inputs to detect, estimate, 

and adjust rain rates.  The IR imagery is a product of the GOES-12/13 satellite channel 4 

(10.7µm), which provides images every 15 minutes at 4km x 4km resolution.  These 

images can be translated into brightness temperature (Tb) utilized on the HE on a fixed 

brightness temperature - rain rate relationship (Tb-RR) to estimate rainfall.   

 Before the HE can derive rain rates it undergoes a rain/no-rain discriminatory 

process.  For this process the HE selects an area of 101 x 101 pixels (400km x 400km) 

centered on the pixel of interest.  The minimum temperature (Tmin) is obtained from the 

selected area and used to determine the pixel’s surroundings region of interest used for 

the following steps.  If Tmin is lower than 200K it implies that there is a large convective 

core and therefore an area of 50 pixels in radius is selected.  A Tmin of 220K or higher 

implies that there is a smaller convective core and the region selected will consists of a 

radius of 30 pixels. 

Rainfall pixels are defined as those, which Tb is lower than the average of the 

surroundings.  This is achieved utilizing the standardized temperature, given by equation 

2.1. 

 

T

T T
Z



 


 

2.1 

 

Where T is the brightness temperature at the top of the cloud, µT is the average brightness 

temperature of the surroundings of the pixel and σT is the standard deviation of the 

brightness temperatures of the surroundings of the pixel.  For negative values of Z it is 
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assumed that the pixel belongs to a cirrus cloud and therefore the rain rate is set to zero.  

Every pixel with positive value of Z gets assigned a rain rate using a brightness 

temperature a rain rate relationship obtained through regression (Scofield and Kuligowski, 

2003).  

 The rainfall is then adjusted for moisture availability and subcloud evaporation 

with the Precipitable Water (PW) and Relative Humidity (RH) NAM files.  In areas 

where the convective equilibrium level temperature is relatively high, rainfall gets 

enhanced.  Finally the combination of winds at 850hPa and digital topography is utilized 

to enhance and reduce rain rates in up and downslope regions respectively (Vicente et al., 

1998). 

 

2.4.2 GMSRA 
 

 In 2001, Ba and Gruber (2001) presented the GOES Multispectral Rainfall 

Algorithm (GMSRA). GMSRA is an algorithm that utilizes data from 5 channels of 

GOES satellite (i.e., visible (0.65µm), near infrared (3.9µm), water vapor (6.9µm), and 

window channels (10.7 and 12µm)).  Channel 1 (0.65 µm) is used when available to 

select optically thick clouds, channel 2 (3.9µm) is used to get the effective radius of cloud 

particles during daytime, channel 3 (6.9µm) is used to find clouds with overshooting tops, 

the channel 4 (10.7µm) is used to get Tb at the top of the cloud, and channel 4 is used in 

conjunction with channel 5 (12 µm) to estimate temperature (Ba and Gruber, 2001).  The 

algorithm is based on brightness temperature for rainfall estimation similar to the GOES 
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Precipitation Index (GPI) (Arkin and Meinsner, 1987), Auto Estimator (AE) (Vicente et 

al., 1998) and HE (Scofield and Kuligowski, 2003).  To screen out non-raining clouds 

GMSRA utilizes the effective radius of cloud particles, and spatial and temporal 

temperature gradients.   

 In order to screen clouds the algorithm starts by distinguishing cirrus clouds from 

active cold convective clouds.  In order to distinguish cirrus clouds an empirical method 

developed by Adler and Negri (1988) was modified to work with a smaller area of pixels 

(i.e., 25 x 25 pixels area).  This method computes a slope (Eq. 2.3) and temperature 

gradient (Eq. 2.2) for every cloud with cloud-top temperatures lower than 250K. 

 minTTG avgt 
   

2.2 

)217(568.0 min  TS  2.3 

where Tmin is the minimum temperature of the 25 x 25 pixels area, Tavg is the average of a 

6 pixels surrounding the current pixel.  A large Gt is related to a convective cloud while 

the opposite means that there is a weak gradient associated with cirrus clouds within the 

window.  Pixels that have a Gt less than S (Gt < S) are classified as cirrus clouds and 

rejected as non-raining clouds.  The contrary (Gt > S) means the pixels are retained as 

rainy pixels.  From this process it can be seen that the threshold value of Gt decreases as 

the minimum cloud-top temperature decreases, therefore pixel nearby 217K or colder are 

classified as raining (Kuligowski, 2002).  The final step on this part of the screening is to 

verify the brightness temperature difference of the pixel between the 10.7µm channel and 

the water vapor channel (6.9µm) (Tb10.7 – Tb6.9) for clouds with Tb lower than 220K even 

if they were rejected as non-raining clouds in the previous steps.  If the difference is 
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negative (i.e., (Tb10.7 – Tb6.9)<0 or Tb6.9>Tb10.7) the pixel is retained since they are 

associated with overshooting tops (Tjemkes et al., 1997).  Finally as result of their study, 

Ba and Gruber (2001) added a brightness temperature threshold of 230K during 

nighttime to preserve the skill of the algorithm.  This means that anything above 230K is 

neglected and classified as non-raining clouds. 

  During the daytime the GMSRA takes advantage of the availability of the visible 

channel and the channel 2 (3.9µm) when the radiances are dominated by the solar 

reflected part, and the effective radius of the pixels can be computed.  Pixels with visible 

reflectance less than 0.40 [W/(m
2
Sr

2
µm)] are considered as non-raining clouds and 

associated with cirrus clouds.  For those pixels with optically thick clouds (visible 

reflectance above 0.40 [W/(m
2
Sr

2
µm)]) the Albedo is computed and the effective radius 

is retrieved from the lookup tables created by Rosenfeld and Gutman (1994), which were 

tabulated using an inversion of a radiative transfer model (Nakajima and King, 1990).  

The last step is to compute rain rates for those pixels with an effective radius larger than 

15µm. 

 

2.4.3 PERSIANN 
 

Due to the inadequate reliability and accuracy of previous rainfall algorithm Hsu 

et al., (1996) developed a new approach for rainfall estimation.  Precipitation Estimation 

from Remotely Sensed Information Using Artificial Neural Network algorithm 

(PERSIANN) is an algorithm developed to produce rainfall estimates every 30 minutes at 
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a spatial resolution of 0.25º x 0.25º (28km x 28km).  It uses ground-based data collected 

by the Automated Meteorological Data Acquisition System (AMeDAS), Infrared (IR) 

information from GOES satellites as well as information from passive microwave rainfall 

estimates from low-orbital satellites from National Aeronautics and Space Administration 

(NASA), National Oceanic and Atmospheric Administration (NOAA) and Defense 

Meteorological Satellite Program (DMSP) low altitude polar-orbital satellites (TRMM, 

DMSP F-13, F-14, F-15, NOAA-15, -16, 17) (Ferraro et al., 1995, Weng et al., 2003, 

Sorooshian et al., 2005).  The previous data is used to retrieve the following input 

variables: 

   
  -   the infrared brightness temperature of the pixel 

      -  index denoting if the pixel is located over land, coast or ocean 

   
  -   mean    of the 3 x 3 window centered at the target pixel 

     
  - standard deviation of the   of the 3 x 3 window centered at the  

target pixel 

   
  - mean    of the 5 x 5 window centered at the target pixel 

     
  - standard deviation of the   of the 5 x 5 window centered at the  

target pixel 

These features are fed into Artificial Neural Network (ANN), which input layer consists 

of a clustering procedure (i.e., Kohonen Self Organizing Feature Map (SOFM) (Kohonen, 

1982)) called the input layer.  The input layer function is to detect and classify patterns in 

the input data without reference of the output data (Hsu et al., 1997).  The output of the 

latter act as input for the second part of the procedure, called the output layer.  On this 
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layer PERSIANN utilizes a supervised ANN; a modified version of the Grossberg linear 

layer (Grossberg, 1969).  The function of the output layer is to compute specific rainfall 

rates for the input patterns classified by the SOFM (input layer).  Output layer parameters 

are adjusted using data from passive microwave rainfall estimates processed from low-

orbital satellites (Sorooshian et al., 2000). 

 

2.4.4 PERSIANN-CCS 
 

Throughout the years improvements have been made to the original version of the 

PERSIANN algorithm.  On 2004, (Hong et al., 2004) presented an improvement to the 

latter in, which instead of direct pixel-to-pixel fitting of infrared cloud images to the  rain 

rates the method adds image segmentation and objective classification methods to 

process cloud images into a set of disjointed cloud-patch regions.  This method is called 

PERSIAN Cloud Classification System (CCS).  PERSIANN-CCS establishes different 

brightness temperature and rain rates relationships (    ) by following four steps.  

