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Motivados por las factorizaciones en elementos comaximales Anderson y Frazier

crearon el concepto de factorizaciones generalizadas o teoŕıa de τ -factorizaciones

sobre dominios integrales. Sea D un dominio integral, U(D) es el conjunto de las

unidades y τ una relación simétrica sobre el conjunto D#, el conjunto que consiste

de los elementos distintos de cero que no son unidades en D. Un elemento x ∈ D#

tiene una τ -factorizacion, si x = λx1 ∗ ∗ ∗ xn, donde λ ∈ U(D) y xiτxj para todo

i 6= j. También se dice que, x es un τ -producto de los x′is, cada xi es un τ -factor

de x o xi τ -divide a x. Un ejemplo que Frazier consideró fue la relación τ(n) sobre

Z# definida por xiτ(n)xj si y solo si xi − xj ∈ (n). Es importante reconocer que

cuando n ≥ 2, la relación τ(n) coincide con la relación de equivalencia módulo n en

Z#. Con esta relación ella solo permitió que dos enteros se pudieran multiplicar si

ambos estaban en la misma clase de equivalencia. Este nuevo producto resultó con

nuevas interrogantes de teoŕıa de números.

En 2008, Ortiz generalizó el concepto algebraico de máximo común divisor. En

caso de que se considere la relación τ(n), definimos d como el máximo τ(n)-factor en
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común de x y y, τ(n)-GCD(x, y) si y solo si (1) d es un τ(n)-factor en común de x y y,

y (2) si c es τ(n)-factor en común de x y y, c tiene que ser un τ(n)-factor de d. Resulta

que la condición (2) es muy fuerte, la misma evitó que se garantizara la existencia del

τ(n)-GCD. Ortiz en su tesis de doctorado dió varias ideas acerca de como debilitar

la segunda condición. Una de ellas consistió en reemplazar la condición (2) por “si

c es un τ(n)-factor en común de x y y, entonces c ≤ d”. Esta nueva versión Ortiz

la denotó el τ(n)-MCD. La misma fue estudiada en el 2011 con Luna como parte

de un proyecto de investigación subgraduada bajo la supervision de Ortiz. Ellos

encontraron fórmulas para calcular el τ(n)-MCD, cuando n ∈ {0, 1, 2, 3, 4}. Este

trabajo presenta una caracterización del τ(n)-MCD, cuando n ∈ {5, 6, 8, 10, 12} y

un algoritmo para calcular el τ(7)-MCD. Además, presenta algunas generalizaciones

y algunas ideas de como continuar en los casos cuando n ∈ {9, 11, 13, 14, 15, . . .}.

iv



Abstract of Dissertation Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Sciences

A TYPE OF A MAXIMUM COMMON FACTOR

By

Roxana M. Barrios-Rosales

2016

Chair: Reyes M. Ortiz-Albino. Phd.
Major Department: Mathematical Sciences

Motivated by the comaximal factorizations Anderson and Frazier created the

concept of generalized factorizations or the theory of τ -factorizations on integral

domains. Let D be an integral domain and τ be a symmetric relation on the set D#,

the set of nonzero nonunits elements in D. An element x ∈ D# has a τ -factorization,

if x = λx1 ∗ ∗ ∗ xn, where λ ∈ U(D) and xiτxj for any i 6= j. Also, x is called a

τ -product of x′is, and each xi is called a τ -factor of x (is to say that xi τ -divide x).

As an example, Frazier considered the relation τ(n) on Z# defined by xiτ(n)xj if and

only if xi−xj ∈ (n). It is important to recognize that the relation τ(n) coincides with

the equivalence relation modulo n, when n ≥ 2. With this relation Frazier allowed

to multiply two integers only when both of them are in the same equivalence class.

The new product defined opened the doors to many number theory questions.

In 2008, Ortiz generalized the algebraic concept of the greatest common divisor

in the theory of τ -factorizations. In case when considering the relation τ(n), define

d to be the greatest common τ(n)-factor (τ(n)-GCD) of x and y, if and only if (1) d

is a common τ(n)-factor of x and y and (2) if c is a common τ(n)-factor of x and y, c
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must be a τ(n)-factor of d. The condition (2) is very strong, the τ(n)-GCD does not

exist in general. Ortiz in his dissertation gave several ideas about how to weaken

the second condition. One of them, consisted in replacing (2) with “if c is a common

τ(n)-factor of x and y, then c ≤ d”. This new version was denoted by τ(n)-MCD. It

was studied in 2011 by Luna as an undergraduate research under Ortiz’s supervision.

They found formulas to compute the τ(n)-MCD, when n ∈ {0, 1, 2, 3, 4}. This work

presents a characterization of τ(n)-MCD, when n ∈ {5, 6, 8, 10, 12} and an algorithm

to compute the τ(7)-MCD. Also, presents some generalizations and some ideas about

how to continue in the cases when n ∈ {9, 11, 13, 14, 15, . . .}.

vi



Copyright c© 2016

por

Roxana M. Barrios-Rosales



To you, who I can not longer say goodbye.

To my parents and my brother, because they have taugth me the value of the sacrifice.

To you my Mor.



ACKNOWLEDGMENTS

First at all, I like thank God for allowed me to fulfill this dream. I like to

thank a lot my parents Evangelina Rosales and Carlos Barrios-Leon; my brother

Carlos Barrios-Rosales; and all my family in general for being there when I needed

the most, for their support and for believing in me. Also, I like to thank my lovely

husband Einstein Morales for his unconditional support, guidance, motivation and

advices all this time.

I like to thank my advisor, Matiel, for accepting me as his master student.

Thank you for his patience, dedication and support along this time in my career.

In a very special way, I like to thank all my friends. I will never forget all these

memories that I share with all of you. You all make this way a very nice experience

and full of joy. I will not mention any one in particular, because you know who I

am talking about.

ix



Contents
page
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Chapter 1

Introduction

The concept of the greatest common divisor (GCD) is also known as the great-

est common factor (GCF ). During the ancient greek’s times, it was called greatest

common measure (GCM), because it was used to find the length of a segment of

greatest common measure between two line segments. This concept has been im-

portant due to the theoretical applications like the Bezout identity, the existence of

Diophantine equations among others. To compute the GCD between two integers

there are several ways but the most known is the Euclidean algorithm.

Let a and b be integers with a 6= 0. It is said that a divides b (denoted by a|b),

if there exist an integer c such that b = ac. In such cases, a is called a divisor of

b and b divisible by a. If no such c exists, then a does not divide b and denoted

by a - b. Let x, y ∈ Z∗ (the set nonzero integers). Then there are two equivalent

statement that define the GCD.

1. We say that d ∈ Z∗ is the GCD of x and y, if d is a common divisor of x

and y and for any other common divisor c of x and y, c ≤ d.

2. We say that d ∈ N is the GCD of x and y if d is a common divisor of x and

y and for any common divisor c of x and y, c|d.

1
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The assumption of d being a natural number is necessary in the second defi-

nition in order to both definitions be equivalent. Otherwise, the opposite of d is a

potential integer to be a GCD in the second statement and the staments will not

be equivalent.

Abstract algebra came as a reaction of number theory. It generalized the con-

cept of divisibility and the GCD on an integral domain D. For the definition of di-

visibility, just replace the word “integer” with “element” and “d ∈ N” with “d ∈ D∗”

(the set of nonzero elements) in the second statement of the definition of the GCD.

The algebraic definition of the GCD obtained in this way is not unique, due to the

previous observation, that any associate of d (λd, where λ ∈ U(D), the set of multi-

plicative invertible elements of the integral domain D) satisfies the GCD definition.

Hence, it is unique up to associates or in the quotient structure D∗/U(D). Since

our work is based on an unusual multiplication let us introduced basics concepts on

factorizations and this new product.

The theory of factorizations of nonzero nonunit elements of an integral domain

D into a product of irreducible elements has been widely studied. Lately, there

is a great interest of the study of factorizations into elements that need not to be

irreducible. For example, Mcadam and Swan [8] studied factorizations in terms of

comaximal elements, that is, elements that their respective principal ideals are pair-

wise comaximal. Such definition motivated Anderson and Frazier [1] to create the

concept of the theory of τ -factorizations. Let D be an integral domain D and τ be a

symmetric relation on D# (the set of nonzero nonunit elements of D). An x ∈ D#

has a τ -factorization, if x = λx1 ∗ ∗ ∗ xn, where λ ∈ U(D) and xiτxj for all i 6= j.

We also say that x is the τ -product of xi and each xi is a τ -factor of x. Here x ∗ y

means the product of x and y in D which emphasizes the fact that x and y are
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τ -related, i.e. xτy; and x · y means the usual product of x and y in D. We also

consider x = x and x = λ(λ−1x) both to be (vacuously) τ -factorizations. These two

τ -factorizations are known as the trivial ones.

This type of factorization generalized all the known factorizations. To see this,

let S ⊂ D# a desire set of elements. Define τ = S × S, then the τ -factorizations

are the product of elements in S. As an example Anderson and Frazier [1] consider

the integral domain Z and the equivalence relation τ(n) defined by xiτ(n)xj if and

only if n|xi − xj. Formally, an x ∈ Z#(= Z − {0,±1}) has a τ(n)-factorization, if

x = ±x1 ∗ x2 ∗ ∗ ∗ xn, where xiτ(n)xj for all i 6= j. Since U(Z) = {±1}, instead λ,

we will use the “±” sign in the front of the definition of τ(n)-factorization.

Hamon in [4] characterized the τ(n)-products or the τ(n)-factorizations as special

case of the τJ -factorizations where τJ is defined by xτJy if and only if x − y ∈ J

and J is a proper ideal of D. That is, Hamon considered J to be the principal ideal

(n) on the integer domain Z. Hamon identified the τ(n)-atoms (integers with no

non-trivial τ(n)-factorizations) for n ∈ {0, 1, 2, 3, 4, 5, 6}. The work done by Hamon

[4] and Juett [5] showed that every nonzero nonunit integer can be written as a

τ(n)-product of τ(n)-atoms, when n ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10}. The reader must notice

that, the existence of such type of τ(n)-factorizations does not guarantee that such

τ(n)-factorizations are unique. In fact, they are not unique. Hence, the theory of

τ(n)-factorizations is a little bit more complicated than it seems.

In 2008, Ortiz [9] generalized the definition of the greatest common divisor

using the concept of τ(n)-divisibility, defined as follows: x τ(n)-divides y if and only

if x is a τ(n)-factor of y. In such case, we write “x|(τ(n))y”, otherwise we write

“x -(τ(n)) y” (meaning x is not a τ(n)-factor of y or x does not τ(n)-divide y). He gave
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different definitions of GCD with respect to the theory of τ(n)-factorizations. First

let see what he called the algebraic definition of the τ(n)-GCD. A positive number

is called the greatest common τ(n)-factor of x and y (denoted by τ(n)-GCD(x, y)) if

d satisfies two conditions: (1) d is a common τ(n)-factor of x and y, and (2) if c is

a common τ(n)-factor of x and y, then c|τ(n)
d. However, the second condition turns

out to be very strong. In general the τ(n)-GCD of two elements does not necessarily

exist. Ortiz in his dissertation [9], presented different ideas to weaken the second

condition. One of them is to compute the largest common τ(n)-factor. This is done

by replacing the second condition on the definition of the τ(n)-GCD with “for any

common τ(n)-factor c, of x and y, c ≤ d”. Since the set of integers Z is a total

by ordered set, this definition makes sense and this will guarantee the existence of

it. In 2011, Ortiz and Luna [7] studied this new definition and they called it the

maximum common τ(n)-factor and was denoted by τ(n)-MCD. They found formulas

of the τ(n)-MCD for n ∈ {0, 1, 2, 3, 4}. They also tried the case n = 5, but the

techniques used in the previous cases did not work for the case n = 5. New methods

were necessary to find the formulas of the τ(5)-MCD. They also gave an algorithm

for finding the τ(n)-MCD, which consists in listing all the common factors, which

are bound by the GCD. Then checking for the largest τ(n)-factor such τ(n)-factor

will be the τ(n)-MCD. The process gave the existence of maximum common factor

τ(n)-MCD for any n, but no other formulas were given.

This work presents a characterization of the maximum common τ(n)-factor when

n ∈ {5, 6, 7, 8, 10, 12} and some generalizations. One of the techniques used in this

study is the work done by Serna [10] about the relation τ ′(n) = {(±x,±y) : xτ(n)y},

that is an associative preserving extension of τ(n). At the beginning, we use a code

written in Sagemath to find the patterns. The patterns showed that the complexity

of the computation depends on the known Euler’s φ-function or Euler’s number.
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Since the Euler’s number gives the number of relative prime elements, which deter-

mine how the primes of the prime factorization of an integer are distributed. Serna’s

technique helps us to reduce the amount of sets in which the primes are distributed.

In the case when n = 7 we do not give a formula, but we present a procedure of

logical steps or algorithms which help us to compute the τ(n)-MCD in an easier way

than the way of looking for common τ(n)-factors.



6

1.1 Chapters summary

This work is about finding formulas of the τ(n)-MCD. In the second chapter, the

reader can find some notions in number theory, which are useful for our work. Also,

there is an introduction to the τ(n)-factorizations theory, the characterizations done

for the τ(n)-atoms when n ∈ {0, . . . , 6}. Also, the results of a study of the τ(n)-GCD

and τ(n)-MCD. The notion and details of the associate-preserving extension τ ′(n) of

the relation τ(n) presented in [10] and its relevance in this work.

The third chapter gives a characterization of formulas for the τ(n)-MCD, when

n ∈ {5, 6, 8, 10, 12}. First we present the case of n = 6, because most of the primes

are in two sets. Then the rest of the cases in order, which coincide with the order

of the complexity of the formulas and calculations.

The fourth chapter presents other contributions. The first one is the study of

the τ(7)-MCD. This case is more difficult than the cases in Chapter 4, because

φ(7) = 6. This means that all the primes, except 7, are distributed in 6 distinct set

(or 3 distinct set if using Serna’s work). We provide some algorithms to find the

τ(7)-MCD. Also, there are some generalizations found to compute the τ(n)-MCD

for elements in [0](n), in [±1](n) and the classes [±m](qm), where q is a divisor of

6. There is a suggestion of how to use the results of the τ(7)-MCD to find the

τ(n)-MCD when n ∈ {9, 14, 18}.

Finally in Chapter 5, the reader can find our conclusions and future works.



Chapter 2

Theorical concepts

Number theory has been very important for the development of mathematics,

topics like divisibility and factorization of an integer. This chapter introduces a few

definitions, the fundamental theorem of arithmetic and other important properties

needed for our work. We divide this chapter in two sections, the first one talks

properties of the integers and the second about τ(n)-factorizations.

2.1 Notions in number theory

In this section we summarized the definitions of divisibility, GCD and theorems

that are needed in this work. First let us formalize the definition of a factor in Z.

Definition 2.1.1. [6] Let a and b are integers, with a 6= 0. It is said that a divides

b (denoted by a|b), if there exist an integer c such that b = ac. If no such c exists,

then it is said that a does not divide b (denoted by a - b). If a divides b, then a is

called a divisor or a factor of b, and b is divisible by a.

It is well known that “|” is a partial ordered relation on N. But on Z we loose

the antisymmetric property. That is, if a|b and b|a, then a = ±b (not exactly b). In

abstract algebra this happens when a and b are associates (equivalently the principal

ideals generated by a and b are equal).

7
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A positive integer whose only positive divisors are 1 and itself is called a positive

prime. On Z, a prime p is a nonzero nonunit integer that is divisible by ±1, ±p. For

this reason, we will always write positive prime to refer the usual natural primes.

The following theorem is called the Fundamental Theorem of Arithmetic which says

that any nonzero nonunit positive integer is either a positive prime or a product

of positive primes. As atoms in chemistry, the positive primes are known as the

building blocks of the natural numbers and hence the integers.

Theorem 1. [6] Fundamental Theorem of Arithmetic. Every positive integer

greater than 1 can be factored uniquely (up to order) as a product of positive primes.

A consequence of the fundamental theorem of arithmetic is the canonical fac-

torization of a natural (integer) number x. Since x can be written uniquely as the

product of positive primes, x = p1 · · · pk (respectively, x = ±p1 · · · pk), by putting

together the primes that are equal (respectively, that have the same absolute value)

we could rewrite x as
r∏
i=1

paii (respectively ±
r∏
i=1

paii ), where ai is the number of times

pi appears in the prime factorization. This form or expression is more known as the

product of power primes or the canonical factorization.

The fundamental theorem of arithmetic and the canonical factorization gives a

way to find all divisors of a natural (integer) number. For example if we consider the

number 30 = 2 · 3 · 5, then 1, 2, 3, 5, 6, 10, 15, 30 are all the divisors of 30. In general,

if x = pa11 · · · p
ak
k , the divisors of x are of the form pb11 · · · p

bk
k where each 0 ≤ bk ≤ ak.

Several algebraist have studied many type of factors. Among them, the maximum

or greatest common factor (or divisor) of any two integers (not both zero).
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Definition 2.1.2. Greatest common divisor [6] The greatest common divisor

(GCD) of two numbers a and b, not both zero, is the largest integer dividing both a

and b. It will be denoted by GCD(a, b).

When the GCD between two integers is equal to 1, the numbers are called

coprime or relatively primes. A way for computing their GCD between two nonzero

integers is using their canonical factorizations, by taking the product of the common

prime factors to the minimum exponent that appears in the cannonical factorizations

of the integers of interest. That is, if x = pn1
1 · · · p

nk
k and y = pm1

1 · · · p
mk
k , then any

common factor c of x and y, must have the form c = pl11 · · · p
lk
k where we have that

0 ≤ li ≤ min{ni,mi} for 1 ≤ i ≤ k. For example, let x = 720 and y = 945. Their

canonical factorizations are x = 24 · 32 · 5, y = 33 · 5 · 7. The common prime factors

are 3 and 5 (the minimum exponent are 2 and 1, respectively). Obtain 32 · 5 = 45

is the greatest common divisor between 720 and 945.

If very large numbers without their canonical factorizations are considered last

technique is not appropriated. For these cases, it is better to use the Euclidean

algorithm, which can be found in [6]. Now we introduce the definition of congruence

modulo m.

Definition 2.1.3. [6] If a, b and m are integers, we say that a is congruent to b

modulo m (denoted by a ≡ b (modm)) if m|a−b. If m - a−b, we write a 6≡ b (modm)

and say that a is not congruent, or incongruent to b modulo m.

The reader can notice that, the relation modulo m is an equivalence relation on

Z. The relation modulo m partitions the set of integers into m equivalence classes,
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the set of equivalence classes is denoted by Z/mZ = {[a](m) : 0 ≤ a ≤ m−1}, where

a ∈ Z and [a](m) = {r ∈ Z : r ≡ a (modm)}.

Algebraically, Z/mZ is a commutative ring with identity, with the operations

defined by [a](m) + [b](m) = [a + b](m) and [a](m) · [b](m) = [ab](m). The set Z/mZ,

also known as the set of residues modulo m, have many other properties. In this

document, we will cite several results, some with their respective proofs, needed for

our purpose.

Proposition 1. [6] Let a, b, c,m integers where m ≥ 2 and k > 0. If GCD(c,m) is

different of m, then the following holds.

i. If a · c ≡ b · c (modm) implies that a ≡ b
(
mod m

GCD(c,m)

)
.

ii. If a ≡ b (modm), then ak ≡ bk (modm), for any k ∈ N.

Proof. For part (i.), assume d = GCD(c,m). Then c = dc′ and m = dm′. Notice

that it holds dm′|c(a − b) = dc′(a − b), thus m′|c′(a − b). Since m′ and c′ have

no factors in common, m′|a − b, that is, a ≡ b
(
mod m

GCD(c,m)

)
. The proof for

(ii.) follows using that ak − bk = (a − b)(ak−1 + ak−2b + · · · + abk−2 + bk−1), hence

(a− b)|(ak − bk) and by transitivity m|(ak − bk), then ak ≡ bk (modm).

Theorem 2. (Fermat’s Little Theorem.)[6] Let p be a positive prime. Then

ap ≡ a (mod p) for all integers a. In particular, if p - a, then ap−1 ≡ 1 (mod p).

Theorem (2) was proposed by Fermat 1640. In a letter from Fermat to his

friend Frenicle, but Fermat admitted that he could not write the demonstration,

because there was not enough space on the paper to write the proof. However,

in 1736, Euler did the proof of the “Fermat’s Little Theorem” using the notation
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of modular congruence. The proof of the theorem follows by induction and the

Binomial theorem. We recommend [6] for more details about the proof.

Definition 2.1.4. [6] A number a′ is called the multiplicative inverse of a modulo

m if aa′ ≡ 1(modm). And, we say a is invertible modulo m if it has an inverse.

The inverse of a will be denoted by a−1(modm).

By Theorem (2) and Proposition (2.1), if p - a, then the inverse of a (mod p)

exists. In fact, an integer a is invertible modulo m if and only if GCD(a,m) = 1.

Moreover, if a has an inverse, then it is unique modulo m. As an example, the

inverse of 3 modulo 10 is 7, because 3 · 7 ≡ 21 ≡ 1 (mod 10).

Definition 2.1.5. [6] The cardinality of the set of invertible elements in Z/mZ is

denoted by φ(m), where φ is called Euler’s Totient function or φ-function, and φ(m)

the Euler number of m.

The Euler’s Totient function φ function is a multiplicative function that is, if

GCD(n,m) = 1, then φ(n ·m) = φ(n) · φ(m). This property allows us to compute

the Euler number for any positive integer. First, notice that if p is a positive prime

n ≥ 1, then φ(pn) = pn− pn−1 = pn
(

1− 1
p

)
. First suppose n = 1. Since p is prime,

if a is a number such that 1 ≤ a ≤ p− 1, then GCD(a, p) = 1. Hence, φ(p) = p− 1.

Now, if n 6= 1, it is necessary to consider the number of multiples of p which are

less than pn, it is bpn
p
c = bpn−1c. Thus, φ(pn) = pn − pn−1 = pn

(
1− 1

p

)
. Now,

if m = pa11 · · · p
ak
k is the canonical factorization of m, then we have that φ(m) is

k∏
i=1

φ(paii ) =
k∏
i=1

pai−1i (pi − 1) = m
k∏
i=1

(
1− 1

pi

)
. Euler theorem and its consequences

will help in the calculations. Hence we include Euler Theorem as Theorem (2.1.5).
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Theorem 3. (Euler) [6] If a and m are integers such that GCD(a,m) = 1, then

aφ(m) ≡ 1 (modm).

Proof. Let (a,m) = 1, and let r1, . . . , rφ(m) be the invertible elements in the residue

system modm. Then ar1, . . . , arφ(m) are all invertible, no two of which are con-

gruent modulo m. Therefore, (ar1)(ar2) · · · (arφ(m)) ≡ r1r2 · · · rφ(m) (modm) or, by

rearranging the terms is obtained aφ(m)r1r2 · · · rφ(m) ≡ r1r2 · · · rφ(m) (modm) which,

by Proposition (i), implies that aφ(m) ≡ 1 (modm).

This theorems summarize the basic concepts and tools needed to do most of

the calculations of the τ(n)-factors and τ(n)-MCD which will be formally define in

the following sections.
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2.2 The τ(n)-factorizations

In this section we introduce the notion of τ(n)-factorizations studied in [1, 4]

and some properties with respect to the relation τ(n) on Z#. Formally, we defined

(as in [1, 4]) τ(n) by xτ(n)y if and only if x − y ∈ (n); where (n) is the principal

ideal generated by (n) on Z. We assume that τ(n) is a relation on Z# and not on Z.

Such assumption was made in [1]. Notice that τ(n) expanded on Z coincides with

the relation modulo n (for any n ≥ 2).

Let us recall the fact τ(n) is an equivalence relation on Z#, hence it partitions Z#.

We denote the equivalence class of a ∈ Z# by [a]τ(n)
= {b ∈ Z# : aτ(n)b}. Notice that

{±1, 0} 6⊆ Z#, hence formally [0]τ(n)
, [1]τ(n)

and [−1]τ(n)
do not exist. For simplicity,

[0]τ(n)
(respectively [1]τ(n)

and [−1]τ(n)
) will represent the formal equivalence class of

[n]τ(n)
(respectively [n + 1]τ(n)

and [n − 1]τ(n)
). And must be clear that 0 /∈ [0]τ(n)

(respectively 1 /∈ [1]τ(n)
and −1 /∈ [−1]τ(n)

), because 0 /∈ Z# (respectively ±1 /∈ Z#).

Definition 2.2.1. (τ(n)-factorization.) An element x ∈ Z# has a τ(n)-factorization

if x = ±x1 ∗ ∗ ∗ xm and xiτ(n)xj for all i 6= j.

The product ±x1 ∗ ∗ ∗ xm in Definition (2.2.1) is also called a τ(n)-product of

the x′is. Each xi is called a τ(n)-factor of x, and we say that xi τ -divides x and write

xi|τ(n)
x. The expressions of the form x = x or x = −(−x) are τ(n)-factorizations

vacuous. They are called as the trivial τ(n)-factorizations of x. Notice that, if τ(n)

was defined on Z, then the definition of a τ(n)-factorization needs the assumption

that each xi is in Z#. Otherwise the τ(n)-factorization will not make sense, because

one could write an infinitive product of 1 and −1.
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For n = 0, aτ(0)b, if and only if a − b ∈ (0), which implies that a = b. If

x = x1 ∗ ∗ ∗ xk, is a τ(0)-product of x, then each xi = xj. Thus the τ(0)-factorizations

of x are of the form ±cm. If x = 144 = 24 · 32, then x = (22 · 3) ∗ (22 · 3) = (22 · 3)2 is

a τ(0)-factorization of x. If n = 1, and aτ(1)b, then a− b ∈ (1), thus 1|a− b. Hence,

the τ(1)-factorizations coincide with the usual factorizations. For n = 2, a ∗ b is a

τ(2)-product if and only if a and b both are even or both are odd (that is a, b ∈ [0](2)

or a, b ∈ [1](2)). The τ(n)-products for n ≥ 3 do not have another friendly and

equivalent definition, other than its formal definition.

If an integer does not have any nontrivial τ(n)-factorizations, then such integer

acts as a prime integer with respect to the τ(n)-products. Those integer are called

τ(n)-atoms. In [4], the author characterized the τ(n)-atoms when n ∈ {0, 2, 4, 5, 6}.

The main results of Hamon’s work includes a characterization of when every nonzero

nonunit integer can be written as a τ(n)-product of τ(n)-atoms. Hamon ruled out most

of the integers n (for which Z is not τ(n)-atomic) by using Dirichelt’s Theorem of

infinite sequence of primes. Later, Hamon eliminated case by case until the list of

integers was reduced to n ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10, 12}. Several years later, Juett [5]

(Example 4.1.4), gave a counterexample showing that Z is not τ(12)-atomic. Hence

it is very reasonable to first focus on studying the concepts of τ(n)-factors, when Z

is τ(n)-atomic, that is, n ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10}.

Table (2–1) contains a summary or characterizations, done by Hamon [4] of

the nonprime (which are of course τ(n)-atoms) τ(n)-atoms when n ∈ {0, 2, 4, 5, 6}.

Observe that the usual primes p1, · · · pk are τ(n)-atoms.
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Table 2–1: The form of the non-irreducible τ(n)-atoms for n ∈ {0, 2, 3, 4, 5, 6}

n τ(n)-atom

0
±pa11 · · · p

ak
k ,

ai ≥ 1 and GCD(a1, . . . , ak) = 1
2 x = 2t, where 2 - t
3 x = 3t, where 3 - t
4 x = 2t, where 2 - t

5
x = 5t, where 5 - t, ±p1p2 · · · pm,
pi 6= 5,p1 ≡ ±2 (mod 5)
and p1 ≡ ±1 (mod 5) for all j > 1.

6 x = at, where a ∈ {2, 3} and a - t.

In Table (2–1), each pi denotes a positive prime, ai ∈ N, and t ∈ Z#. Hamon

also gave sufficient conditions for an integer to be a τ(n)-atom for n in general.

Lemma 1. [2] Let a ∈ Z# and p1, . . . , pm be positive primes, then:

i. If a is a τ(n)-atom where a 6≡ ±1 (modn), then ap1 · · · pm is also a τ(n)-atom

where pi are not necessarily distinct positive primes satisfying pi ≡ ±1 (modn).

ii. If pi 6≡ ±pj (modn), then ±pipj is a τ(n)-atom.

iii. Numbers of the form ap1 · · · pmq with pi ≡ ±1 (modn), a 6≡ pi (modn), and

±ap1 · · · pt 6≡ q (modn) are τ(n)-atoms.