PERSIANN-CCS first creates patches of clouds using what the developers called, the 

Incremental Threshold Temperature algorithm (ITT) (Hong et al., 2004).  ITT grows 

regions of clouds by gradually incrementing threshold temperatures.  For the region 

growth, a seed is identified (Tmin), next the threshold is incremented and extended to 

neighboring pixels from seeded areas until the border of other seeded areas or cloud-free 

areas are reached.  Then from these patches, coldness, geometric and texture features are 

extracted:  
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 Coldness features 

o      -  minimum    of a cloud-patch 

o       -  mean    of a cloud-patch 

 Geometric features 

o      -  cloud-patch area 

o    - cloud-patch shape index 

 Texture features (  texture) 

o     - standard deviation of cloud-path    

o       - mean value of local standard deviation of cloud    

o       
  - standard deviation of local standard deviations of cloud    

o      - cloud cold core gradient of    

o Gray-image texture 

 

It is important to clarify that here the brightness temperature gradient is computed for the 

cloud patch cold core using equation 2.4.  The cloud cold core is defined as the group of 

pixels surrounding the coldest pixel (Tmin) with brightness temperatures equal or below 

Tmin+15K. 

   



N

i

N
i

TOPG
1 )(

15

   

2.4 

Where N is the number of pixels along the border of the Tmin+15K and µ(i) is the distance 

from the border pixel i to the coldest pixel.   
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On the third step features extracted are fed into a SOFM ANN responsible of 

classifying the patches created in the first step into classes as done on the original version 

of PERSIANN.  Finally, distinct brightness temperature-rain rate curve are assigned to 

each class.  These assigned curves are calibrated utilizing large amounts of GOES images 

and their corresponding rain gauge corrected NEXRAD rainfall.  Because of the 

comprehensive cloud-patch features and the ability to address the variability of rainfall 

distribution in different cloud clusters PERSIAN-CCS outperforms PERSIANN (Hong et 

al., 2004). 

 

2.4.5 SCaMPR 
 

 

 Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) (Kuligowski, 

2002) is a rainfall retrieval algorithm, which combines infrared (IR) and microwave (MW) 

data to produce rainfall estimates for fine timescales and short time periods.  It was 

developed to overcome the weakness of both geostationary and microwave satellites.  

Geostationary satellites can provide continuous IR images but only information from the 

top of the cloud is provided, which can have a weak relationship with the rain rates.  MW 

satellites provide information that can be related better with rain rates but since they are 

mounted on low-orbit platforms, information is available 2 times per day. 

 For rain/no-rain discrimination SCaMPR utilizes a number of different predictors, 

which include and combine other rainfall algorithms estimates and techniques.  Estimates 

from the Autoestimator (AE) (Vicente et a., 1998) and the GMSRA (Ba and Gruber, 
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2001) are used apart as well as in “and” and “or” combinations to screen pixels.  If both 

or one of the algorithms detect rainfall those pixels are retained as rainy pixels.  SCaMPR 

also utilizes brightness temperatures thresholds at 6.9µm, 10.7µm and 12µm to 

discriminate between rain/no-rain.  Predictors considered by SCaMPR are summarized 

below: 

 AE rainfall estimates are larger than zero 

 GMSRA rainfall estimates are larger than zero 

 both AE and GMSRA rainfall estimates are larger than zero 

 at least one of AE or GMSRA rainfall estimates are larger than zero 

 Tb from channel 3 (6.9µm) is lower than the designed threshold (x) 

 Tb from channel 4 (10.7µm) is lower than the designed threshold (x) 

 Tb from channel 5 (12.0µm) is lower than the designed threshold (x) 

 Tb difference between channel 3 and 4 (Tb10.7-Tb6.9) is lower than the designed 

threshold (x) 

 GMSRA’s slope (S) is lower than the designed threshold (x) 

 GMSRA’s temperature gradient (Gt) and slope (S) difference is larger than the 

designed threshold (x) 

 Tb difference between channel 3 and 4 (Tb10.7-Tb6.9) is lower than the designed 

threshold (x1) and Tb difference between channel 5 and 4 (Tb10.7-Tb12.0) is lower 

than the designed threshold (x2)  
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 The thresholds (x’s) in the predictors are adjusted with target data from the 

Special Sensor Microwave Imager (SSM/I) (Ferraro, 1997), and   and   belong to the 

temperature gradient and slope utilized on the GMSRA.  In order to select the best 

thresholds the Heidke Skill Score (HSS) is measured for every predictor when data from 

SSM/I is available with exception of the AE and GMSRA estimates.  The latter is done 

when one or more GOES images and SSM/I images overlap (Kuligowski, 2002). 

 For rainfall estimation the best estimate predictor is selected by computing a 

forward regression and obtaining the optimal regression coefficients (slope and intercept).  

In this step 16 predictors are use; 8 predictors including the AE, GMSRA, Tb6.9, Tb10.7, 

Tb12.0, Gt-S, S, Tb10.7-Tb6.9, and nonlinear transformations for each predictor since some of 

them are related in a nonlinear matter with rain rates.   

 

 

2.5 Hydro Estimator Validations 
 

The HE (Scofield and Kuligowski, 2003), has undergone a number of validations 

from 2002 through 2008.  In 2002 Daniel Vila and Ines Velasco (Vila and Velasco, 2002) 

performed a validation over Del Plata River basin in Buenos Aires province, Argentina, 

where they studied a severe storm registered during 23-24 of September of 2001.  In their 

study they found that the HE tends to underestimate rainfall from clouds with cloud top 

temperatures higher than 215K.  Similar studies where performed in PR by Beatriz Cruz 

(Cruz-González, 2006), where she found that the HE performs better when rain rates are 

accumulated over longer periods of time than it does for instantaneous readings.  She also 



 

 

 

 

 

 22 

found that the HE tends to overestimates rain rates over PR.  In terms of rainfall detection 

the HE obtained 68%, 48% and 60% in probability of detection (POD), false alarm rate 

(FAR) and hit rate (HIT).  However, another validation performed over PR (Ramírez-

Beltrán et al., 2008a), reveals that the HE shows underestimation over a single storm.  In 

the latter the HE exhibited an acceptable Hit Rate (76%) but a low probability of 

detection (36%).  These validations were performed at island-scales and at pixel-scale.  In 

the following sub-section a pixel-scale validation is presented. 

 

2.5.1 HE Pixel-Scale Validation over Western Puerto Rico 
 

  

Throughout a one year period (i.e., August 2006 – 2007) 62 storms events were 

registered by a rain gauge network installed in western Puerto Rico located within a 

GOES pixel (Harmsen et al., 2008).  The recorded data was utilized to perform a pixel-

scale validation of the HE (Scofield and Kuligowski, 2003).  For every event, the HE was 

run to get the rain rate associated with the pixel were the rain gauges were distributed.  

The rainfall measured by the rain gauge network was compared with the value retrieved 

from the HE and also with NEXRAD data.  Comparisons were made in terms of 

detection and estimation. 

Results obtained from this study suggest that the HE has a low Probability of 

Detection (POD) over western PR (50%).  Out of the 62 storms that occurred throughout 

the year the HE detected half of the events.  This may be attributed to the fact that the HE 

is limited with a 235K brightness temperature threshold.  Pixel values obtained from 
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missed rainfall events show that the HE missed those storms were the brightness 

temperature was higher than the algorithm’s threshold (figure 2.7 and 2.8).  Figure 2.9 

shows the rainfall estimation measured by the rain gauge network installed in western PR 

as well as those obtained from NEXRAD. 

It was also observed in this study that large rainfall spatial variability can occur 

within a single GOES pixel (i.e., 4 x 4km area).  It is argued that comparing or validating 

Quantitative Precipitations Estimation (QPE) methods using only one rain gauge for each 

pixel from existing networks like those from the U.S. Geological Survey may be 

inadequate.  Given the high spatial variability observed in Puerto Rico, the measurement 

of rainfall obtained will depend on the location of the rain gauge within the GOES pixel 

(Harmsen et al., 2008).   

 

Figure 2.7Cloud top temperature values associated with storms in, which the HE did 

not detect rainfall. 
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Figure 2.8 Average cloud top temperature values associated with storms in, which 

the HE did not detect rainfall. 

 

 

 

Figure 2.9 NEXRAD and Rain Gauges rainfall estimation associated with storms in, 

which the HE did not detect rainfall. 
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3 Methodology 
 

 

Brightness temperature-based algorithms fail to detect rainfall produced by clouds 

with warm tops.  Some of them use a temperature threshold to screen out non-raining 

clouds, other algorithms only use one remotely sensed product, but most importantly 

some of them only use one Tb rain rate relationship.  Over PR this causes algorithms like 

the HE to have a low probability of detection.  This chapter presents the methodology 

used in this study to improve rainfall detection over PR. 