2.2.2 On common τ(n)-factors

From the point of view of number theory there are a lot of questions of which

results can be extended to this theory of the τ(n)-products. One of them is the

concept of τ(n)-common factors. It is clear that any common τ(n)-factor is a fac-

tor, hence the canonical factorization helps to recognized the form of the common

τ(n)-factors (by looking the form as a factor). That is, if c is a common τ(n)-factor

of x = pn1
1 · · · p

nk
k and y = pm1

1 · · · p
mk
k , then c must have the form c = pl11 · · · p

lk
k

with 0 ≤ li ≤ min{ni,mi} for 1 ≤ k (but not all zeros). This does not imply

that pl11 · · · p
lk
k is a τ(n)-factorization, but it does it inherites the form as a factor.



16

Motivated by the common τ(n)-factors Ortiz [9] developed the greatest common τ(n)-

divisor.

Definition 2.2.3. [9] Let d ∈ Z#. Then d is called the greatest common τ(n)-factor

of x and y (denoted by τ(n)-GCD(x, y)), if (1) d|τ(n)
x, d|τ(n)

y and (2) if there is

a c such that c|τ(n)
x and c|τ(n)

y, then c|τ(n)
d. If x and y do not have a common

τ(n)-factor, as a convention, we denote the τ(n)-GCD(x, y) = 1.

For example, let x = 16 and y = 48. Then, x = 16 = 8 ∗ 2 = 4 ∗ 4 = 2 ∗ 2 ∗ 2 ∗ 2

and y = 8 ∗ 6 = 12 ∗ 4 = 12 ∗ 2 ∗ 2 are the τ(2)-factorizations of x and y, respectively.

Observe that 8, 4 and 2 are τ(2)-factors of x and y, and 8 = 4 ∗ 2 (therefore 4|τ(2)8

and 2|τ(2)8) which forces 8 to be the τ(n)-GCD(16, 48). Unfortunately, in [9], Ortiz

proved that the τ(n)-GCD of any two nonzero nonunit integers does not always

exist. For example, let x = 24 = 23 · 3 and y = 36 = 32 · 22. Notice that,

x = 6 ∗ 4 = 2 ∗ 12 and y = 36 = 6 ∗ 6 = 2 ∗ 18. The set of common τ(2)-factors

is {6, 2}. But 6 -τ(2) 2 and 2 -τ(2) 6, then τ(2)-GCD(x, y) does not exist. This

says that the second condition in Definition (2.2.3) is very strong. Ortiz in [9] in

his dissertation suggested to weaken it. The new definition considers to select the

largest common τ(n)-factor, by using an order relation as in the following definition.

Definition 2.2.4. [9] Let d ∈ Z#, d is the τ(n)-MCD(x, y) if (1) d|τ(n)
x, d|τ(n)

y and

(2) if c|τ(n)
x and c|τ(n)

y, then c ≤ d. If there is no common τ(n)-factor of x and y,

as a convention we will denote the τ(n)-MCD(x, y) = 1.

With this definition he obtained the existence of the τ(n)-MCD(x, y) in Z# for

all n. Luna and Ortiz [7] gave a proof of it, but we formalize their idea in the
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following theorem.

Theorem 4. If x, y ∈ Z#, τ(n)-MCD(x, y) exist for all n.

Proof. Let D(x, y) = {di : di|x and di|y} be, the set of the common divisor of x

and y and denote D(n)(x, y) = {di ∈ Z∗ : di|τ(n)
x and di|τ(n)

y} the set of common

τ(n)-factors of x and y. If D(n)(x, y) = ∅, then is denoted the τ(n)-MCD(x, y) = 1. If

D(n)(x, y) 6= ∅, |D(n)(x, y)| ≤ |D(x, y)| < ∞. Since Z is well ordered and D(n)(x, y)

is finite, D(n)(x, y) has a maximum element.

In the previous example, the reader may notice that the τ(2)-MCD(24, 36) = 6,

because D(2)(24, 36) = {1, 2, 6} and 6 is the maximum in the set of the common

τ(2)-factors of 24 and 36. Until now, we have used the canonical factorization of

integers to provide examples of common τ(n)-product. Unfortunately to figure out a

formula for the τ(n)-factors, we require to understand the behavior of the τ(n)-factors

and look for patterns. For this, we wrote a program in sage (computer package for

symbolic computation), to helps us to analyze the patterns. An observation from

this patterns is that most of the positive primes are distributed in exactly φ(n) sets.

These sets are the equivalence classes represented by an integer which is relatively

prime to n. Hence the Euler’s number determines the complexity of the behavior of

the τ(n)-products, because the elements are allowed to be τ(n)-multiplied if and only

if they are in the same equivalence class with respect to τ(n). The following Lemma

gives a tool to know the form of the τ(n)-factor for some special cases.

Lemma 2. Let n = pn1
1 · pn2

2 with p1 and p2 positive primes and n1, n2 ∈ N. Sup-

pose x = pm1
1 · pm2

2 x′ where m1 and m2 are no-negative integers (no both zero) and

GCD(p1p2, x
′) = 1. If a positive integer c τ(n)-divides x, then c = pl11 · pl22 · c′ with

1 ≤ li < mi for i ∈ {1, 2} and c′ ≤ x′.
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Proof. Suppose that c|τ(n)
x, then there are nonzero nonunit integers c1, c2, . . . , ck

with x = ±c∗c1∗∗∗ck. Since c|x, c = pl11 p
l2
2 c
′ with c′|x′ and 0 ≤ li ≤ mi for i ∈ {1, 2}.

In order to finish the proof, we need to show that li 6= 0 and li 6= mi. Suppose by

contradiction that li = 0, then c = pl22 · c′. Since x = pm1
1 · pm2

2 x′ = c ∗ c1 ∗ c2 ∗ ∗ ∗ ck

and p1 - c, then p1|ci for some i ∈ {1, . . . , k}. Now ciτ(n)c, so n|c−ci. By transitivity

of division p1|c − ci. Therefore p1 must divide c, a contradiction. If l1 = m1, then

c = pm1
1 · pl22 · c′. Again cτ(n)ci for all i ∈ {1, . . . , k}, that means p1|c − ci for all

i ∈ {1, . . . , k}. Clearly p1|c, hence p1|ci. This is not possible, because pm1
1 |c. In

conclusion, l1 6= 0 and l1 6= m1. Similarly, l2 6= 0 and l2 6= m2.

Before we give a summary of the known maximum common τ(n)-factor formulas

when n ≤ 5, we pause to introduce an useful tool.

2.2.5 Associated-preserving extension of τ(n).

Serna [10] gave an extension of the relation, τ(n), denoted by τ ′(n) = {(±x,±y) :

xτ(n)y} such relation is called an associated-preserving relation, because if xτ ′(n)y,

then −xτ ′(n)y, xτ ′(n) − y and −xτ ′(n) − y. It is also known that in fact, it is an

equivalence relation on Z#. The equivalence class of an integer a ∈ Z# under the

relation τ ′(n) is defined by [a]τ ′
(n)

= {b ∈ Z# : bτ ′(n)a}. In fact, [a]τ ′
(n)

= [a]τ(n)
∪[−a]τ(n)

.

Since [a]τ(n)
⊆ [a]τ ′

(n)
and [−a]τ(n)

⊆ [a]τ ′
(n)

, then [a]τ(n)
∪ [−a]τ(n)

⊆ [a]τ ′
(n)

. Now, if

there exist b ∈ [a]τ ′
(n)

, then either aτ(n)b or −aτ(n)b. In the first case, b ∈ [a]τ(n)
and in

the second case b ≡ −a (modn) and b ∈ [−a]τ(n)
. Therefore b ∈ [a]τ(n)

∪ [−a]τ(n)
. For

simplicity, we will write [±a](n) to mean [a]τ ′
(n)

= [a]τ(n)
∪ [−a]τ(n)

. We write [±1](n)

(and [0](n)) to represent [n + 1]τ ′
(n)

(respectively [n]τ ′
(n)

); ±1 /∈ [±1](n) (respectively

0 /∈ [0](n)), because ±1 /∈ Z# (respectively 0 /∈ Z#). The main reason of defining

this concept is contained in the following corollary.
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Corollary 1. (Serna [10]) If x, y ∈ Z#, then

i. x|τ(n)
y if and only if x|τ ′

(n)
y.

ii. x in an τ(n)-atom if and only if x in an τ ′(n)-atom.

Remark 1. The Corollary (1) is an important tool for our work, because m is

the τ(n)-MCD(x, y) if and only if m is the τ ′(n)-MCD(x, y). Therefore, the prob-

lem of computing τ(n)-MCD(x, y) is equivalent to the problem of computing the

τ ′(n)-MCD(x, y); which should be easier to find due to the number of equivalence

classes with respect to τ ′(n) are basically half than with τ(n).

2.2.6 The τ(n)-MCD(x, y) for n ∈ {0, 1, 2, 3, 4}

The authors in [7] gave a characterization of the τ(n)-MCD for n ∈ {0, 1, 2, 3, 4}.

In this section those the reader can see characterizations. For the case n = 0, let

x, y ∈ Z#, if x = pa11 · · · p
ak
k and y = pb11 · · · p

bk
k , where pi are distinct usual positive

primes. Suppose x = αs and y = βt, where α and β are (the only) τ(0)-atoms

dividing x and y, respectively. Also, s = GCD(a1, . . . , ak) and t = GCD(b1, . . . , bk).

Hence, in [7] the authors demonstrate that if x = αs and y = βt, with |α| = |β|, then

τ(0)-MCD(x, y) = αGCD(s,t). Otherwise τ(0)-MCD(x, y) = 1. This result coincide

with the τ(0)-GCD(x, y), a result of [9]. When n = 1, the τ(1)-factorizations are

the usual factorizations. Hence, if x, y ∈ Z#, τ(1)-MCD(x, y) = GCD(x, y). For

n = 2, notice that a τ(n)-factor of an odd integer must be odd integer. Hence the

τ(2)-MCD(x, y) = GCD(x, y), when both x and y are odd. On the other hand, if

x = 2nx′ and y = 2my′ (where x′ and y′ are odd) are both even integers, then by

Lemma (2) the τ(2)-MCD(x, y) is 2 to the min{n,m} − 1 times the GCD(x′, y′).

If x is odd and y is even, then there is no common τ(2)-factor. When n = 3, the

formula for the τ(3)-MCD(x, y) turned out to have a great similarity to the formula

of the τ(2)-MCD. If x = 3nx′ and y = 3my′ are both divisible by 3 (x′ and y′ are not
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divisible by 3), then the τ(3)-MCD(x, y) = 3min{n,m}−1 ·GCD(x′, y′). If x and y are

not divisible by 3, then τ(3)-MCD(x, y) = GCD(x, y). If x and y are not divisible

by 3 and y is not, then they de not have any common τ(3)-factor. If n = 4, then

there are several cases but the two main cases arose again. We summarize this case,

together to the previous ones in Table (2–2).

Table (2–2) summarized the work done in [7] for computing the τ(n)-MCD,

when n ∈ {0, 1, 2, 3, 4}.

Table 2–2: The τ(n)-MCD(x, y), for n ∈ {0, 1, 2, 3, 4}.
τ(n) (x, y) τ(n)-MCD(x, y)

τ(0) (αs, βt)
|α| = |β|: αGCD(s,t)

|α| 6= |β|: 1
τ(1) (x, y) GCD(x, y)

τ(2)

(2tx′, 2sy′) 2min{s,t}−1GCD(x′, y′)
(2tx′, 2k + 1) 1
(2l + 1, 2k + 1) GCD(x, y)

τ(3)

(3tx′, 3sy′) 3min{s,t}−1GCD(x′, y′)
(3tx′, 3k + 1) 1
(3l + 1, 3k + 1) GCD(x, y)

τ(4)

(2tx′, 2sy′)
t ∈ {2, 3} 2GCD(x′, y′)

(2tx′, 2sy′)
t, s ≥ 4

2min{s,t}−2GCD(x′, y′)

(2tx′, 4k + 1) 1
(2tx′, 4k + 2) 1
(4l + 1, 4k + 1) GCD(x, y)
(4l + 2, 4k + 2) 1
(4l + 1, 4k + 2) 1

Summary of τ(n)-MCD for any x, y ∈ Z#, when n ∈ {0, . . . , 4}

As a summary, the concepts of τ(n)-factorization seems to be a very naive and

easy concept, but at the same time the level of technicalities and the behavior of

the τ(n)-product become more complicated to put on a formula. The next chapter

will present the formulas of the τ(n)-MCD(x, y) for n ∈ {5, 6, 8, 10, 12} and when x

and y have a common τ(n)-factor.



Chapter 3

The τ(n)-MCD when n ∈ {5, 6, 8, 10, 12}

In [7], Luna and Ortiz found formulas for the τ(n)-MCD when n ∈ {0, 1, 2, 3, 4}.

Through the brainstorming of this work, we realized that the difficulty of τ(5)-MCD

was based on how the prime factors are distributed in the equivalence classes of τ ′(n).

Hence, there is the need of understanding how the equivalence classes of τ ′(n) behave

among themselves.

In this chapter, we present the formulas of τ(n)-MCD when n ∈ {5, 6, 8, 10, 12}.

Since the primes distinct to 2 and 3 are located in basically two classes modulo 6,

first we present the case when n = 6. Later, we present the cases when n belongs

to {5, 8, 10, 12}, because the τ ′(n) has the same number of equivalence classes that

contain almost all the primes.

3.1 The τ(6)-MCD

In this section the reader will find our result obtained for the case n = 6.

The case was split into several subcases. Most (if not all) of the subcases will give

a characterization for the τ ′(n)-MCD, and so the τ(n)-MCD is obtained through

Remark (1). Before we give the formulas of the τ(6)-MCD, let us explain how does

the τ ′(6)-products behave.

Proposition 2. Let x =
m∏
i=1

xi be a τ ′(6)-product. Then each xi ∈ [0](6) if and only if

x ∈ [0](6). If each xi ∈ [±1](6), then x ∈ [±1](6).
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Proof. If each xi ≡ 0 (mod 6), then x ≡
m∏
i=1

xi ≡ 0 (mod 6). For the converse, notice

that since x =
m∏
i=1

xi is a τ ′(6)-product and x ∈ [0](6), there is at least one of the x′is

must being in [0](6). Hence all of them are in [0](6). Similarly if each xi ≡ ±1 (mod 6),

then
m∏
i=1

xi ≡ (±1)m (mod 6) and so x ≡ (±1)m (mod 6) ≡ ±1 (mod 6).

Proposition 3. Let x =
m∏
i=1

xi be a τ ′(6)-product, where for b ∈ {2, 3} each xi is in

[±b](6), then x ∈ [±b](6).

Proof. Suppose that for all i ∈ {1, . . . ,m}, xi ≡ 2 (mod 6). If m is odd, then
m∏
i=1

xi ≡ 2m (mod 6) and so x ≡ 2m(mod 6) ≡ 2 (mod 6). If m is even, 2m ≡ 4 (mod 6).

Hence, x ≡ ± 2 (mod 6). Now if each xi ≡ 3 (mod 6), then x ≡ x1 · · ·xm (mod 6), so

x ≡ 3m(mod 6). Since 3m ≡ 3 (mod 6), then x ≡ ± 3 (mod 6).

Now we are ready to present the formulas of the τ(6)-MCD. For it, we split the

result in several cases.

Theorem 5. Let x = 2n13n2x′ and y = 2m13m2y′ where n1, n2,m1,m2 > 1. If

GCD(x′ · y′, 6) = 1, then τ(6)-MCD(x, y) = 2min{n1,m1}−1 · 3min{n2,m2}−1GCD(x′, y′).

Proof. Let d1 = GCD(x′, y′). Without loss of generality, suppose n1 = min{n1,m1}

and m2 = min{n2,m2}. We need to prove that 2n1−1 · 3m2−1d1 is the maximum

common τ(6)-factor of x and y. Since d1 = GCD(x′, y′), there are x′′ and y′′ such

that x′ = d1 · x′′ and y′ = d1 · y′′. Since m2 = min{n2,m2} and n1 = min{n1,m1},

there are t and l non-negative integers such that n2 = t+m2 and m1 = l+n1. Then

by Proposition (2)

x = (2n1−1 · 3m2−1d1)︸ ︷︷ ︸
[0](6)

∗ (2 · 3t+1x′′)︸ ︷︷ ︸
[0](6)
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and

y = (2n1−1 · 3m2−1d1)︸ ︷︷ ︸
[0](6)

∗ (2l+1 · 3y′′)︸ ︷︷ ︸
[0](6)

are τ(6)-products. Thus 2n1−1 · 3m2−1d1|τ6x, y. Now suppose that there exists a

common τ(6)-factor c of x and y, then by Lemma (2) c = 2n · 3m · c1, n < n1,

m < m2 and c1|x′, y′. Since d1 = GCD(x′, y′), c1|d1 and c1 ≤ d1. Therefore,

c = 2n · 3m · c1 ≤ 2n1−1 · 3m2−1 · d1. Hence, the maximum common τ(6)-factor is

2n1−1 · 3m2−1 · d1.

Proposition 4. If x, y ∈ [±1](6), then τ(6)-MCD(x, y) = GCD(x, y).

Proof. Let d = GCD(x, y), then there exist x′ and y′ such that x = dx′ and y = dy′.

Since x, y ∈ [±1](6), d ∈ [±1](6), and x′, y′ ∈ [±1](6). By Proposition (2) with suitable

signs, x = (±1) d ∗ (±x′) and y = (±1) d ∗ (±y′) are τ ′(6)-factorizations of x and y,

respectively. By Remark (1), we have that τ(6)-MCD(x, y) = GCD(x, y).

Theorem 6. Let x = anx′ and y = amy′, with n,m > 1, a - x′ and a - y′, where

a ∈ {2, 3}, then τ(6)-MCD(x, y) = amin{n,m}−1GCD(x′, y′).

Proof. Without loss of generality suppose that n = min{n,m}, and d1 = GCD(x′, y′).

First, one needs to prove that an−1d1 is a common τ ′(6)-factor of x and y. Since

d1 = GCD(x′, y′) there exist x′ and y′ such that x′ = d1 · x′′ and y′ = d1 · y′′. Note

that d1, x
′′ and y′′ ∈ [±1](6) (because d1 is not divisible by 2 and 3). By Proposition

(2) x = (±1) (an−1 · d1)︸ ︷︷ ︸
[±a](6)

∗ (±a · x′′)︸ ︷︷ ︸
[±a](6)

, with suitable choice of signs an−1 ·d1|τ ′
(6)
x. Anal-

ogously, d1|τ ′
(6)
y. If c is a common τ ′(6)-factor of x and y, then by Lemma (2) c = atc′,

with t < n and c′|d1. Therefore c = atc′ ≤ 2n−1d1, and the τ ′(6)-MCD(x, y) = an−1d1.

By Remark (1), τ(6)-MCD(x, y) = an−1d1.
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The last theorem can be included as part of Theorem (5), but splitting it in this

way is clearer to prove without getting involve in many detailed cases. If there exists

x such that GCD(x, 6) = 1, then d ∈ [±1](6). It implies that for x ∈ [±1](6) and

y /∈ [±1](6), then y ∈ [a](6) where a ∈ {0,±2,±3} there is no common τ(6)-factors.

Hence, τ(6)-MCD(x, y) = 1. If x ∈ [±2](6) and y ∈ [±3](6), then x and y have no

common τ ′(6)-factors. Because by Proposition (3), the τ ′(6)-factors of x are in [±2](6)

and the τ ′(6)-factors of y are in [±3](6). Hence τ ′(6)-MCD(x, y) must be 1. As a

consequence of Hammon’s result [4] we have that the τ(6)-atoms, are either primes

or integers of the form: x = 2n1 · 3n2 · x′ with n1, n2 ∈ {0, 1} where GCD(6, x′) = 1.

If x is a τ(6)-atom and x -τ(6) y, then x and y do not have common τ(6)-factor. Hence,

τ(6)-MCD(x, y) = 1.

Observe that an element in [±1](6) can be written as 6k ± 1. In Table (3–1),

the results for the τ(6)-MCD are summarized.

Table 3–1: The τ(6)-MCD

(x, y) τ(6)-MCD(x, y)

(2n3ux′, 2m3vy′) 2min{n,m}−13min{u,v}−1GCD(x′, y′)
(2n3mx′, 6k ± 1) 1
(2n3mx′, 2ry′) 1
(2n3mx′, 3ry′) 1
(6l ± 1, 6k ± 1) GCD(x, y)
(6l ± 1, 6k ± 2) 1
(6l ± 1, 6k + 3) 1

(2nx′, 2ry′) 2min{n,m}−1GCD(x′, y′)
(2nx′, 3ry′) 1

(3nx′, 3my′) 3min{n,m}−1GCD(x′, y′)

The table summarizes the formulas for τ(6)-MCD for elements in [0](6), [3](6) and
[±a](6) where a ∈ {1, 2}.



25

3.2 The τ(n)-MCD when φ(n) = 4

The solutions for the equation φ(n) = 4, are n ∈ {5, 8, 10, 12}. In this section,

we present results about the characterization of the τ(n)-MCD for these cases. Ob-

serve that there are 2 classes [±a](n) with respect to the equivalence relation τ ′(n),

with GCD(a, n) = 1.

3.2.1 The τ(5)-MCD

In this section the reader can find a formula to compute the τ(5)-MCD between

integers in [0](5). Also, there is a method for finding the τ ′(n)-MCD with the elements

that are relative primes to 5. These elements are in the equivalence classes [±1](5)

and [±2](5). First, we need to see the behavior of the τ ′(5)-products.

Proposition 5. Let x =
m∏
i=1

xi be a τ(5)-product. Then each xi ≡ 0 (mod 5) if and

only if x ≡ 0 (mod 5). If each xi ≡ ±1(mod 5), then x ≡ ±1 (mod 5).

Proof. If each xi ≡ 0 (mod 5), xi = 5x′i for some x′i ∈ Z∗. Therefore we have that

x =
m∏
i=1

xi = 5m
m∏
i=1

x′i ≡ 0 (mod 5). For the converse, notice that since x =
m∏
i=1

xi is

a τ ′(5)-product, one of the xi must be a multiple of 5 and hence all of them. If each

xi ≡ ±1 (mod 5), then x1 · · ·xk ≡ ±1(mod 5), that is x ≡ ±1 (mod 5).

Proposition 6. Let x =
m∏
i=1

xaii be a τ ′(5)-product, where each xi ∈ [±2](5).

i. Then,
m∑
i=1

ai = 2k if and only if x ∈ [±1](5).

ii. Then,
m∑
i=1

ai = 2k + 1 if and only if x ∈ [±2](5).

Proof. (⇒) Since GCD(2, 5) = 1, 22 ≡ −1 (mod 5). Hence 22m ≡ ±1 (mod 5),

for any m ∈ Z, so (i) follows. For (ii.), write x =

(
m−1∏
i=1

xaii

)
xm, notice that(

m−1∏
i=1

xaii

)
∈ [±1](5) and xm ∈ [±2](5), then x ∈ [±2](5).
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(⇐) Note that
m∑
i=1

ai is either even or odd. Hence, by the previous part the theorem

holds.

Theorem 7. Let x = 5sx′ and y = 5ty′, where 5 - x′, 5 - y′ and s, t > 1. Then,

τ(5)-MCD(x, y) = 5min{s,t}−1GCD(x′, y′).

Proof. Let d1 = GCD(x′, y′) and without loss of generality, suppose that s ≤ t.

First need to prove that 5s−1d1 is a common τ(5)-factor of x and y. Since d1 is

GCD(x′, y′), there exist x′′ and y′′ such that, x′ = d1 · x′′ and y′ = d1 · y′′. By

Proposition (5), x = 5sd1x
′′ = ± (5s−1d1)︸ ︷︷ ︸

[0](5)

∗ (±5x′′)︸ ︷︷ ︸
[0](5)

and hence 5s−1d1|τ(5)x. Since

s ≤ t, there exist l ∈ Z+ such that t = l + s. By Proposition (5), we have that x

is equal to 5td1x
′′ = 5s+ld1x

′′ = ± (5s−1d1)︸ ︷︷ ︸
[0](5)

∗ (±5l+1x′′)︸ ︷︷ ︸
[0](5)

and 5s−1d1|τ(5)y. Therefore

5min{s,t−1} ·GCD(x′, y′) is a common τ(5)-factor of x and y. If there exist a common

τ(5)-factor c of x and y, by Lemma (2) c = 5rc′, where 1 ≤ r ≤ s− 1 with c′|x′ and

c′|y′. Then we have that 5r ≤ 5min{s,t}−1 and c′|d1. Therefore c = 5rc′ ≤ 5s−1d1 and

5s−1d1 = τ(5)-MCD(x, y).

When n = 6, if x ∈ [±1](6) and d|x, we had d ∈ [±1](6). In τ ′(5), this fact does

not hold. Now, if x ∈ [±1](5) and d|x, then GCD(d, 5) = 1, which implies that

d ∈ [±1](5) or d ∈ [±2](5). This fact helps to prove the following theorem.

Theorem 8. If x, y ∈ [±1](5), then τ(5)-MCD(x, y) = GCD(x, y).

Proof. Let d = GCD(x, y), then x = dx′ and y = dy′ for some x′ and y′. Since

x, y ∈ [±1](5), then we have GCD(d, 5) = 1, and either d ∈ [±1](5) or d ∈ [±2](5). If

d ∈ [±1](5), then both x′ ∈ [±1](5) and y′ ∈ [±1](5) (because, by hypothesis, x, y are

in [±1](5)). In this case with an appropriate choice of signs, x = (±1) (d)︸︷︷︸
[±1](5)

∗ (±x′)︸ ︷︷ ︸
[±1](5)
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and y = (±1) (d)︸︷︷︸
[±1](5)

∗ (± y′)︸ ︷︷ ︸
[±1](5)

are both τ ′(5)-factorizations of x and y, respectively. If

d ∈ [±2](5) by Proposition (6), x′ ∈ [±2](5) and y′ ∈ [±2](5). Hence we have that

x = (±1) (d)︸︷︷︸
[±2](5)

∗ (±x′)︸ ︷︷ ︸
[±2](5)

and y = (±1) (d)︸︷︷︸
[±2](5)

∗ (± y′)︸ ︷︷ ︸
[±2](5)

are both τ(5)-factorizations of x

and y, respectively. Notice that d is the maximum common τ ′(5)-factor of x and y.

Because for any c common τ ′(5)-factor of x and y, c|d, which implies that c ≤ d. By

Remark (1), the GCD(x, y) coincides with τ ′(5)-MCD(x, y).

Let x ∈ [±2](5) and x1 ∈ Z#. If x1|τ(5)x, then x1 ∈ [±2](5). Otherwise if

x1 ∈ [±1](5), then x = ±x1 ∗ ∗ ∗ xk, where each xi ∈ [±1](5) and by Proposition

(5), x ∈ [±1](5). A contradiction, then each τ ′(5)-factor of x must be in [±2](5). If p

is a prime number different from ±5, then either p ∈ [±1](5) or p ∈ [±2](5) (the 2

equivalence classes determinated by φ(5) with respect to τ ′(5)). Recall Πb(x) =
αb∏
i=1

paibib

the product of primes factors pib of x where each pib ∈ [±b](5) and b ∈ {1, 2}.

As a consequence, the factorization of a number x /∈ [0](5) can be rewritten as

x = Π1(x) · Π2(x) =
α1∏
i=1

pai1i1 ·
α2∏
i=1

pai2i2 (by reordering the primes, if it is necessary).

Proposition 7. Let x ∈ [±b](5) and d ∈ [±2](5), where b ∈ {1, 2}. Suppose there

exist x′, such that x = d · x′. If Π2(x
′) 6= 1, d|τ(5)x.

Proof. Since x = d · x′ and d ∈ [±2](5). If x ∈ [±1](5), by Proposition (6) then

x′ ∈ [±2](5). Hence x = (±1)d∗x′ is a τ ′(5)-factorization of x; so d|τ(5)x. If x ∈ [±2](5),

by Proposition (6) x′ ∈ [±1](5). Notice that x′ can be rewritten as x′ = Π1(x
′)·Π2(x

′).

By Proposition (5), Π1(x
′) ∈ [±1](5). Therefore Π2(x

′) ∈ [±1](5); and by Proposition
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(6), the amount of prime factors in [±2](5) is even. For a suitable choice of signs:

x = d · Π1(x
′) · Π2(x

′)

= d · Π1(x
′) ·

α2∏
i=1

pai2i2

= (±1) d︸︷︷︸
[±2](5)

∗ (±Π1(x
′)p12)︸ ︷︷ ︸

[±2](5)

∗ (±p12)︸ ︷︷ ︸
[±2](5)

∗ ∗ ∗ (±pα22)︸ ︷︷ ︸
[±2](5)

therefore d|τ(5)x.