 

3.1 Cloud Classification System 
 

 

To improve rainfall detection over PR a new rainfall detection algorithm was 

developed.  The new algorithm consists of performing supervised classification utilizing 

the maximum likelihood method (MAL), an algorithm that has been used on other remote 

sensing applications such as: multispectral lands cover classification (Schott, 2007).  The 

classification is done utilizing 4 classes previously defined.  For each class more than one 

remotely sensed feature were obtained from the GOES satellite.  The following sections 

present the methodology behind the cloud classification system.  The cloud classification 

system algorithm’s MATLAB code is presented in appendix A.  A high level flowchart 

of the algorithm is presented on appendix B. 
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3.1.1 Maximum Likelihood 
  

Relying only on Tb to improve rainfall detection over PR is insufficient for 

accurate rainfall detection.  This is the reason why algorithms like the GMSRA and 

SCAMPR take into account other information and not just Tb.  It is possible to obtain 

various features from GOES 12 to perform a classification.  If a classification is to be 

done utilizing more than one channel on different wavelengths a multivariate 

classification method is needed.  MAL provides this capability. 

MAL is a multivariate classification method used on multispectral applications 

such as land cover classification.  On this method the pixel is assigned to whatever class 

it has the highest probability for the spectral vector associated with the pixel (Schott, 

2007); the vector being formed by all the features extracted from the remote sensing 

platform.  

The MAL assumes that the variables follow a Multivariate Normal Distribution; 

and therefore, the likelihood function to be maximized is given by Eq. 3.1, where gi(xm) is 

the likelihood of xm belonging to the class i, xm is a vector of features to be classified, µi is 

the centroid of the class i, l is the number of features associated with the vector x, Si is the 

covariance matrix of the class i and Wi represents the list of variables in class i.   
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3.1.2 Rainfall defined classes 
 

 

The MAL is a supervised classification method.  This means it needs to be trained, 

and therefore the classes in, which it will classify the pixels have to be previously defined.  

For this, the rainfall detection of National Weather Service’s (NWS) NEXRAD radar 

located on Cayey and GOES features from multiple channels were used.  In order to be 

able to generalize, only 4 classes were defined.  First a Tb of 235K was used as threshold 

to classify clouds as warm and cold clouds to form 2 major classes.  Cloud tops with Tb 

below and/or equal to 235K were identified as cold clouds and those with Tb above 235K 

were identified as warm clouds.  Finally using the rainfall detection provided by 

NEXRAD the previously defined classes were divided 4 new classes (figure 3.1): (1) 

Rainy clouds with Tb ≤ 235K, (2) Rainy clouds with Tb > 235K, (3) Non rainy clouds 

with Tb ≤ 235K, and (4) Non rainy clouds with Tb > 235K.  For each class a centroid was 

computed and then used to train the classifier.  Centroids are vectors, which consist of the 

means of every feature in the class. 

 

 
 

Figure 3.1 Classes of clouds defined using NEXRAD. 
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3.1.3 Cloud Classification System Training Data Set 
 

For the training data selection images from rainfall events that occurred from 

November 2003 to October 2007 were selected.  NEXRAD detection information was 

used to separate rainy pixels from non-rainy pixels on the images available from the first 

day of the storm.  Once the pixels were identified as rainy or non-rainy, pixels that could 

cause ambiguity where removed from the training data.  In order to ensure the latter, 

rainy pixels were used on the training data set if it was located in the center of 8 rainy 

pixels and likewise, a non-rainy pixel was used if it was located in the center of 8 non-

rainy pixels.  This is shown in figure (3.2).   

 

 

Figure 3.2 Representation of the pixel in question (dark) and the eight surrounding 

pixels used to determine if it is a rainy or no-rainy pixel. 

 

 After ambiguous pixels were removed from the training data set, GOES-12 

brightness temperature information from channel 4 (10.7µm) was used to create data sets 
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for each of the 4 classes previously identified.  Once the data set were created, centroids 

were computed to represent each class.  They were then used for the supervised 

classification. 

 

3.2 Feature Selection Process 
 

 

 An array of variables can be derived from GOES data.  Some of these variables 

are: (1) Visible Reflectance centered at 0.65µm (only available at daytime), (2) Albedo 

centered at 3.9µm (only available at daytime), (3) Brightness Temperature (Tb) centered 

at 3.9µm, 6.9 µm, and 10.7, and (4) Brightness Temperature Differences (BTD) between 

channels (e.g., Tb3.9µm-Tb10.7µm, and Tb6.9µm-Tb10.7µm).  These are shown in Figure 3.1.  In 

order to identify, which remotely sensed variable(s) may help to improve detection over 

PR, a classification system was designed and assessed.  For this the classifier was run for 

5 storms, utilizing several feature vectors, each vector with a different combination of 

features (i.e., [Tb3.9µm-Tb10.7µm, Tb6.9µm-Tb10.7µm], [Tb3.9µm-Tb10.7µm, Albedo Tb3.9µm], [Tb3.9µm-

Tb10.7µm, Tb10.7µm], etc.).  

 Features used during nighttime, when visible reflectance and albedo are not 

present, are the brightness temperature difference between channels 2 (3.9µm) and 

channel 4 (6.9µm), the brightness temperature difference between channels 3 (6.9µm) 

and channel 4 (6.9µm), and brightness temperatures (Tb) centered at 3.9µm, 6.9 µm, and 

10.7. 
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Figure 3.3 Features available for extraction from GOES-12 for the vicinity of Puerto 

Rico:  a) Visible reflectance (0.65µm), b) Albedo (3.9µm), and c) Brightness 

Temperatures from channel 2 (3.9µm), c) channel 3 (6.9µm) and d) channel 4 

(10.7µm). 

 

 

 

3.2.1 Remotely Sensed Products 
 

 In order to properly determine the rainfall produced by a cloud, it is imperative 

that those pixels from the satellite image capable of producing rain are detected.  

Brightness temperature alone might not be the best way of detecting rainfall since warm 

clouds (i.e., Tb > 235K) are able to produce rainfall over PR.  Having this in mind, 

MATLAB scripts were developed to convert GOES-12 GVAR-Counts to several 

features.  
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3.2.1.1 Visible Reflectance 

 

 

Reflectance can be defined as the ratio of reflected visible radiation to the incident 

visible radiation (Schott, 2007).  The GOES Imager experiences continuous degradation 

while in orbit, and therefore, the pre-launch calibration needs to be corrected with a post-

launch calibration (Wu and Sun, 2005).  Visible reflectance from GOES (figure 3.4) is 

computed as: 

  preref AbtaV *exp*
 

3.2  

 

where Vref is the visible reflectance by post-launched  calibration,   bta exp*  is the 

post-launched calibration term, t is the time in years from the date when the satellite was 

launched to the date of the image, Apre is the visible reflectance by pre-launched 

calibration, and a and b are calibration coefficients.  Visible reflectance by pre-launched 

calibration is defined as: 

 spacepre XXkA   3.3  

 

where k is a calibration coefficient, X is the 10-bit count, and Xspace  is the instrument 

response to space scene where signal is expected to be zero (should always be 29).  The 

MATLAB code used to derive visible reflectance from GOES images is presented in 

appendix C. 
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Figure 3.4 Visible Reflectance image from October 27, 2008 (18:15 UTC) 

 

 

 

3.2.1.2 Brightness Temperature 

 

  

Brightness temperature can be defined as a descriptive measure of radiation in 

terms of the temperature of a hypothetical blackbody emitting an identical amount of 

radiation at the same wavelength (AMS, 2011).  Brightness temperature is computed for 

GOES-12/13 channels 2 (figure 5), 3 (figure 6), and 4 (figure 7) (3.9, 6.9 and 10.7 µm) as 

follows: 

countTb *5.0330   176; count     

   3.4  

countTb  418   176; count     

where count is the digital number registered by the satellites sensor.  The MATLAB code 

used to derive brightness temperature from GOES images is presented in appendix D. 



 

 

 

 

 
33 

 

Figure 3.5 Channel 2 Brightness Temperature (K) from October 27, 2008 (18:15 

UTC) 

 

 

Figure 3.6 Channel 3 Brightness Temperature (K) from October 27, 2008 (18:15 

UTC)  
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Figure 3.7 Channel 4 Brightness Temperature (K) from October 27, 2008 (18:15 

UTC)  

 

 

 

3.2.1.3 Albedo 

 

 

 In 2008, Lindsey and Grasso (Lindsey and Grasso, 2008), presented an algorithm 

to extract the effective radius of clouds centered at 3.9µm, utilizing data from GOES-12, 

channels 2 and 4 and based on albedo plus the scattering and solar zenith angle.  

Unfortunately, the lookup tables do not work for PR conditions.  The algorithm was 

developed to work with clouds with brightness temperatures lower than 233K.  

Therefore, for locations where warm cloud rainfall occurs, like PR, the effective radius 

estimation gets saturated (i.e., most of the pixels receive the highest value on the tables).  
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Due to the latter situation, the albedo portion was extracted to and used in the 

classification algorithm to provide an indirect relationship for estimating effective radius. 

 The algorithm starts by converting GVAR-Counts from each channel into 

brightness temperatures.  Once the brightness temperatures are computed, then the 

algorithm calculates geometric parameters needed to perform the correct calculations 

based on date and time.  The parameters computed are: a) solar zenith angle, b) scattering 

angle, c) GOES platform zenith angle, and d) relative azimuth angle (difference between 

the solar and satellite azimuth angles) (figure 3.8). 

 

 

Figure 3.8 Geometric parameters. 
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Once the geometric parameters are computed for every pixel in the image, the albedo gets 

computed as follows: 

9.3

9.39.3

e

e

RS

RR
a






 

3.5  

 

where   is the albedo at 3.9 microns, R3.9 is the observed radiance from channel 2, S is 

the solar irradiance of GOES 12 channel 2, and Re3.9 is the equivalent black body emitted 

thermal radiation at 3.9 microns for cloud to temperature Tc.  R3.9 or total radiance is 

defined as: 

),( 9.39.39.3 bTwaveNumberPlanckR     3.6  

 

where R3.9 is the total radiance at the channel centered  at 3.9μm, waveNumber3.9 is the 

wave length number in cm
-1

 and, Tb3.9 is the brightness temperature at 3.9μm.  Re3.9 or 

estimated blackbody radiance is defined as: 

),( 7.109.39.3 bTwaveNumberPlanckR 
   

3.7  

 

where Re3.9 is the estimated blackbody radiance at 3.9μm, waveNumber3.9 is the wave 

length number in cm
-1

 and, Tb3.9 is the brightness temperature at 3.9μm.  

Planck(waveNumber,Tb) in (Eq. 3.6 ) and (Eq. 3.8) refers to the Planck’s equation.  The 

same is used to calculate radiances.  Planck’s equation is defined as: 
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where 9.39.39.3 ),( RTwaveNumberI b  , and 9.37.109.3 ),( eb RTwaveNumberI  , and bTT  ., v

  is the speed of light (299,792,458m/s), h  is the Plank constant {6.62606896(33)x10
-34

 , 

J.s}, and k  is the Boltzmann constant {1.3806504(24)x10
-23

 J.K
-1

}.  The MATLAB code 

used to derive albedo from GOES images is presented in appendix E. 

 

3.3 Data Set 
 

Five rain events were selected to measure the performance of the new rainfall 

detection algorithm over PR (table 3.1).  The selected events were heavy storms that 

occurred from 2003 to 2007, which created damage to infrastructure and/or humans.  

Information was retrieved from GOES-12, NEXRAD and the HE.  From GOES, images 

where obtained from channels 1, 2, 3 and 4 to get Visible Reflectance 0.65µm, 

Brightness Temperatures at 3.9, 6.9 an 10.7µm, and albedo centered at 3.9µm.  Rain rates 

were obtained from NEXRAD and the HE and converted into rainfall detection.  Pixel 

with no rain where given a binary value of 0 and 1 for pixels with rain.   

 

TABLE 3.1 Rainfall Events. 

Event Date Description 

November 11-12, 2003 driven by cyclone, which stalls and breaks down into a trough 

December 5-8, 2003 driven by the merging of a tropical vortex with a mid latitude cold front 

April 19-24, 2005 driven by a sub-tropical trough that is poorly organized 

May 17, 2005 driven by a south west trough coming from Caribbean sea 

October 27-30, 2007 driven by an easterly wave passing by PR during this time 
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3.4 Performance Evaluation 
 

 

 The classifier’s discrete performance (detection) is to be measured for every step 

mentioned in previous section based on hit rate (HIT), bias, probability of detection 

(POD), and false alarm rate (FAR).  Once the discrete performance is computed for all 

the runs, a performance index (Eq. 3.13) defined by Ramirez-Beltran et al. (2009) will be 

utilized to obtain an overall performance.  The index takes into account the FAR, POD 

and HIT.  An index of 0 indicate a perfect performance (FAR=0, POD=1, HIT=1) while 

1 states the contrary or the worst case scenario (FAR=1, POD=0, HIT=0).   

ca

a
POD




   
3.9 

 

ba

b
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
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


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3
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HITPODFAR
index

   
3.13 

 

 The terms a through d utilized for each equation are extracted from a contingency 

table (table 3.2).  The table takes into account the detection of the classifier and assesses 

it with the detection of NEXRAD, which is used as ground truth.  A similar table (table 



 

 

 

 

 
39 

3.3) was created to measure the performance of the HE to be able to contrast both 

algorithms performance in terms of detection. 

 To assess how well the cloud classification system detects rainfall produced by 

warm clouds, the warm cloud rainfall detection percentage will be obtained.  The latter is 

defined as the ratio of pixels that produced rainfall and have a brightness temperature 

above 235K detected by the cloud classification system to those detected by the 

NEXRAD, expressed as a percentage.  Equation 3.14 shows how this metric is obtained. 

100*
_

lg_
%

ByNEXRADn

ByAn
onainDetectiWarmCloudR    3.14 

 

Where n_ByAlg is the number of pixels that produced rainfall and have a brightness 

temperature above 235K and were detected by the cloud classification system and 

n_ByNEXRAD is the number of pixels that produced rainfall and have brightness 

temperature above 235K detected by NEXRAD.  The same metric is used for the HE to 

determine if using a cloud classification system with multiple remotely sensed variables 

improves warm cloud rainfall detection. 

 Once the cloud classification system was run for all the storms, a graphical 

comparison was made to visually compare the rainfall detection performance of both the 

HE and the cloud classification system with NEXRAD. 
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TABLE 3.2 Classifier detection contingency table. 

 

 
 

 

TABLE 3.3 Hydro-Estimator detection contingency table. 
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4 Results 
 

 

Five heavy storms that occurred during 2003 to 2007 were selected for a discrete 

comparison between the Hydro-Estimator (HE) and the developed cloud classification 

system.  This chapter presents the results obtained on the feature selection process and 

the discrete comparison between the cloud classification and the HE during daytime and 

nighttime. 

 

4.1 Selected Features 
 

In order to identify the features that best describe rainfall occurrence over PR, the 

five selected storms were divided in half.  Half of the images available for each storm 

were used for calibration, and the other half was used for validation.  To derive centroids 

for each of the four classes, NEXRAD rainfall detection information was used.  Five set 

of centroids were obtained; one from each storm (5 storms x 5 centroid sets).  The 

centroids obtained were used to perform validation with the observations with the second 

half of every storm (i.e., centroids selected for November 2003 were used to perform 

validation with every storm and equally with every centroid obtained).  The validation 

consisted of running the cloud classification system using the centroids obtained from the 

first half of every storm and testing every possible feature combination (26 possible 

combinations).  The latter resulted in 650 runs, which were used to determine the best 

feature combination as well as the best centroids set.  It is important to emphasize that 
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this step is only done once and only to determine the classification system parameters at 

the development phase. 

During daytime the remotely sensed features selected with the best overall 

performance were the combination of visible reflectance centered at 0.65µm, brightness 

temperature difference between channels 2 (3.9µm) and 4 (10.7µm), brightness 

temperature from channel 4 (10.7µm) and Albedo centered at 3.9µm.  Table 4.1 presents 

the five feature combinations, out 26 possible combinations, that obtained the best 

performance in terms of detection.   

 

TABLE 4.1 Average performance of the best features for rainfall detection during 

daytime. 
 

Feature Combination      INDEX  

VisRef0.65µm, Tb3.9µm-Tb10.7µm, Tb10.7µm, Alb3.9µm      0.433 

VisRef0.65µm, Tb6.9µm-Tb10.7µm      0.446 

VisRef0.65µm, Alb3.9µm      0.448 

VisRef0.65µm, Tb3.9µm-Tb10.7µm, Tb6.9µm-Tb10.7µm, Tb10.7µm, Alb3.9µm      0.453 

VisRef0.65µm, Tb6.9µm-Tb10.7µm, Alb3.9µm      0.464 

 

During nighttime when visible reflectance and albedo are not available, the 

remotely sensed features selected with the best overall performance were the combination 

of the brightness temperature difference between channels 2 (3.9µm) and 4 (10.7µm) and 

the brightness temperature difference between channels 3 (6.9µm) and 4 (10.7µm).  Table 

4.2 shows the five feature combinations, which obtained the best performance in terms of 

detection. 
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TABLE 4.2 Average performance of the best features for rainfall detection during 

nighttime. 
 