Proposition 8. Let x ∈ [±b](5) and y, c ∈ [±2](5), where b ∈ {1, 2}. Suppose

d = GCD(x, y). If there exist c′ ∈ Z# such that d = c · c′ and Π2(c
′) 6= 1, then

c|τ ′
(5)
x, y if and only if c|τ ′

(5)
d.

Proof. (⇒) If d ∈ [±1](5), by Proposition (6) c′ ∈ [±2](5), because c ∈ [±2](5).

Hence d = (±1) (c)︸︷︷︸
[±2](5)

∗ (c′)︸︷︷︸
[±2](5)

, is a τ ′(5)-factorization of d and c|τ ′
(5)
d. If d ∈ [±2](5),

c′ ∈ [±1](5). Since Π2(c
′) 6= 1, by the Proposition (7), c|τ ′

(5)
d.

(⇐) Suppose c|τ ′
(5)
d, hence c|d and by transitivity c|x and c|y. By Pproposition

(7), c|τ ′
(5)
x, y. (Because c ∈ [±2](5) and Π2(c

′) 6= 1).

The last proposition shows that the set of common τ(5)-factors of x ∈ [±2](5)

and y ∈ [±b](5), where b ∈ {1, 2}, is equal to the set of the τ(5)-factors of GCD(x, y),

which are in [±2](5). Hence, the following theorem gives a simpler way to compute

the τ(5)-MCD(x, y), because we only need to look at the list of the τ ′(5)-factors of

the GCD(x, y).

Theorem 9. If y ∈ [±2](5) and x ∈ [±b](5), y ∈ [±2](5) where b ∈ {1, 2}, then

τ(5)-MCD(x, y) = m, where m = max{c ∈ [±2](5) : c|τ ′
(5)
GCD(x, y)}.
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Proof. By the Proposition (8), we have that the set of common τ ′(5)-factors of x

and y is A = {d ∈ [±2](5) : d|τ(5)x, y}. Also, by Proposition (8), it holds that

A = {c ∈ [±2](5) : c|τ ′
(5)
GCD(x, y)}. Since τ(5)-MCD(x, y) = max {d : d|τ ′

(5)
x, y}

which is equal to max{d : d ∈ A}. Then the maximum common τ(5)-factor of x and

y is m.

Observe that if x = 5x′ where 5 - x′, x is a τ(5)-atom. Hence if x = 5x′,

where 5 - x′, y ∈ Z# and x -τ(5) y, then x and y have no common τ(5)-factors and

τ(5)-MCD(x, y) = 1. In the case of x|τ(5)y, then τ(5)-MCD(x, y) = x. If x ∈ [0](5) and

y /∈ [0](5), then x and y do not have τ(5)-common factors. Hence, the τ(5)-MCD(x, y)

is 1. Table (3–2) summarizes the formulas for the τ(5)-MCD. Note that if an element

x ∈ [±1](5) or x ∈ [±2](5), then x can be written as x = 5k±1 or 5k±2, respectively.

In Table (3–2), for x, y ∈ Z#, m denotes the max {xi ∈ [±2](5) : xi|τ(5)GCD(x, y)}.

Table 3–2: The τ(5)-MCD(x, y).

(x, y) τ(5)-MCD(x, y)

(5sx′, 5ty′) 5min{s,t}−1GCD(x′, y′)
(5sx′, 5k ± 1) 1
(5sx′, 5k ± 2) 1
(5l ± 1, 5k ± 1) GCD(x, y)
(5l ± 1, 5k ± 2) m
(5l ± 2, 5k ± 2) m

A summary of the formulas for the τ(5)-MCD for elements of the form 5k ·x′, 5k± 1
and 5k ± 2.
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3.2.2 The τ(8)-MCD

For n = 8, we have five equivalence classes, [0](8), [±1](8), [±2](8), [±3](8). The

equivalence classes [±1](8) and [±3](8) behaves as it happened for the equivalence

classes [±1](5) and [±2](5). So, we could use the results in Proposition (5) and (6) to

approach this cases. The other 3 equivalence classes have elements of the form 2nx′

where 2 - x′. If n = 1 (respectively n = 2 and n = 3), then x ∈ [±2](8) (respectively

x ∈ [±4](8) and x ∈ [±0](8)). If 2 - x, then either x ∈ [±1](8) or x ∈ [±3](8) and so

its factors.

Theorem 10. Let x = 2nx′ and y = 2my′, where 2 - x′, y′ and n,m ≥ 6. Then

τ(8)-MCD(x, y) = 2min{n,m}−3GCD(x′, y′).

Proof. Let d1 = GCD(x′, y′), then x′ = d1x
′′ and y′ = d1y

′′ where x′′, y′′ ∈ Z∗.

Without loss of generality, suppose n = min{n,m} and m = n + l for some

l ≥ 0. Then for a suitable choice of signs, x = ± (2n−3 · d1)︸ ︷︷ ︸
[0](8)

∗ (±23 · x′′)︸ ︷︷ ︸
[0](8)

and

y = ± (2n−3 · d1)︸ ︷︷ ︸
[0](8)

∗ (±2m+3 · y′′)︸ ︷︷ ︸
[0](8)

are τ(8)-factorizations of x and y, respectively. If

there exist c = 2t · c′ with c|τ(8)x, y, then t ≤ n − 1 and c′|x′, y′, which implies,

c′ ≤ d1. Therefore, c ≤ (2n−1 · d1) and τ ′(8)-MCD(x, y) = 2min{n,m}−3GCD(x′, y′)

and it is the τ(8)-MCD(x, y).

Now, we will address the cases when at least the power of x and y is strictly

less than 6.

Proposition 9. Let x = 2nx′, where n ≥ 2 and GCD(2, x′) = 1. If there exists

d1|x′, then 2d1|τ(8)x.

Proof. If d1|x′, there exist x′′ ∈ Z∗ such that x′ = d1 · x′′. Since 2 - x′ either

x′ ∈ [±1](8) or x′ ∈ [±3](8). So either d1 ∈ [±1](8) or d1 ∈ [±3](8) and either



31

x′′ ∈ [±1](8) or x′′ ∈ [±3](8). If x′ ∈ [±1](8), then by the results (applied on τ ′(8))

of Proposition (5) and Proposition (6) d1 and x′′ are in a same equivalence class,

in order for x′ ∈ [±1](8). That is, d1, x
′′ ∈ [±a](8) for a ∈ {1, 3}, in both cases we

obtain that (2 · d1) and (2 ·x′′) ∈ [±2](8). If x′ ∈ [±3](8), then by the results (applied

on τ ′(8)) of Proposition (6) d1 and x′′ are in different classes, in order for x′ ∈ [±3](8).

That is, d1 ∈ [±a](8) and x′′ ∈ [±b](8) with a 6= b ∈ {1, 3}. See Table (3–3) where

there is a summary about these results.

Table 3–3: Class options for 2 · d1 and 2 · x′′

x′ d1 x′′ 2 · d1 2 · x′′
[±1](8) [±1](8) [±1](8) [±2](8) [±2](8)
[±1](8) [±3](8) [±3](8) [±2](8) [±2](8)
[±3](8) [±1](8) [±3](8) [±2](8) [±2](8)
[±3](8) [±3](8) [±1](8) [±2](8) [±2](8)

By a suitable choice of signs,

x = 2n · d1 · x′′ = (±1) (2 · d1)︸ ︷︷ ︸
[±2](8)

∗ (± 2 · x′′)︸ ︷︷ ︸
[±2](8)

∗ (± 2)︸ ︷︷ ︸
[±2](8)

∗ ∗ ∗ (± 2)︸ ︷︷ ︸
[±2](8)

Then (2 · d1)|τ ′
(8)
x and by Remark (1), (2 · d1)|τ(8)x.

As a consequence of Proposition (9), if x = 22x′ and y = 2my′, whereGCD(2, x′y′)

is 1 and m > 1, then we have that τ(8)-MCD(x, y) = 2 ·GCD(x′, y′).

Theorem 11. Let x, y ∈ [0](8). Suppose x = 2nx′ and y = 2my′, where 2 - x′, y′,

n ∈ {3, 4, 5} and m ∈ {3, 5}. Then τ(8)-MCD(x, y) = 2 ·GCD(x′, y′).

Proof. For simplicity denote d1 = GCD(x′, y′), then there are x′′, y′′ such that

x′ = d1 · x′′ and y′ = d1 · y′′. By the Proposition (9) 2d1|τ(8)x and 2d1|τ(8)y. Need

to prove that 2d1 is the maximum common τ(8)-factor between x and y. If there

exist c, such that c|τ(8)x, y, then by Lemma (2) c = 2t · c1 with 0 < t < min{n,m}
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and c1|x′, y′. Then there exist c′, c′′ ∈ Z∗ such that x′ = c1 · c′ and y′ = c1 · c′′. By

definition of d1, c1|d1, and hence c1 ≤ d1. Then c1, c
′′ ∈ [±1](8) ∪ [±3](8).

i. If m = 3, then t ∈ {1, 2}. In the case of t = 1, by the inequality c1 ≤ d1,

we have c ≤ (2 · d1). Now, we may assume t = 2. Since y = 23 · c1 · c′′, note that

(22 ·c1) ∈ [±4](8), but (2 ·c′′) ∈ [±2](8). Then c -τ(8) y, a contradiction. Hence t = 1.

ii. If m = 5, t ∈ {1, 2, 3, 4}. Suppose t = 1, since c1 ≤ d1, c ≤ 2 · d1. If t ≥ 2,

c -τ(8) y as in the above case.

For any common τ(8)-factor c of x and y, c ≤ (2 · d1). Hence the τ(8)-MCD(x, y) is

2 ·GCD(x′, y′).

Theorem 12. Let x = 24x′ and y = 2ny′, where 2 - x′, y′ and n is even, n ≥ 4.

Then τ(8)-MCD(x, y) = 22GCD(x′, y′).

Proof. Let d1 = GCD(x′, y′), then there exist x′′, y′′ ∈ Z∗, such that x′ = d1x
′′ and

y′ = d1y
′′. Since GCD(x′, 8) = 1, then either d1, x

′ ∈ [±1](8) ∪ [±3](8). The Table

(3–4) gives all the posibilities for x′, d1, x
′′, 22x′ and 22d1.

Table 3–4: Class options for 22 · d1 and 22 · x′′

x′ d1 x′′ 22 · d1 22 · x′′
[±1](8) [±1](8) [±1](8) [±4](8) [±4](8)
[±1](8) [±3](8) [±3](8) [±4](8) [±4](8)
[±3](8) [±1](8) [±3](8) [±4](8) [±4](8)
[±3](8) [±3](8) [±1](8) [±4](8) [±4](8)

With a suitable choice of signs x = (±1) (22 ·d1)∗(±22 ·x′′) is a τ ′(8)-factorization

of x. Since n is even and n ≥ 4, then y = (±1)(22d1)∗(±22 ·y′′)∗(±22)∗∗∗(±22) is a

τ ′(8)-factorization of y (for a suitable choice of signs). If there is a common τ(8)-factor

c, of x and y, then then by Lemma (2) c = 2tc′ where c′|x′, y′ and 1 ≤ t ≤ 3.

By definition of d1, c
′ ≤ d1. If t ∈ {1, 2}, c ≤ 22 · d1. For t = 3, notice that

x′ = c′ · c′′ for some c′′ ∈ [±1](8) ∪ [±3](8). Then 23 · c′ ∈ [0](8) and 2 · c′′ ∈ [±2](8).
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Hence c -τ8 x. In conclusion, τ ′(8)-MCD(x, y) = 22GCD(x′, y′). By Remark (1),

22GCD(x′, y′) = τ(8)-MCD(x, y).

Theorem 13. Let x = 24x′, y = 2ny′, with 2 - x′, y′, and n an odd integer with

n ≥ 3. Then τ(8)-MCD(x, y) = 2 ·GCD(x′, y′).

Proof. The proof is analogous to the proof of the Theorem (12).

Theorem 14. If x, y ∈ [±1](8), then τ(8)-MCD(x, y) = GCD(x, y).

Proof. Let d = GCD(x, y). Then there are x′, y′ ∈ Z∗, such that x = dx′ and

y = dy′. If d ∈ [±1](8), then x′, y′ ∈ [±1](8), in order for x ∈ [±1](8). On other hand,

if d ∈ [±3](8), then by the result in Proposition (6) x′, y′ ∈ [±3](8). In both cases,

x = (±1) d∗ (±x′), y = (±1) d∗ (±y′) are τ ′(8)-factorizations of x and y, respectively.

By Remark (1), τ(8)-MCD(x, y) = GCD(x, y).

Observe that, if p is a positive odd prime, p ∈ [±1](8) or p ∈ [±3](8). Let us

recall Πb(x) =
αb∏
i=1

paibib denotes the product of positive primes that divides x, with

the property, pib ∈ [±b](8), for b ∈ {1, 3}.

Lemma 3. Let x ∈ [±b](8), where b ∈ {1, 3}. Suppose d ∈ [±3](8) such that d|x. If

Π3(
x
d
) 6= 1, then d|τ(8)x.

Proof. Since d|x, then x = d · x′ for x′ ∈ Z∗. Let us rewrite x′ = x
d

into a product

of primes in [±1](8) and primes in [±3](8). So the canonical factorization of x′ is

x′ = Π1(x
′) · Π3(x

′) =
α1∏
i=1

pai1i1 ·
α3∏
i=1

pai3i3 , then x = d · x′ = d ·
α1∏
i=1

pai1i1 ·
α3∏
i=1

pai3i3 . Since

Π3(x
′) 6= 1, x = (±1) (d)︸︷︷︸

[±3](8)

∗ (±Π1 p13)︸ ︷︷ ︸
[±3](8)

∗ ∗ ∗ (±pk3)︸ ︷︷ ︸
[±3](8)

∗ ∗ ∗ (±pα33)︸ ︷︷ ︸
[±3](8)

. Hence, d|τ ′
(8)
x and

by Remark (1) d|τ(8)x.
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Lemma (3) showed that given any divisor d ∈ [±3](8) of x with GCD(x, 2) = 1,

with some positive prime factors equivalent to [±3](8) is a τ(8)-factor of x; similar as

in Proposition (7). The next result is very similar to Proposition (8) and Theorem

(9).

Theorem 15. Let x be a relative prime integer with respect to 2 and y ∈ [±3](8).

Suppose d = GCD(x, y) and c|d where c ∈ [±3](8) and Π3

(
x
d

)
6= 1. Then c|τ(8)x, y if

and only if c|τ(8)GCD(x, y). Moreover the maximum common τ(8)-factor of x and y

is the max{c ∈ [±3](8) : c|τ(8)GCD(x, y)}.