Feature Combination      INDEX  

Tb3.9µm-Tb10.7µm, Tb6.9µm-Tb10.7µm      0.356 

Tb3.9µm, Tb6.9µm-Tb10.7µm      0.368 

Tb3.9µm, Tb6.9µm, Tb3.9µm-Tb10.7µm, Tb6.9µm-Tb10.7µm      0.376 

Tb10.7µm, Tb3.9µm-Tb10.7µm      0.387 

Tb3.9µm, Tb3.9µm-Tb10.7µm      0.387 

 

 

4.2 Selected Centroid Set 
  

During daytime the centroid set that produced the best performance results were 

those obtained from the storm of October 2007.  This centroid set obtained an average 

performance index of 0.35.  Rainy clouds with brightness temperature below 235K are 

defined as those that average visible reflectance centered at 0.65µm of 0.56 

[W/(m
2
Sr

2
µm)], a difference of 30.39K between brightness temperature from channel 2 

(3.9µm) and channel 4 (10.7µm), a brightness temperature of 215.08K on channel 4 

(10.7µm), and an albedo of 1.79%.  Rainy clouds with brightness temperature higher than 

235K are defined as those that average visible reflectance centered at 0.65µm of 0.61 

[W/(m
2
Sr

2
µm)], a difference of 16.03K between brightness temperature from channel 2 

(3.9µm) and channel 4 (10.7µm), a brightness temperature of 241.49K on channel 4 

(10.7µm), and an albedo of 2.22%.  Similar to the feature selection this step is only done 

once, only to determine the classification system parameters at the development phase. 
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Non-rainy clouds with brightness temperature below 235K are defined as those 

that average visible reflectance centered at 0.65µm of 0.48 [W/(m
2
Sr

2
µm)], a difference 

of 26.30K between brightness temperature from channel 2 (3.9µm) and channel 4 

(10.7µm), a brightness temperature of 223.09 K on channel 4 (10.7µm), and an albedo of 

2.15%.  Non-rainy clouds with brightness temperature higher than 235K are defined as 

those that average visible reflectance centered at 0.65µm of 0.36 [W/(m
2
Sr

2
µm)], a 

difference of 19.33K between brightness temperature from channel 2 (3.9µm) and 

channel 4 (10.7µm), a brightness temperature of 251.93K on channel 4 (10.7µm), and an 

albedo of 5.88%.  Table 4.3 summarizes the centroid values for every class. 

 

TABLE 4.3 Centroids selected for daytime rainfall detection. 
 

Class Description VisRef0.65µm Tb3.9µm-Tb10.7µm Tb10.7µm Alb3.9µm 

Rainy clouds Tb<235 0.56 30.39 215.08 1.79 

Rainy clouds Tb>235 0.61 16.03 241.49 2.22 

Non-rainy clouds Tb<235 0.48 26.30 223.09 2.15 

Non-rainy clouds Tb>235 0.36 19.33 251.93 5.88 

 

During nighttime the centroids with the best detection performance were those 

obtained from the storm of May 2005 with an average index of 0.31.  Rainy clouds with 

brightness temperature below 235K are defined as those that average a difference of 1.04 

K between brightness temperature from channel 2 (3.9µm) and channel 4 (10.7µm), and 

an -0.09 K difference between brightness temperature from channel 3 (6.9µm) and 

channel 4 (10.7µm).  Rainy clouds with brightness temperature higher than 235K are 

defined as those that average a difference of 3.82K between brightness temperature from 
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channel 2 (3.9µm) and channel 4 (10.7µm), and an –7.19K difference between brightness 

temperature from channel 3 (6.9µm) and channel 4 (10.7µm). 

 Non-rainy clouds with brightness temperature below 235K are defined as those 

that average a difference of 5.77K between brightness temperature from channel 2 

(3.9µm) and channel 4 (10.7µm), and an -1.62K difference between brightness 

temperature from channel 3 (6.9µm) and channel 4 (10.7µm).  Non-rainy clouds with 

brightness temperature higher than 235K are defined as those that average a difference of  

10.18K between brightness temperature from channel 2 (3.9µm) and channel 4 (10.7µm), 

and an –16.28K difference between brightness temperature from channel 3 (6.9µm) and 

channel 4 (10.7µm).  Table 4.4 summarizes the centroids selected for rainfall detection 

during nighttime. 

 

TABLE 4.4 Centroids selected for nighttime rainfall detection. 
 

Class Description Tb3.9µm-Tb10.7µm Tb6.9µm-Tb10.7µm 

Rainy clouds Tb<235 1.04 -0.09 

Rainy clouds Tb>235 3.82 -7.19 

Non-rainy clouds Tb<235 5.77 -1.62 

Non-rainy clouds Tb>235 10.18 -16.28 
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4.3 Discrete Performance Comparison 
 

 

Once the centroids and the features that best describe rainfall occurrence over 

Puerto Rico were selected, both the cloud classification algorithm and the HE were run 

for all of the storms.  The cloud classification system was run using the best configuration 

obtained.  The discrete performance of both algorithms was obtained to compare them 

with one another.  The validation of performance was measured during daytime and 

nighttime using information from NEXRAD as ground truth.  The results of both 

algorithms are presented in the following sections. 

 

4.3.1 Daytime Results 
 

 

During daytime both algorithms were executed for the five heavy storms selected 

from 2003 to 2007.  To perform a fair comparison, both algorithms were run with the 

same observations.  Rainfall detection information was obtained from NEXRAD and 

used as ground truth to obtain the metrics of hit rate (HIT), probability of detection 

(POD), false alarm (FAR), bias (BIAS) and performance index (INDEX).  Table 4.5 

present the results obtained for the cloud classification system.  The HE results are 

presented on table 4.6.  From the performance results it can be seen that the cloud 

classification obtained better results than the HE on every storm.  The cloud classification 

system obtained an average of 0.87, 0.47, 0.40, 0.78, and 0.35 in HIT, POD, FAR, BIAS, 

and INDEX respectively.  The HE obtained an average of 0.77, 0.38, 0.67, 1.17, and 0.50 

in HIT, POD, FAR, BIAS, and INDEX respectively.  It can be seen from the results that 
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the cloud classification system reduced the false alarm while maintaining a good hit rate 

and a reasonable probability of detection when compared with the HE.  

 

 

TABLE 4.5 Cloud classification system performance during daytime.  
 

Storm Date HIT POD FAR BIAS INDEX 

Nov-03 0.79 0.78 0.15 0.92 0.19 

Dec-03 0.89 0.30 0.75 1.18 0.52 

Apr-05 0.98 0.38 0.49 0.74 0.38 

May-05 0.89 0.07 0.44 0.13 0.49 

Oct-07 0.79 0.80 0.15 0.93 0.19 

Average 0.87 0.47 0.40 0.78 0.35 

 

 

TABLE 4.6 Hydro-Estimator performance during daytime.  
 

Storm Date HIT POD FAR BIAS INDEX 

Nov-03 0.63 0.64 0.31 0.93 0.34 

Dec-03 0.78 0.42 0.86 2.95 0.55 

Apr-05 0.97 0.002 0.99 0.14 0.67 

May-05 0.83 0.07 0.89 0.68 0.66 

Oct-07 0.64 0.78 0.31 1.13 0.30 

Average 0.77 0.38 0.67 1.17 0.50 

 

 

4.3.2 Nighttime Results 
 

 

During nighttime equal to daytime both algorithms were executed for the five 

heavy storms selected from 2003 to 2007.  Rainfall detection information was obtained 

from NEXRAD and used as ground truth to obtain the metrics of hit rate (HIT), 

probability of detection (POD), false alarm (FAR), bias (BIAS) and performance index 

(INDEX).  Table 4.7 present the results obtained for the cloud classification system.  The 



 

 

 

 

 
48 

HE results are presented on table 4.8.  From the performance results it can be seen that 

the cloud classification obtained better results than the HE on every storm.  The cloud 

classification system obtained an average of 0.79, 0.61, 0.35, 0.97, and 0.31 in HIT, 

POD, FAR, BIAS, and INDEX respectively.  The HE obtained an average of 0.69, 0.66, 

0.49, 1.37, and 0.38 in HIT, POD, FAR, BIAS, and INDEX respectively.  Similar to the 

daytime results the cloud classification system reduced the false alarm while maintaining 

a good hit rate and a reasonable probability of detection compared with the HE.  

 

 

TABLE 4.7 Cloud classification system performance during nighttime.  
 

Storm Date HIT POD FAR BIAS INDEX 

Nov-03 0.78 0.63 0.32 0.92 0.30 

Dec-03 0.79 0.61 0.53 1.28 0.38 

Apr-05 0.96 0.52 0.39 0.85 0.30 

May-05 0.72 0.58 0.21 0.73 0.30 

Oct-07 0.72 0.73 0.32 1.08 0.29 

Average 0.79 0.61 0.35 0.97 0.31 

 .  

TABLE 4.8 Hydro-Estimator performance during nighttime.  
 

Storm Date HIT POD FAR BIAS INDEX 

Nov-03 0.65 0.57 0.52 1.20 0.43 

Dec-03 0.68 0.76 0.64 2.15 0.40 

Apr-05 0.96 0.47 0.38 0.76 0.31 

May-05 0.57 0.66 0.46 1.23 0.41 

Oct-07 0.61 0.83 0.45 1.52 0.34 

Average 0.69 0.66 0.49 1.37 0.38 
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4.4 Rainy Warm Clouds Detection 
 

 

One of the objectives of this study and maybe the most important of all is to 

improve rainfall detection from warm clouds.  To measure this improvement the last 

performance measurement obtained from both of the algorithms is the percentage of 

warm cloud detection.  Defined as the ratio of pixels that produced rainfall over 235K 

detected by the algorithms to those detected by NEXRAD expressed as a percentage.  

Similar to all the measurements previously obtained the warm cloud detection 

performance was obtained during daytime and nighttime.  From table 4.9 it can be seen 

that the cloud classification system (CCS) detected more rainfall produced by warm 

clouds than the Hydro-Estimator (HE) in 4 out of the 5 storms studied.  In average the 

CCS detected 39% of the rainfall produced by warm clouds and the HE 28%.  During 

nighttime the CCS detected more rainfall produced by warm clouds than the HE in every 

storm.  In average during nighttime the CCS detected 44% of the rainfall produced by 

warm clouds and the HE 25%.  The results obtained indicate that using a cloud 

classification system with multiple variables as input does improve the warm cloud 

rainfall detection. 
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TABLE 4.9 Rainy warm clouds detection performances during daytime.  

 

Storm Date CCS HE 

Nov-03 45% 31% 

Dec-03 35% 13% 

Apr-05 30% 1% 

May-05 6% 19% 

Oct-07 80% 74% 

Average 39% 28% 

 

 

TABLE 4.10 Rainy warm clouds detection performances during nighttime.  

 

Storm Date CCS HE 

Nov-03 40% 31% 

Dec-03 35% 18% 

Apr-05 58% 31% 

May-05 34% 17% 

Oct-07 55% 27% 

Average 44% 25% 
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4.5 Graphical Comparison 
 

 

In order to perform a visual comparison between the cloud classification system, 

the HE and NEXRAD in terms of rainfall detection, an image was randomly selected.  

From figure 4.1 it can be seen that the HE overestimates rainfall detection; whereas, the 

cloud classification system exhibits detection that resembles NEXRAD.  This agrees with 

the results obtained on the discrete evaluation where the HE exhibits a high FAR. 

 

 
Figure 4.1 Rainfall detection comparison between the HE (left), the cloud 

classification system (center), and NEXRAD (right). 

 

 

 

4.6 Study Limitations 
 

 

Some limitations this study had are: 

 It was not possible to obtain the effective radius and therefore no direct 

microphysical measurements were used as input for the classification system. 

 NEXRAD information was assumed to be ground truth for the classification 

system training (i.e., feature selection process and centroid selection process). 
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 Both the cloud classification algorithm and the Hydro-estimator were validated 

using NEXRAD information as ground truth. 

 NEXRAD information even though is assumed to be ground truth is not perfect.   

 Weather prediction model files (NAM files) needed to run the Hydro-estimator 

are made available through email request.  This made it difficult to add short 

duration rainfall events to this study. 
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5 Conclusions and Future Work 
 

 

5.1 Conclusions 
 

 

The objectives of this study were: 1) to create a cloud classification system to 

improve rainfall detection; 2) to identify remotely sensed variables that may improve 

detection of rainfall, especially rainfall produced by clouds with brightness temperature 

over 235K; 3) to develop a rainfall detection algorithm, which combines a cloud 

classification system and multiple remotely sensed variables obtained from geostationary 

satellite; 4) to validate the performance of the algorithm using NEXRAD data as ground 

truth.  

Maximum likelihood, a supervised classification method used in remote sensing 

practices, was selected as the classification method to be implemented.  This method 

provides the capability of classifying multiple variables into previously defined classes.  

Given that from GOES multiple remotely sensed features can be extracted Maximum 

Likelihood fits well when identifying, which of these features defines best the occurrence 

of rainfall over Puerto Rico (PR). 

The selected classification method was used on this study to identify, which 

remotely sensed features combined define best the occurrence of rainfall in PR.  It was 

determined that during daytime the features that best describe rainfall occurrence are the 

combination of Visible Reflectance centered at 0.65µm, brightness temperature 

difference between channels 2 (3.9µm) and 4 (10.7µm), brightness temperature from 

channel 4 (10.7µm) and Albedo centered at 3.9µm.  During nighttime when visible 
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reflectance and albedo are not available, the remotely sensed that best describe rainfall 

occurrence were the combination of the brightness temperature difference between 

channels 2 (3.9µm) and 4 (10.7µm) and the brightness temperature difference between 

channels 3 (6.9µm) and 4 (10.7µm). 

 Validations were conducted with the cloud classification system using the 

centroids set obtained from the storm of October 2007 for daytime and with those 

obtained from May 2005 for the nighttime.  Detection performance was measured in 

terms of hit rate (HIT), probability of detection (POD), false alarm rate (FAR), bias and a 

performance index, which combines the HIT, FAR and POD to measure the overall 

performance.  The metrics were obtained for both the cloud classification system 

developed and the Hydro-Estimator.  Results show that the classification system 

performed better during daytime as well as at nighttime obtaining an average of 0.87, 

0.47, 0.40, 0.78, and 0.35 in HIT, POD, FAR, BIAS, and INDEX respectively while the 

HE obtained an average of 0.77, 0.38, 0.67, 1.17, and 0.50 during daytime.  During 

nighttime the cloud classification system obtained an average of 0.79, 0.61, 0.35, 0.97, 

and 0.31 in HIT, POD, FAR, BIAS, and INDEX respectively while HE obtained an 

average of 0.69, 0.66, 0.49, 1.37, and 0.38. 

 In terms of improvements achieved detecting rainfall produced by clouds with 

warm tops (i.e., brightness temperature above 235K), the cloud classification system 

obtained better results than the HE during daytime and nighttime with the exception of 

one storm during daytime.  During daytime the cloud classification system detected in 
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average 11% more rainfall produced by warm clouds than the HE and 19% more during 

nighttime. 

In conclusion the developed algorithm obtained better results than those obtained 

by the HE on the storms studied.  It improves overall detection of rainfall as well as 

rainfall detection produced by warm clouds over Puerto Rico.  This implies that using 

multiple remotely sensed features have more potential than just relying on brightness 

temperature from a single channel when detecting rainfall over Puerto Rico.  The 

developed algorithm is a promising rainfall detection technique, which can be used in 

conjunction with a rainfall estimation algorithm to derive rain rates for Puerto Rico. 

 

 

5.2 Recommendations and Future Work 
 

 

Some recommendations for future research works are: 

 Validate the detection performance of the cloud classification system against rain 

gauges at an island scale. 

 

 Validate the detection performance of the cloud classification system against the 

rain gauge network located on western Puerto Rico. 

 

 Validate the detection performance of the cloud classification system against 

radars located on western Puerto Rico (e.g., CASA radars and proposed TropiNet 

radars). 
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 Develop a method or the look-up tables necessary to obtain the effective radius of 

cloud particles for warm clouds. 

 

 Define relationships between the features that best detect rainfall and rain rates for 

Puerto Rico. 

 

 Combine the cloud classification system with a rainfall estimation algorithm to 

improve rainfall estimation for Puerto Rico. 

 

 Extend the cloud classification system to include the continental U.S as well as 

other subtropical regions. 

 

 Implement a real time operational version of the cloud classification algorithm. 
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APPENDIX A  CLOUD CLASSIFICATION SYSTEM MATLAB 

CODE  
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code classifies GOES images using the  

% maximum likelihood function, which returns classification and detection 

% and saves them in a MATLAB file (.mat). 