Proof. Since c|d, there exist c′ ∈ Z∗ such that d = c · c′.

(⇒) If d ∈ [±1](8), c
′ ∈ [±3](8) (because c ∈ [±3](8)). Therefore c|τ(8)d because

d = (±1) (c)︸︷︷︸
[±3](8)

∗ (±c′)︸ ︷︷ ︸
[±3](8)

, is a τ(8)-factorization of d. If d ∈ [±3](8), c
′ ∈ [±1](8). Since

Π3(c
′) 6= 1, by Lemma (3), c|τ(8)d.

(⇐) Now suppose that c|τ(8)d, hence c divides d. By transitivity c|x and c|y. Since

c ∈ [±3](8), then by Lemma (3), c|τ(8)x, y. For the second statement notice by Lemma

(3) that, {d : d|τ(8)x, y} = {d ∈ [±3](8) : d|τ(8)x, y} and by the first statement

{d : d|τ(8)x, y} = {c ∈ [±3](8) : c|τ(8)GCD(x, y)}. Since τ(8)-MCD(x, y) is the

maximum of the common τ(8)-factors of x and y, then

τ(8)-MCD(x, y) = max{c ∈ [±3](8) : c|τ(8)GCD(x, y)}.

Note that if x ∈ [±2](8), x = 2x′ where 2 - x′, then x is a τ(8)-atom. In the case of

y ∈ Z# and x|τ(8)y, then τ(8)-MCD(x, y) = x, otherwise the τ(8)-MCD(x, y) = 1. If

y ∈ [±b](8) where b ∈ {1, 3}, the τ(8)-factors of y are in [±b](8). Hence, if x /∈ [±b](8),

then τ(8)-MCD(x, y) = 1.
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The following summarize the formulas found for the τ(8)-MCD of elements in

Z# when the τ(8)-MCD 6= 1. The tables (3–5) and (3–6) show the results found

for elements in [0](8), [±4](8) and [±b](8) for b ∈ {1, 3}, respectively. If a number

x ∈ [0](8), then x = 2n · x′ where n ≥ 3 and 2 - x′.

Table 3–5: The τ(8)-MCD for numbers in [0](8)

(2nx′, 2my′) τ(8)-MCD(x, y)

n,m ≥ 3 2min{n,m}−3 ·GCD(x′, y′)
n ∈ {3, 5} and
m ∈ {3, 5} 2 ·GCD(x′, y′)

n = 4 and m = 2k
for k ≥ 2

22 ·GCD(x′, y′)

n = 4 and m > 1
an odd number

2 ·GCD(x′, y′)

If a number x ∈ [±4](8), then x = 22x′ where 2 - x′. Hence, when a number

x ∈ [±4](8) and other number y is of the form 2my′ for m ≥ 2 and 2 - y′. Then the

maximum common τ(8)-factor of x and y is 2 ·GCD(x′, y′).

Note that if a number x ∈ [±1](8) or x ∈ [±3](8), then x can be written as

8k ± 1 or 8k ± 3, respectively. Table (3–6) summarizes the formulas found for the

τ(8)-MCD between numbers that are in classes whose representatives are relative

primes to 8, that are the classes [±1](8) or [±3](8).

Table 3–6: The τ(8)-MCD for numbers in [±b](8) where b ∈ {1, 3}
(x, y) τ(8)-MCD(x, y)

(8k ± 1, 8l ± 1) GCD(8k ± 1, 8l ± 1)
(8k ± 1, 8l ± 3) m
(8k ± 3, 8l ± 3) m

Where m denotes the the max {xi ∈ [±3](8) : xi|τ(8)GCD(x, y)}.
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3.2.3 The τ(10)-MCD

In the previous section, we developed a pattern of the τ(8)-MCD. The approach

used to study the τ(10)-MCD is very similar. The main differences is the number of

equivalences classes with respect to τ10. But as for n = 8, there is two clases that

are very similar to [±1](5) and [±2](5) and they are [±1](10) and [±3](10) respectively.

First, we find pattern when x, y ∈ [±a](10) and GCD(a, 10) 6= 1. In these cases,

the patterns are divided into 4 distinct cases to be analyze individually. Finally

the cases, when GCD(a, 10) = 1, should be very similar to the results in Lemma

(3) and Theorem (15) from previous section or Propositions (7), (8). But first let

us study, how the equivalence classes of τ ′(10) behave and the connection with the

τ ′(10)-products.

Proposition 10. Let x =
m∏
i=1

xi be a τ(10)-product, where each xi ∈ [±b](10) and

b ∈ {2, 3, 4, 5}. Then:

i. If b = 2 and m is odd, x ∈ [±2](10),

ii. If b = 2 and m is even x ∈ [±4](10),

iii. If b = 3 and m is even x ∈ [±1](10),

iv. If b = 3 and m is odd, x ∈ [±3](10),

v. If b = 5, x ∈ [±5](10), and

vi. If b = 4, x ∈ [±4](10).

Proof. First note that 32 ≡ −1 (mod 10) and 34 ≡ 1 (mod 10). Hence 32n ≡

±1 (mod 10) for any n. If m = 2l for some l ∈ N, x ≡
m∏
i=1

xi ≡ 32l ≡ ±1 (mod 10)

and in the case of m = 2l + 1, then x ≡
m∏
i=1

xi ≡ 32l+1 ≡ ±3 (mod 10). Hence

(iii) and (iv) follows. Also, observe that 22l ≡ ±4(mod 10). So if m = 2l and

each xi ∈ [±2](10), x ≡ 22l ≡ ±4 (mod 10). On other hand if m = 2l + 1, then

x ≡ 22l+1 ≡ 22l · 2 ≡ ±4 · 2 ≡ ±2 (mod 10). Therefore, (i) and (ii) follows. For (v)

and (vi), note that an ≡ ±a (mod 10), where a ∈ {4, 5}, for any n ∈ Z+.
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According to Proposition (10), if x = 2nx′ where GCD(x′, 10) = 1 and n is an

even number, then x ∈ [±4](10). As a consequence, x′ must be in [±1](10).

Corollary 2. Let x ∈ [±4](10) and x = c1 ∗ ∗ ∗ ck be a τ(10)-factorization of x.

• Then, k is odd if and only if ci ∈ [±4](10).

• Then, k is even if and only if ci ∈ [±2](10).

Proof. By Proposition (10), each ci must be either in [±2](10) or [±4](10). Now if k

is even and c ∈ [±4](10), then x is not in [±4](10). So if k is even, then each ci must

be in [±4](10). Similarly, if k is odd, thne each ci must be in [±2](10).

If x is an integer in [0](10) and c is a τ(10)-factor of x, then by Lemma (2)

c ∈ [0](10). Suppose x = 2n1 · 5n2x′ with n1, n2 > 1, and GCD(x′, 10) = 1. Then as

a result of Lemma (2) c = 2m1 · 5m2x′′, m1 < n1, m2 < n2 and x′′|x′. The following

Theorem is similar to Theorem (5).

Theorem 16. Let x, y ∈ [0](10), where x = 2n15n2x′ and y = 2m15m2y′ with

n1, n2,m1,m2 > 1. Then τ(10)-MCD(x, y) = 2min{n1,m1}−1·5min{n2,m2}−1GCD(x′, y′).

Proof. Let d1 = GCD(x′, y′), and without loss of generality we suppose that n1 =

min{n1,m1} and m2 = min{n2,m2}. We claim that 2n1−1 ·5m2−1d1 is the maximum

common τ(10)-factor of x and y. Since d1 = GCD(x′, y′), there are integers x′′ and y′′

such that, x′ = d1 ·x′′ and y′ = d1 ·y′′. Notice that x = (2n1−1 · 5m2−1d1)︸ ︷︷ ︸
[0](10)

∗ (2 · 5t2+1x′′)︸ ︷︷ ︸
[0](10)

and y = (2n1−1 · 5m2−1d1)︸ ︷︷ ︸
[0](10)

∗ (2t1+1 · 5y′′)︸ ︷︷ ︸
[0](10)

. Thus 2n1−1 · 5m2−1d1|τ(10)x, y. Now suppose

that there exists c, a common τ(10)-factor of x and y, then by Lemma (2) c = 2n ·5mc1

where 1 ≤ n < n1, 1 ≤ m < m2 and c1|x′, y′. Since d1 = GCD(x′, y′), by definition

of d1, c1 ≤ d1 and c ≤ 2n1−1·5m2−1·d1. Hence 2n1−1·5m2−1·d1 = τ(10)-MCD(x, y).
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Under the assumption that x ∈ [±a](10), where a ∈ {2, 5}, x can be written as

x = anx′ with n ≥ 1 and x′ not divisible by 2 and 5. If there exist c|τ(10)x, then by

Lemma (2) c = amc′ with 1 ≤ m < n and c′|x′.

Theorem 17. Let x = 5nx′, y = 5my′, where n,m > 1, GCD(5, x′y′) = 1, then

τ(10)-MCD(x, y) = 5min{n,m}−1GCD(x′, y′).

Proof. Without loss of generality suppose that n = min{n,m}, let d1 = GCD(x′, y′).

Then there are integers x′′ and y′′ such that x′ = d1 ·x′′ and y′ = d1 ·y′′. Note that by

Proposition (10) x′, d1, x
′′ and y′′ belong to either [±1](10) or [±3](10) (because d1 is

not divisible by 5 nor 2). Since d1 ∈ [±1](10) or d1 ∈ [±3](10), 5 ·d1 ∈ [±5](10). There-

fore, x = (±1) (5n−1 · d1)︸ ︷︷ ︸
[±5](10)

∗ (±5 · x′′)︸ ︷︷ ︸
[±5](10)

for a suitable signs and d1|τ(10)x. Analogously,

d1|τ(10)y. If there exist a common τ(10)-factor c of x and y, then by Lemma (2) c = 5tc′

where 0 < m < n and c′|d1. Hence, c = 5tc′ ≤ 5n−1d1. So τ ′(10)-MCD(x, y) = 5n−1d1.

By Remark (1), τ(10)-MCD(x, y) = 5n−1d1.

Proposition 11. Suppose that x = 2nx′ and 2 - x′. If x ∈ [±2](10), then the

following holds.

i. If n is even, x′ ∈ [±3](10).

ii. If n is odd, x′ ∈ [±1](10).

Proof. Since x ∈ [±2](10) and 2 - x′, then GCD(x′, 10) = 1. So either x′ ∈ [±1](10) or

x′ ∈ [±3](10). By Proposition (10), if n is odd, then 2n ∈ [±2](10) and x′ ∈ [±1](10).

Otherwise, if x′ ∈ [±3](10), then x ∈ [±4](10). A contradiction to the assumption of

x ∈ [±2](10). Now, by Proposition (10), 2n ∈ [±4](10) only when n is even. In order

for x ∈ [±2](10), x
′ must be in [±3](10).
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Suppose x ∈ [±2](10), x = 2nx′ where 2 - x′. If there exists c|τ(10)x, then by

Lemma (2) c = 2l · c′, where 0 < l < n and c′|x′.

Proposition 12. Let x ∈ [±2](10). Suppose that x = 2nx′ where 2 - x′, c|τ(10)x, that

is x = (±1) c ∗ c1 ∗ ∗ ∗ ck. Then c ∈ [±2](10) and k is even.

Proof. First note that by Lemma (2) c = 2l · c′, where l < n and c′|x′. If c is not in

[±2](10). Then c must be in [±4](10). But Proposition (10) implies that x ∈ [±4](10), a

contradiction to the assumption of x ∈ [±2](10). Therefore c ∈ [±2](10). On the other

hand, if k is even, there is an odd number of τ(10)-factors of x and by Proposition

(10), x ∈ [±2](10). Otherwise, if k is odd there is an even number of τ(10)-factors of

x and by Proposition (10), x ∈ [±4](10).

Theorem 18. Let x, y ∈ [±2](10). Suppose that x = 2nx′, y = 2my′, with 2 - x′, y′

and min{n,m} is an odd number . If d1 = GCD(x′, y′), then τ(10)-MCD(x, y) is

i. 2min{n,m}−2d1, when d1 ∈ [±1](10), or

ii. 2min{n,m}−3d1, when d1 ∈ [±3](10).

Proof. Without loss of generality, assume that n ≤ m, then n is odd. There exist

t ∈ Z+, such that, m = n+ t. Suppose m is odd, then t is even. By Proposition (10)

2t ≡ ±4 (mod 10) and by Proposition (11) x′, y′ ∈ [±1](10). Since d1 = GCD(x′, y′),

there are x′′ and y′′ such that x′ = d1 · x′′ and y′ = d1 · y′′. For the first statement,

suppose d1 ∈ [±1](10), and Proposition (10) forces both x′′ and y′′ belong to [±1](10).

Hence, x = 2n−2+2 · d1 · x′′ = (±1) (2n−2 · d1)︸ ︷︷ ︸
[±2](10)

∗ (±2 · d1)︸ ︷︷ ︸
[±2](10)

∗ (±2)︸︷︷︸
[±2](10)

and (2n−2 · d1)|τ(10)x.

Since t + 1 is odd, 2t+1 ∈ [±2](10). Therefore, we have y = 2n+t−2+2 · d1 · y′′ and

y = (±1) (2n−2 · d1)︸ ︷︷ ︸
[±2](10)

∗ (±2t+1 · y′′)︸ ︷︷ ︸
[±2](10)

∗ (±2)︸︷︷︸
[±2](10)

.

If m is even, y′ ∈ [±3](10). Since d1 ∈ [±1](10), then y′′ ∈ [±3](10). Note that t is odd.
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By Proposition (10) 2t ≡ ±2 (mod 10), so y = (±1) (2n−2 · d1)︸ ︷︷ ︸
[±2](10)

∗ (±2t+1 · y′′)︸ ︷︷ ︸
[±2](10)

∗ (±2)︸︷︷︸
[±2](10)

.

With a suitable choice of signs (2n−2 · d1)|τ(10)x, y.

Suppose there exists a common τ(10)-factor c of x and y. By contradiction suppose

c > (2n−2 ·d1). By Lemma (2) c = 2lc′, where 0 < l < n, by the definition of d1, c
′|d1,

then c′ ≤ d1. By the assumption of c > (2n−2 ·d1) and c′ ≤ d1, 2l > 2n−2. Therefore,

n−2 < l < n. The only possible integer is l = n−1, which l is even. By Propositions

(12) and (11), c ∈ [±2](10) and c′ ∈ [±3](10). Since c′|x′, there is c′′ ∈ [±3](10)

(because x′ ∈ [±1](10)) such that, x′ = c′′ · c′. Then x = (2n−1c′) · (2 · c′′) = c · (2 · c′′),

but (2 · c′′) ∈ [±4](10), a contradiction because c is a τ(10)-factor of x. Therefore,

2n−2 · d1 = τ(10)-MCD(x, y).