%  

% inputs:  - path of directory containing data files 

%          - all data files arranged in cell arrays: 

%             All_VisRef -> Visible Reflectance 

%             All_Tb2    -> Brightness Temperature for GOES channel 2 

%             All_Tb3    -> Brightness Temperature for GOES channel 3 

%             All_Tb4    -> Brightness Temperature for GOES channel 4 

%             All_Alb    -> Albedo 

%             Time       -> UTC times 

%             Latm       -> Latitudes 

%             Lonm       -> Longitudes 

%          - path of directory containing the centroids files 

%          - centroids file, which contains the centroids and the classified 

%            data used to obtain the centroids 

% outputs: - MATLAB file containing all rainfall detection provided by the 

%            cloud classification system and the cloud classification 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all; %Clears all information from workspace 

clc; %Clears command window 

close all; %Close all windows and figures 

 

%month and year of the storm to be evaluated 

monthYear = 'May2005'; 

 

%path where the data file is saved 

filePath=('E:\Investigacion\MatlabApplications\DataSets\GOES-12\' monthYear 

'\StormData.mat'); 

 

dayTime = 'day'; %set to 'day' or night depending on the period to evaluate 

 

%set the centroid file path depending on the period of time to be evaluated 

%and the features that will be used 

if(dayTime=='day') 

    centroidsFilePath=('E:\Investigacion\MatlabApplications\DataSets\GOES-

12\Centroids\Oct2007.mat'); 

    %[VisRef,Tb2-4,Tb4,Alb] 

    features = [1245]; 

else 

    cetroidsFilePath=('E:\Investigacion\MatlabApplications\DataSets\GOES-

12\Centroids\May2005.mat'); 

    %[Tb2-3,Tb3-4] 

    features = [45]; 

end 

 

%sets image resolution 

res=4/deg2km(1); 
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%latitude and longitude limits of image 

latlim=[15.89 20.3]; 

lonlim=[-68.43 -63.73]; 

 

%computes the covariances matrices 

covariances = 

{cov(classes{1}(:,features));cov(classes{2}(:,features));cov(classes{3}(:,featu

res));cov(classes{4}(:,features))}; 

 

%iterates through all the items in the cell arrays and obtains cloud 

%classification and rainfall detection with the maximum likelihood method 

for i=1:length(Time) 

    %- depending on the daytime the information sent to the function 

    %  maximumLikelihood is different since the centroids during daytime are 

not 

    %  equal to those used during nightime 

    %- the function maximumLikelihood returns the classification and the 

    %  detection for the entire images 

    if(dayTime=='day') 

        [classification,detection] = 

maximumLikelihood(All_VisRef{i},All_Tb2{i}-All_Tb4{i},All_Tb3{i}-

All_Tb4{i},All_Tb4{i},All_Alb{i},centroids,covariances,features); 

    else 

        [classification,detection] = 

maximumLikelihood(All_Tb2{i},All_Tb3{i},All_Tb4{i},All_Tb2{i}-

All_Tb4{i},All_Tb3{i}-All_Tb4{i},centroids,covariances,features); 

    end  

    All_Classification{i,1} = classification; 

    All_Detection{i,1} = detection; 

end 

 

%saves classifications, detections and identification data into a .mat file 

save(['E:\Investigacion\MatlabApplications\DataSets\GOES-12\' monthYear 

'\MALClassification.mat'],'monthYear','Time','All_Classification','All_Detectio

n','Latm','Lonm') 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code implements the Maximum Likelihood 

% classification method. It classifies all the pixels in an image into 

% 4 previously defined classes and translate the classification into 

% rainfall detection. 

% Inputs: - features used for the classification that will take place 

%         - centroids of the classes in, which pixels will be classified 

%         - classes' covariances 

%         - list of features that will be used for the classification 

% Outputs: - Maximum Likelihood classification 

%          - Classification translated into rainfall detection 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function 

[classification,detection]=maximumLikelihood(feat1,feat2,feat3,feat4,feat5,cent

roids,covariances,features) 

 

classification = zeros(size(feat1)); 

detection = zeros(size(feat1)); 
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filcol = size(feat1); 

 

for m = 1:filcol(1) 

    for n = 1:filcol(2) 

       X = [feat1(m,n) feat2(m,n) feat3(m,n) feat4(m,n) feat5(m,n)];  

       X = X(features); 

       l = length(features); 

       likelihood = []; 

       dist = []; 

       for i = 1:4 

           mahalDist = [(X-centroids{i}(:,features))*inv(covariances{i})*(X-

centroids{i}(:,features))']; 

           likelihood = 

[likelihood;((1/((2*pi)^(l/2)*sqrt(det(covariances{i}))))*exp(-

1/2*mahalDist))]; 

       end 

        

       temp = max(likelihood); 

        

       if(isnan(temp)) 

           classification(m,n) = NaN; 

       else 

           tempClass = find(likelihood == temp); 

            

           if(length(tempClass)>1) 

               classification(m,n) = NaN; 

           else 

               classification(m,n) = tempClass; 

           end 

       end 

    end 

end 

detection(find(classification ==1|classification ==2)) = 1; 

detection(find(classification ==3|classification ==4)) = 0; 
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APPENDIX B  CLOUD CLASSIFICATION SYSTEM 

FLOWCHART  

 
High level flowchart of the cloud classification system. 
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APPENDIX C  VISIBLE REFLECTANCE MATLAB CODE  
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code converts all NetCDF files (.nc) 

% in a directory from GOES-12 counts (band 1) into visible reflectance 

% and saves them in MATLAB files (.mat) files. 

%  

% inputs:  - path of directory containing NetCDF files 

%          - NetCDF files 

% outputs: - MATLAB files containing visible reflectance 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all; %Clears all information from workspace 

clc; %Clears command window 

close all; %Close all windows and figures 

 

%month and year of the storm to be evaluated 

monthYear = 'Oct2007'; 

 

%directory path where NetCDF are saved 

directory=['E:\Investigacion\MatlabApplications\DataSets\GOES-12\' monthYear 

'\NC\BAND_01\']; 

     

%finds all NetCDF files on the directory specified 

toRead=dir([directory '.nc*']);   

 

%sets image resolution 

res=4/deg2km(1); 

 

%latitude and longitude limits of image 

latlim=[15.89 20.3]; 

lonlim=[-68.43 -63.73]; 

 

for filesCounter = 210:length(toRead) 

    

    %displays name of file to be used 

    disp(toRead(filesCounter).name); 

    %opens NetCDF file and loads it into memory 

    nc=netcdf([directory toRead(filesCounter).name],'write'); 

     

    %retrieves GOES counts, latitudes and longitudes from NetCDF file 

    counts=nc{'data'}(:); 

    La=nc{'latitude'}(:); 

    Lo=nc{'longitude'}(:); 

    clear nc; 

 

    %builds latitudes and longitudes matrixs from specified limits 

    %at a 4km*4km resolution 

    [Lonm,Latm]=meshgrid(lonlim(1):res:lonlim(2),latlim(2):-res:latlim(1));  

 

    %reference GOES counts so that they can be visualized as images and 

    %mapped 

    X = griddata(Lon,Lat,counts,Lonm,Latm); 

    X = X/32;%data type change from 16bit to 10 bit 
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    %sets k and C 

    %k value can be found in: 

    

%http://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/GOES_Imager_Vis_PreCal.p

hp 

    %C value can be found in: 

    %GOES_12: 

    

%http://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/GOES_Imager_Vis_OpCal_G1

2.php 

    %GOES-13: 

    

%http://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/GOES_Imager_Vis_OpCal_G1

3.php 

    k = 0.001141; %Goes-12 

    %k = 0.001160; %goes-13 

     

    C = 1.355; %Oct2007 

     

    Xspace = 29; 

     

    %visible reflectance is computed for pre-launched calibration 

    Apre = k*(X-Xspace); 

 

    %visible reflectance is corrected for post-launched calibration 

    VisRef = Apre*C;     

 

    VisRef = flipud(VisRef); 

    Latm = flipud(Latm); 

 

    %saves visible reflectance, latitudes and longitudes into a .mat file 

    save([directory 

toRead(filesCounter).name(1:length(toRead(filesCounter).name)-3) 

'.VisRef.mat'],'VisRef','Latm','Lonm') 

 

end 
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APPENDIX D  BRIGHTNESS TEMPERATURE MATLAB 

CODE 
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code converts all NetCDF files (.nc) 

% in a directory from GOES counts into brightness temperatures 

% and saves them in MATLAB files (.mat) files. 