In the case d1 ∈ [±3](10), x
′′, y′′ ∈ [±3](10). Suppose m is an odd integer. Observe

that 2n−3 ∈ [±4](10), because n− 3 is an even number.

So x = (±1) (2n−3 · d1)︸ ︷︷ ︸
[±2](10)

∗ (±22 · x′′)︸ ︷︷ ︸
[±2](10)

∗ (±2)︸︷︷︸
[±2](10)

and 2n−3 · d1|τ(10)x. We can observe that

2t+2 ≡ ±4 (mod 10), hence, y = (±1) (2n−3 · d1)︸ ︷︷ ︸
[±2](10)

∗ (±2t+2 · y′′)︸ ︷︷ ︸
[±2](10)

∗ (±2)︸︷︷︸
[±2](10)

and 2n−3 ·

d1|τ(10)y. If m is even, y′′ ∈ [±1](10) and t is odd. Hence this is a τ(10)-factorization of

y, y = (±1) (2n−3 · d1)︸ ︷︷ ︸
[±2](10)

∗ (±2t+2 · y′′)︸ ︷︷ ︸
[±2](10)

∗ (±2)︸︷︷︸
[±2](10)

and 2n−3 · d1|τ(10)y. Therefore 2n−3 · d1

is a common τ(10)-factor of x and y. If there exist c another common τ(10)-factor of

x and y. Suppose by contradiction c > (2n−3 · d1), then by Lemma (2) c = 2n−2 · c1

or c = 2n−1 · c1.

By proposition (12), c ∈ [±2](10) and c1|x′, y′, hence c1|d1 and d1 = c1k. In the

case c = 2n−1c1, we observe that n − 1 is an even integer, hence c1 ∈ [±3](10). As

a consequence, x′ = c1 · c′′ and x = (2n−1 · c1) · (2 · c′′). Since 2n−1 · c1 ∈ [±2](10)

and 2 · c′′ ∈ [±4](10), c = 2n−1 · c1 - x. Now assume c = 2n−2 · c1, n − 2 is odd

and c1 ∈ [±1](10). Since d1 = c1k and d1 ∈ [±3](10), then k ∈ [±3](10) and 2n−3d1 is

2n−2c1 + 2n−3kc1 − 2n−2c1 = 2n−2c1
(
1 + 1

2
(k − 2)

)
. Notice that

(
1 + 1

2
(k − 2)

)
> 0,
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because k ≥ 3. Therefore 2n−3d1 = 2n−2c1 · l > 2n−2c1, where l =
(
1 + 1

2
(k − 2)

)
.

This concludes the proof.

Theorem 19. Let x, y ∈ [±2](10), with x = 2nx′, y = 2my′, 2 - x′, y′ and min{n,m}

an even number. If d1 = GCD(x′, y′), then τ(10)-MCD(x, y) is

i. 2min{n,m}−3d1, when d1 ∈ [±1](10), or

ii. 2min{n,m}−2d1, when d1 ∈ [±3](10).

Proof. Without loss of generality, suppose that n = min{n,m}. Then n is an even

number. Hence, there exist t ∈ Z+, such that m = n+ t. In the case of m to be an

even number, then t is even and, 2t ≡ ±4 (mod 10), if m is odd, then t is odd and

2t ≡ ±2(mod 10). By hypothesis d1 = GCD(x′, y′), then x′ = d1 ·x′′ and y′ = d1 ·y′′.

By the proof of Proposition (11), x′, y′ ∈ [±3](10) when both n and m are even. And

y′ ∈ [±1](10), if m is odd.

For (i), suppose that d1 ∈ [±1](10), then either both x′′, y′′ ∈ [±3](10), or x′′ ∈ [±3](10)

and y′′ ∈ [±1](10). Since 2n−3 ∈ [±2](10), an analogous proof of (ii) in the previous

theorem gives the proof for this case.

Similarly for (ii), if d1 ∈ [±3](10), x
′′, y′′ ∈ [±1](10) ∪ [±3](10). Since 2n−2 ∈ [±4](10),

an analogous proof of (i) in the previous theorem does the work.

Theorem 20. Let x, y ∈ [±4](10), where x = 2nx′, y = 2my′. If GCD(x′ ·y′, 10) = 1.

Then τ(10)-MCD(x, y) = 2min{n,m}−1GCD(x′, y′).

Proof. Suppose that n = min{n,m} is an odd number (respectively, an even num-

ber), and m = n + t for some positive integer t. By proposition (10), x′ ∈ [±3](10)

(respectively x′ ∈ [±1](10)). Let d1 = GCD(x′, y′), then x′ = d1x
′′ and y′ = d1y

′′,

note that, either d1 ∈ [±1](10) or d1 ∈ [±3](10). So, we split the proof into two cases:
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Case 1. If d1 ∈ [±1](10), x
′′ ∈ [±3](10) (respectively x′′ ∈ [±1](10)). Then 2n−1 ·

d1 ∈ [±4](10) (respectively, 2n−1 · d1 ∈ [±2](10)) and x = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±4](10)

∗ (2 · x′′)︸ ︷︷ ︸
[±4](10)

,

(respectively x = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±2](10)

∗ (2 · x′′)︸ ︷︷ ︸
[±2](10)

), thus (2n−1 · d1)|τ(10)x. Observe that

m could be either an odd or an even integer. If m is odd, then y′ ∈ [±3](10)

and y′′ ∈ [±3](10). Therefore t is an even number (respectively, odd number),

then 2t ∈ [±4](10) (respectively, 2t ∈ [±2](10)) and y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±4](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±4](10)

,

(respectively y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±2](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±2](10)

). If m is an even number, then we

have that y′ ∈ [±1](10) and y′′ ∈ [±1](10) therefore t is odd (respectively, even),

2t ∈ [±2](10) (respectively, 2t ∈ [±4](10)) and y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±4](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±4](10)

(re-

spectively, (y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±2](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±2](10)

)). Hence, in both cases 2n−1 · d1 is a

common τ(10)-factor of x and y.

Case 2. If d1 ∈ [±3](10), then x′′ ∈ [±1](10) (respectively, x′′ ∈ [±3](10)). There-

fore we have 2n−1 · d1 ∈ [±2](10) (respectively, 2n−1 · d1 ∈ [±4](10)), obtaining

x = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±2](10)

∗ (2 · x′′)︸ ︷︷ ︸
[±2](10)

( respectively, x = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±4](10)

∗ (2 · x′′)︸ ︷︷ ︸
[±4](10)

) , and

we have that (2n−1 · d1)|τ(10)x.

If m is odd, then y′ ∈ [±3](10), y
′′ ∈ [±1](10) and t is an even number (re-

spectively, odd number). Hence 2t ∈ [±4](10) (respectively, 2t ∈ [±2](10)) and

y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±2](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±2](10)

, (respectively, y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±4](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±4](10)

).

If m is an even number, then y′ ∈ [±1](10), y
′′ ∈ [±3](10) and t is odd (respec-

tively, an even) integer. Therefore, 2t ∈ [±2](10) (respectively, 2t ∈ [±4](10)) and

y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±2](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±2](10)

, (respectively, y = (±1) (2n−1 · d1)︸ ︷︷ ︸
[±4](10)

∗ (2t+1 · y′′)︸ ︷︷ ︸
[±4](10)

).

So, (2n−1 · d1)|τ(10)x, y.

If c is another common τ(10)-factor of x and y, by Lemma (2) c = 2lc′, where c′|x′, y′

and 1 ≤ l ≤ n− 1. Therefore, c′ ≤ d1 by the definition of d1. So c ≤ 2n−1 · d1. This
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shows that that τ ′(10)-MCD(x, y) = 2n−1 ·d1. By remark τ(10)-MCD(x, y) = 2n−1 ·d1

(1).

Corollary 3. Let x ∈ [±2](10) and y ∈ [±4](10), with x = 2nx′, y = 2my′, with

2 - x′, y′. If d1 = GCD(x′, y′), then τ(10)-MCD(x, y) is given by one of the following

formulas.

i. 2min{n,m}−2d1, when d1 ∈ [±1](10) and min{n,m} is odd.

ii. 2min{n,m}−3d1, when d1 ∈ [±3](10) and min{n,m} is odd.

iii. 2min{n,m}−3d1, when d1 ∈ [±1](10) and min{n,m} is even.

iv. 2min{n,m}−2d1, when d1 ∈ [±3](10) and min{n,m} is even.

Proof. The proof is analogous to the proof of the Theorems (18), (19) and (20).

Proposition 13. If x, y ∈ [±1](10), then τ(10)-MCD(x, y) = GCD(x, y).

Proof. Let d = GCD(x, y), then there are integers x′ and y′ such that x = dx′ and

y = dy′. Since x, y ∈ [±1](6), d ∈ [±a](10) with a ∈ {1, 3}. If d ∈ [±1](10), then

x′ ∈ [±1](10). If d ∈ [±3](10), then x′ ∈ [±3](10). In both cases, for a suitable choice

of the signs x = (±1) d ∗ (±x′) is a τ ′(10)-factorizations of x. Analogously, d|τ(10)y.

Therefore, τ(10)-MCD(x, y) = GCD(x, y).

Lemma 4. Let x ∈ [±b](10), where b ∈ {1, 3}. Suppose d ∈ [±3](10) such that d|x.

If Π3(
x
d
) 6= 1, then d|τ(10)x.

Proof. Since d|x, then x = d · x′ for x′ ∈ Z∗. Let us rewrite x′ = x
d

into a product

of primes in [±1](10) and primes in [±3](10). So the canonical factorization of x′ is

x′ = Π1(x
′) · Π3(x

′) =
α1∏
i=1

pai1i1 ·
α3∏
i=1

pai3i3 , then x = d · x′ = d ·
α1∏
i=1

pai1i1 ·
α3∏
i=1

pai3i3 . Since
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Π3(x
′) 6= 1, x = (±1) (d)︸︷︷︸

[±3](10)

∗ (±Π1 p13)︸ ︷︷ ︸
[±3](10)

∗ ∗ ∗ (±pk3)︸ ︷︷ ︸
[±3](10)

∗ ∗ ∗ (±pα33)︸ ︷︷ ︸
[±3](10)

. Hence, d|τ ′
(10)
x and

by Remark (1) d|τ(10)x.

Lemma (4) showed that given any divisor d ∈ [±3](8) of x with GCD(x, 2) = 1,

with some positive prime factors equivalent to [±3](10) is a τ(10)-factor of x; similar as

in Proposition (7). The next result is very similar to Proposition (8) and Theorem

(9).

Theorem 21. Let x be a relatively prime integer with respect to 2 and y ∈ [±3](10).

Suppose d = GCD(x, y) and c|d where c ∈ [±3](10) and Π3

(
x
d

)
6= 1. Then c|τ(10)x, y

if and only if c|τ(10)GCD(x, y). Moreover, the maximum common τ(10)-factor between

x and y is the max{c ∈ [±3](10) : c|τ(10)GCD(x, y)}.

Proof. The proof is analogous to the proof in Theorem (15).

Now, we present a summary of the formulas for the τ(10)-MCD of elements in

Z# when they have a common τ(10)-factor. The Tables (3–7) and (3–8) show the

results found for numbers that are in classes whose representatives are not relative

prime to 10, that are [0](10), [±5](10), [±2](10) and [±4](10). Suppose x = 2n · 5mx′,

where GCD(10, x′) = 1. If n,m > 1, then x ∈ [0](10). Notice that for n = 0,

x ∈ [±5](10) and in the case of m = 0, x ∈ [±2](10) or x ∈ [±4](10). The first table

summarizes the formulas for the τ(10)-MCD when the elements are in [0](10) and

[±5](10).

Table 3–7: The τ(10)-MCD for numbers in [0](10) and [±5](10)

(x, y) τ(10)-MCD(x, y)

(2n5ux′, 2m5vy′) 2min{n,m}−15min{u,v}−1GCD(x′, y′)

(5ux′, 5vy′) 5min{u,v}−1GCD(x′, y′)
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If both numbers are in [±2](10), notice that these formulas depended of the

parity of the least power of 2 and in which equivalence class is d1 = GCD(x′, y′).

Moreover, if a number is in [±2](10) and the other number is in [±4](10), then the

results are summarized in Table (3–8).

Table 3–8: The τ(10)-MCD when (x, y) ∈ [±2](10) × ([±2](10) ∪ [±4](10))

(x, y) τ(10)-MCD(x, y)
(2nx′, 2my′)

n is even and n < m
2n−3d1, when d1 ∈ [±1](10)
2n−2d1, when d1 ∈ [±3](10)

(2nx′, 2my′)
n is odd and n < m

2n−2d1, when d1 ∈ [±1](10)
2n−3d1, when d1 ∈ [±3](10)

Here d1 = GCD(x′, y′)

When both elements are in [±4](10), then

τ(10)-MCD(2nx′, 2my′) = 2min{n,m}−1GCD(x′, y′).

Since the behavior of [±1](10) and [±3](10) is similar to the behavior of [±1](8) and

[±3](8), the results for the τ(10)-MCD(x, y) and the τ(10)-MCD(x, y) are also similar.

Then the results found between elements of [±1](8) and [±3](10) can be observed in

Table (3–6), and does not need for another table. The reader must notice that the

cases left out are the ones of pair of integers such that they do not have common

τ10-factors. With this case we have found all the formulas of the τ(n)-MCD for each

n that makes Z τ(n)-atomic.
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3.2.4 The τ(12)-MCD

As seen in the cases of n ∈ {5, 8, 10}, when n = 12, there two equivalence classes

that will follow the same behavior as [±1](5) and [±2](5). This classes are [±1](12)

and [±5](12), respectively. For the other equivalence classes of τ ′(12) need to be study

case by case, hence we develope several propositions and theorem to address those

cases and to see the behavior of τ ′(12)-factors on such equivalence classes.

If x =
m∏
i=1

xi be a τ(12)-product and xi ∈ [±1](12), then x ∈ [±1](12). The converse

is not true in general, because the product of two integers in the equivalence class of

[±5](10) will give an element in the equivalence class of [±1](10). This result is very

similar to what happen with [±2](10) and we formalize in the following proposition.

Proposition 14. Let x =
m∏
i=1

xi be a τ(12)-product, where each xi ∈ [±5](12), then

i. m is even if and only if x ∈ [±1](12), and

ii. m is odd if and only if x ∈ [±5](12).