%  

% inputs:  - path of directory containing NetCDF files 

%          - NetCDF files 

%  

% outputs: - MATLAB files containing brightness temperatures 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all; %Clears all information from workspace 

clc; %Clears command window 

close all; %Close all windows and figures 

 

%directory path where NetCDF are saved 

directory=('E:\Investigacion\MatlabApplications\DataSets\GOES-12\Oct2007\'); 

 

%sets image resolution 

res=4/deg2km(1); 

 

%latitude and longitude limits of image 

latlim=[15.89 20.3]; 

lonlim=[-68.43 -63.73]; 

 

%finds all NetCDF files on the directory specified 

toRead=dir([directory '.nc*']); 

    

for filesCounter=1:length(toRead) 

    %displays name of file to be used 

    disp(toRead(filesCounter).name); 

    %opens NetCDF file and loads it into memory 

    nc=netcdf([direc toRead(filesCounter).name],'write'); 

     

    %retrieves GOES counts, latitudes and longitudes from NetCDF file 

    counts=nc{'data'}(:); 

    La=nc{'latitude'}(:); 

    Lo=nc{'longitude'}(:); 

     

    %builds latitudes and longitudes matrixes from specified limits 

    %at a 4km*4km resolution 

    [Lonm,Latm]=meshgrid(lonlim(1):res:lonlim(2),latlim(2):-res:latlim(1));  

     

    %reference GOES counts so that they can be visualized as images and 

    %mapped 

    countsM = griddata(Lo,La,counts,Lonm,Latm); 

     

    %converts GOES counts into brightness temperatures 

    Tb=zeros(size(countsM)); 

    temp1=find(countsM<176); 

    temp2=find(countsM>=176); 
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    Tb(temp1)=330-0.5*countsM(temp1); 

    Tb(temp2)=418-countsM(temp2); 

    Tb = flipud(Tb); 

    Latm = flipud(Latm); 

     

    %saves brightness temperatures, latitudes and longitudes into a .mat file 

    save([directory '\' 

toRead(filesCounter).name(1:length(toRead(filesCounter).name)-3) 

'.Tb.mat'],'Tb','Latm','Lonm') 

 

end 
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APPENDIX E  ALBEDO MATLAB CODE
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab obtains albedo centered at 3.9um 

% using as input the brightness temperatures from bands 2 and 4 

% of GOES and saves the outputs in MATLAB files (.mat) files. 

%  

% inputs:  - path of directory containing the brigtness temperature files 

%          - brightness temperatures files (.mat) 

% outputs: - MATLAB files containing albedo 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This algorithm is a modified translation of Dr. Daniel Lindey (CIRA)original 

% fortran algorithm [effrad.pgm and necesary functions (geo_parms.f90 & 

lookup.for)]. 

% by: Melvin J. Cardona-Soto (NOAA-CREST UPRM) 

% The original version obtained the effective radius whiles this version 

% only obtains the albedo. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all; %Clears all information from workspace 

clc; %Clears command window 

close all; %Close all windows and figures 

 

%month and year of the storm to be evaluated 

monthYear = 'Sept2008'; 

 

%sets identifications of satelites 

iSat = 12; %12 or 13 

idenSat = 78; %78 for GOES-12, 180 for GOES-13 

 

%directory path where brightness temperature files are saved 

directory = [cd '\' monthYear '\Tb\']; 

 

%finds all NetCDF files on the directory specified 

toRead2 = dir([directory 'BAND_02\' '*BAND_02.Tb.mat*']); 

toRead4 = dir([directory 'BAND_04\' '*BAND_04.Tb.mat*']); 

 

for fileIndex = 1:size(toRead2) 

    %the following lines extracts the brigtnes tempertarues on the .mat 

    %files and saves them in the variables Tb2 and Tb4 

    disp([toRead2(fileIndex).name]); 

    load([directory 'BAND_02\' toRead2(fileIndex).name]) 

    Tb2 = Tb; 

    clear Tb; 

    disp([toRead4(fileIndex).name]); 

    load([directory 'BAND_04\' toRead4(fileIndex).name]) 

    Tb4 = Tb; 

    clear Tb; 

 

    %sets image resolution 

    res=4/deg2km(1); 
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    %latitude and longitude limits of image 

    latlim=[15.89 20.3]; 

    lonlim=[-68.43 -63.73]; 

 

    %obtains wavelenght and wavenumber for each band (2 and 4) 

    [waveLenght2,waveNumber2]=sat2wave(idenSat,2); 

    [waveLenght4,waveNumber4]=sat2wave(idenSat,4); 

 

    %obtains the julian day and utc time from file name 

    jday = str2num(toRead2(fileIndex).name(13:15)); 

    utc = round(str2num(toRead2(fileIndex).name(17:22))/100); 

 

 

    solarZenithAngle = zeros(size(Tb2)); 

    albedo = zeros(size(Tb2)); 

 

    %iterates on every pixel on the image to get albedo for each one 

    Tb2Size = size(Tb2); 

    for r=1:Tb2Size(1) 

        for c=1:Tb2Size(2) 

             

            %obtains solar zenith angle 

            [solarZenithAngle(r,c)]= 

getSolarAZAngles(Latm(r,c),Lonm(r,c),jday,utc); 

             

            %calculates radiances 

            Rad(r,c) = planck(waveNumber2,Tb2(r,c)); 

            Rad_em(r,c) = planck(waveNumber2,Tb4(r,c)); 

 

            %calculates the albedo 

            sunIrradiance = 4.86793*cosd(solarZenithAngle(r,c)); 

            albedo(r,c) = ((Rad(r,c)-Rad_em(r,c))/(sunIrradiance-

Rad_em(r,c)))*100; 

 

        end %end for r 

    end %end for c 

 

    Alb = albedo; 

 

save([cd '\' monthYear '\NC\VisRef\' 

toRead4(fileIndex).name(1:length(toRead4(fileIndex).name)-14) 

'Alb.mat'],'Alb','Latm','Lonm') 

 

end %end main for 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code calculates the wavelenth and wavenumber for a 

% given satellite or instrument and band 

% Inputs: - setellite or sensor id 

%         - band number 

% Outputs: - wavelengh 

%          - wavenumber 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [wavel,waven] = sat2wave(iden,kband) 

 

      wavel=0.; 
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      if((iden>=70)&(iden<=79)&(mod(iden,2)==0)|(iden==180)) 

 

% GOES Imager 

 

         if(kband==2)  

             wavel=3.9; 

         elseif(kband==4)  

             wavel=10.7; 

         elseif(kband==5)  

             wavel=12.0 

         end 

      end 

 

      if(wavel==0) 

          disp('- satellite/sensor or band not available -'); 

      end 

 

% wavenumber (cm-1) from wavelength (um) 

 

      waven=1.e4/wavel; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code calculates the solar zenith angle using the 

% coordinates of the actual pixel 

% Inputs: - latitude 

%         - longitude 

%         - utc time 

%         - julian day 

% Outputs: - solar zenith angle 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [solarZenithAngle]= getSolarAZAngles(lat,lon,utc,jday) 

 

[equationOfTime, sunDeclnAngle] = sunTable(jday); 

 

[TrueSolarTime] = solarTime(utc,lon,equationOfTime); 

 

SolarHourAngle=(TrueSolarTime-12)*15; 

 

% calculate the cosine of the zenith angle 

ZenithAngleCos = sind(lat)*sind(sunDeclnAngle) + 

cosd(lat)*cosd(sunDeclnAngle)*cosd(SolarHourAngle); 

 

if(ZenithAngleCos > 1.0)  

    ZenithAngleCos=1.0; 

end 

 

if(ZenithAngleCos < -1.0)  

    ZenithAngleCos = -1.0; 

end 

 

% calculate zenith 

solarZenithAngle = acosd(ZenithAngleCos) ; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code calculates the solar zenith angle using the 

% julian day 

% Inputs: - julian day 

% Outputs: - equation of time 

%          - sun declination angle 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [equationOfTime, sunDeclnAngle] = sunTable (jday) 

 

beta = (360*(jday-81))/364; 

equationOfTime = 9.87*sind(2*beta) - 7.53*cosd(beta) -1.5*sind(beta); 

 

sunDeclnAngle = 23.45 * sind(360 *((284+jday)/365)); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code calculates the true solar time using the utc, 

% longitude and the equation of time 

% Inputs: - utc time 

%         - longitude 

%         - equation of time 

% Outputs: - true solar time 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [TrueSolarTime] = solarTime(utc,Lon,equationOfTime) 

 

% UTC to local time 

LonHR = floor(Lon/15); 

LocalTime = utc + (LonHR*100); 

 

% Local time to minutes 

Hours = (floor(LocalTime/100)*60); 

Left = (LocalTime - floor(LocalTime/100)*100); 

Mins = Hours+Left; 

 

% Calculate Zone Correction 

LongMn = (Lon/15-floor(Lon/15))*15; 

 

% Zone and equation of time correction 

Lmins = Mins+equationOfTime+4*LongMn; 

TrueSolarTime=Lmins/60.0; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following matlab code implements the plank function to calculate the 

% radiance using the wavenumner and temperature 

% Inputs: - wavenumber 

%         - temperature 

% Outputs: - radiance 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [radiance] = planck(waveNumber,temperature) 

 

% Constants 

c1 = 1.1909e-5; 

c2 = 1.438; 

 

radiance = c1*waveNumber^3/(exp(c2*waveNumber/temperature)-1); 