Proof. (⇒) Since (±5)2 ≡ 1 (mod 12), hence if m = 2k, 5m ≡ ±1 (mod 12), for

any m ∈ Z, so (i) follows. For (ii.), write x =

(
m−1∏
i=1

xi

)
xm, and notice that(

m−1∏
i=1

xi

)
∈ [±1](12) and xm ∈ [±5](12). Therefore x ∈ [±5](12).

(⇐) Recall that each xi ∈ [±5](12) and note that m is either an even or an odd

integer. We have that 52k ≡ ±1 (mod 12), and 52k+1 ≡ ±5 · 52k (mod 12).

Proposition 15. Let x, y ∈ [±1](12), τ(12)-MCD(x, y) = GCD(x, y).

Proof. Let d = GCD(x, y), then x = dx′ and y = dy′ for some x′, y′ ∈ Z∗ . Since

x, y ∈ [±1](12), either d ∈ [±1](12) or d ∈ [±5](12). If d ∈ [±1](12), then x′ ∈ [±1](12)

and y′ ∈ [±1](12) (because x, y ∈ [±1](12)). In this case, with an appropiate choice
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of signs, x = (±1) (d)︸︷︷︸
[±1](12)

∗ (±x′)︸ ︷︷ ︸
[±1](12)

and y = (±1) (d)︸︷︷︸
[±1](12)

∗ (± y′)︸ ︷︷ ︸
[±1](12)

are τ(12)-factorizations

of x and y, respectively. If d ∈ [±5](12), by Proposition (14), x′ ∈ [±5](12) and

y′ ∈ [±5](12) which implies x = (±1) (d)︸︷︷︸
[±5](12)

∗ (±x′)︸ ︷︷ ︸
[±5](12)

and y = (±1) (d)︸︷︷︸
[±5](12)

∗ (± y′)︸ ︷︷ ︸
[±5](12)

are

τ(12)-factorizations of x and y, respectively. If there is a τ(12)-factor c of x and y.

So it is a factor and therefore c ≤ d. This shows d = τ(12)-MCD(x, y), in both

cases.

Proposition 16. Let x ∈ [±b](12) and d ∈ [±5](12), where b ∈ {1, 5} and d|x. If

Π5

(
x
d

)
6= 1, d|τ(12)x.

Proof. Since d|x, x = d · x′. If x ∈ [±1](12), x
′ ∈ [±5](12), (because d ∈ [±5](12)).

Hence x = (±1) d ∗ (±x′) is a τ(12)-factorization of x. If x ∈ [±5](12), hence we

have x′ ∈ [±1](12). Now rewrite x′ = Π1(x
′) · Π5(x

′). Notice that, Π1(x
′) ∈ [±1](12),

this forces Π5(x
′) =

α5∏
i=1

pai5i5 ∈ [±1](12). By Proposition (14),
α5∑
i=1

ai5 = 2k. Since

Π5(x
′) 6= 1, then

x = (±1) (d)︸︷︷︸
[±5](12)

∗ (±Π1 · p15)︸ ︷︷ ︸
[±5](12)

∗ (±p15)︸ ︷︷ ︸
[±5](12)

∗ ∗ ∗ (±pα55)︸ ︷︷ ︸
[±5](12)

is a τ(12)-factorization and d|τ(12)x.

Proposition 17. Let x ∈ [±b](12) where y, c ∈ [±5](12) and b ∈ {1, 5}. Denote the

GCD(x, y) as d. If c|d, and Π5

(
d
c

)
6= 1, then c|τ(12)x if and only if c|τ(12)d.

Proof. Let d = c · c′, for some c′ ∈ Z#. By hypothesis Π5(c
′) 6= 1.

(⇐) Suppose that c|τ(12)d. Hence c divides d and by transitivity c|x and c|y. Since

c ∈ [±5](12), by Proposition (16), c|τ(12)x.

(⇒) If d ∈ [±1](12), c
′ ∈ [±5](12). So d = (±1) (c)︸︷︷︸

[±5](12)

∗ (±c′)︸ ︷︷ ︸
[±5](12)

is a τ(12)-factorization
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of d and c|τ(12)d. If d ∈ [±5](12), c
′ ∈ [±1](12). Since Π5(c

′) 6= 1, by Proposition (16),

c|τ(12)d.

Theorem 22. If x ∈ [±b](12) where b ∈ {1, 5} and y ∈ [±2](12) , then the maximum

common τ(12)-factor of x and y is m, where m = max{c ∈ [±5](12) : c|τ(12)GCD(x, y)}.

Proof. The proof follows by the fact that {c ∈ [±5](12) : c|τ(12)GCD(x, y)} is the set

given by {c ∈: c|τ(12)x, y}.

Observe that, if x ∈ [±4](10), x can be written as x = 2nx′ where n > 1,

GCD(a, x′) = 1 and a ∈ {2, 3}, then by Proposition (14), either x′ ∈ [±1](12)

or x′ ∈ [±5](12). Hence, if there exist c such that c|τ(12)x, then by Lemma (2)

c = 2tc′ ∈ [±2](12) (if t = 1 ) or c ∈ [±4](12)( if t > 1 ).

Proposition 18. Let x = 2nx′ and y = 2my′. Then the following holds.

i. If n = 2 or n = 3, τ(12)-MCD(x, y) = 2 ·GCD(x′, y′).

ii. If n,m ≥ 4, τ(12)-MCD(x, y) = 2min{n,m}−2GCD(x′, y′).

Proof. Without loss of generality, assume that n = min{n,m} and we denote d1 as

the GCD(x′, y′). So d1 ∈ [±b](12), where b ∈ {1, 5}. For the first statement, suppose

that n = 2. Observe that (2 · d1) ∈ [±2](12)). Therefore x = (±1) (2 · d1)︸ ︷︷ ︸
[±2](12)

∗ (±2x′′)︸ ︷︷ ︸
[±2](12)

and (2 · d1)|τ(12)x. Now, y = (±1) (2 · d1)︸ ︷︷ ︸
[±2](12)

∗ (±2y′′)︸ ︷︷ ︸
[±2](12)

∗ (±2)︸︷︷︸
[±2](12)

∗ ∗ ∗ (±2)︸︷︷︸
[±2](12)

, then (2 · d1)

is the maximum common τ(12)-factor of x and y. Similarly, if n = 3, (2 · d1)|τ(12)x.

It is the maximum common τ(12)-factor of x and y. Otherwise, there exist c such

that c > 2 · d1, with the form c = 22c′. But such integer is not a τ(12)-factor of

x. Thus, 2 · d1 = τ(12)-MCD(x, y) if n = 2 or n = 3. For (ii.) we need to show

that 2n−2d1 is a common τ(12)-factor of x and y. Since d1 = GCD(x′, y′), there
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exist x′′ and y′′ such that x′ = d1 · x′′ and y′ = d1 · y′′. Note that by Proposition

(14) d1, x
′′ and y′′ ∈ [±a](12) where a ∈ {1, 5} (because d1 is not divisble by 2

nor by 3). Then x = (±1) (2n−2 · d1)︸ ︷︷ ︸
[±4](12)

∗ (±22 · x′′)︸ ︷︷ ︸
[±4](12)

for a suitable choice of signs

d1|τ(12)x. Analogously, d1|τ(12)y. If there exist a common τ(12)-factor c of x and y,

then by Lemma (2) c = 2tc′, with 1 ≤ t ≤ n and c′|d1. By contradiction suppose

c > 2n−2 · d1, then t = n − 1, because c′|x′, (due to c′|d1 and d1|x′) x′ = c′ · c′′.

Now, x = (2n−1 · c′)(2 · c′′) where (2 · c′′) ∈ [±2](12) and 2n−1 · c′ ∈ [±4](12). A

contradiction, because such decomposition must be a τ(12)-factorization. This prove

that τ(12)-MCD(x, y) = 2n−2d1.

Now, we study the case when x, y are both in [±3](12). These numbers are of

the form 3nx′, where x′ is relative prime to 12. Notice that 3n ≡ ±3 (mod 12) for all

n. Hence, if there exist a τ(12)-factor of an integer of the form 3nx′, such τ(12)-factor

must be in [±3](12).

Proposition 19. Let x = 3nx′ and y = 3my′, where GCD(12, x′y′) = 1. Then

τ(12)-MCD(x, y) = 3min{n,m}−1GCD(x′, y′). In other words, if x, y ∈ [±3](12) of

such form, then τ(12)-MCD(x, y) = 3min{n,m}−1GCD(x′, y′).

Proof. Without loss of generality suppose that n = min{n,m}, and d1 = GCD(x′, y′).

Since d1 = GCD(x′, y′), there are integers x′′ and y′′ such that x′ = d1 · x′′ and

y′ = d1 · y′′. Note that d1, x
′′ and y′′ ∈ [±a](12), where a ∈ {1, 5} (because d1 is not

divisible by 2 nor by 3). Thus d1|τ(12)x, because x = (±1) (3n−1 · d1)︸ ︷︷ ︸
[±3](12)

∗ (±3 · x′′)︸ ︷︷ ︸
[±3](12)

is a

τ ′(12)-factorization for a suitable choice of signs. Analogously, d1|τ(12)y. If there exist

a common τ(12)-factor c of x and y, then by Lemma (2) c = 3tc′, where t < n and

c′|d1. Then c = 3tc′ ≤ 3n−1d1. Hence, τ(12)-MCD(x, y) = 3n−1d1.
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If x ∈ [±4](12) and y ∈ [±3](12), then τ(12)-MCD(x, y) = 1, because due to

Lemma (2) the τ(12)-factors of x are in [±2](12) or [±4](12) and the τ(12)-factors of y

are in [±3](12).

Proposition 20. Let x = 2n · 3m · x′, where GCD(12, x′) = 1, n ≥ 2 and m ≥ 1. If

d|x′ and n ≤ m, then (2 · 3 · d)|τ(12)x.

Proof. Suppose that d|x′, then there exist x′′ such that x′ = d · x′′, and we have

x = (±1) (2 · 3 · d)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3 · x′′)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3)︸ ︷︷ ︸
[±6](12)

∗ ∗ ∗ (2 · 3)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3m−(n−2))︸ ︷︷ ︸
[±6](12)

. This shows that

(2 · 3 · d) is a τ(12)-factor of x.

Proposition 21. Suppose that x = 2n1 · 3n2 · x′ and y = 2m1 · 3m2 · y′, where

GCD(12, x′ · y′) = 1 and x -τ(12) y. If n1 ∈ {2, 3}, then n1 ≤ n2 and m1 ≤ m2 if and

only if τ(12)-MCD(x, y) 6= 1. Moreover, the following holds.

i. If n1 = 2, τ ′(12)-MCD(x, y) = 2 · 3min{n2−1,m2−(m1−1)} ·GCD(x′, y′).

ii. If n1 = 3, τ ′(12)-MCD(x, y) = 2 · 3min{n2−2,m2−(m1−1)} ·GCD(x′, y′).

Proof. (⇐) Suppose by contradiction that n1 > n2 or m1 > m2. If n1 > n2, we have

that x ∈ {223x′, 2332x′, 233x′}. Therefore x is a τ(12)-atom. Since x -τ(12) y, hence

τ(12)-MCD(x, y) = 1, a contradiction to the hypothesis. If m1 > m2, then y can not

have τ(12)-factors in [±6](12), because the amount of 2′s is greater than the amount of

3′s in y. But all the τ(12)-factors of x are in [±6](12). Therefore the τ(12)-MCD(x, y)

must be 1, a contradiction.

(⇒) Suppose that d1 = GCD(x′, y′), then exists x′′ and y′′ such that x′ = d1x
′′ and

y′ = d1y
′′. For (i), we claim that 2 · 3min{n2−1,m2−(m1−1)} · d1 is a common τ(12)-factor

of x and y. If min{n2−1,m2− (m1−1)} = n2−1, so x = (2 · 3n2−1 · d1)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3 · x′′)︸ ︷︷ ︸
[±6](12)

is a τ(12)-factorization of x, so (2 · 3n2−1 · d1)|τ(12)x. Since n2 − 1 ≤ m2 − (m1 − 1),

there is a nonnegative integer t such that m2 − (m1 − 1) = (n2 − 1) + t. Observe
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that m1− 1 ≤ m1− 1 + t = m2− (n2− 1), so the amount of 2′s is less or equal than

the amount of 3′s in 2m1−1 · 3m2−(n2−1). Hence (2 · 3n2−1 · d1)|τ(12)y, because

y = (2 · 3n2−1) · (2m1−1 · 3m2−(n2−1))

= (2 · 3n2−1 · d1)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3 · y′′)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3)︸ ︷︷ ︸
[±6](12)

∗ ∗ ∗ (2 · 3)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3m2−(n2−1)−(m1−2)).︸ ︷︷ ︸
[±6](12)

In the case of the min{n2 − 1,m2 − (m1 − 1)} = m2 − (m1 − 1), then we have that

x = (2 · 3m2−(m1−1) · d1)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3l · x′′)︸ ︷︷ ︸
[±6](12)

. Notice that n2 = m2 − (m1 − 1) + l where l is

a nonnegative integer. And

y = (2 · 3m2−(m1−1)) · (2m1−1 · 3m1−1)

= (2 · 3m2−(m1−1) · d1)︸ ︷︷ ︸
[±6](12)

∗ (2 · 3 · y′′)︸ ︷︷ ︸
[±6](12)

∗ ∗ ∗ (2 · 3).︸ ︷︷ ︸
[±6](12)

In both cases we have that 2 · 3m2−(m1−1) · d1 is a common τ(12)-factor of x and

y. If there exists c a common τ(12)-factor of x and y, then by Lemma (2), c is

2 · 3kc1 (because the common τ(12)-factors of x and y must be in [±6](12)), where

c1 divides to x′ and y′. Therefore c1 ≤ d1 and k ≤ min{n2 − 1,m2 − 1}. If

min{n2 − 1,m2 − (m1 − 1)} = n2 − 1, then c ≤ 2 · 3n2−1d1. Otherwise if the

min{n2 − 1,m2 − (m1 − 1)} = m2 − (m1 − 1) and c = 2 · 3kc1 > 2 · 3m2−(m1−1)d1,

then k > m2 − (m1 − 1). But y = (2 · 3kc1)(2m1−1 · 3m2−kc′1) and m2 − k < m1 − 1,

which implies that the amount of 2′s is greater than the amount of 3′s, and c can

not be a τ(12)-factor of y. For (ii), n1 = 3, then we need to split the 2′s otherwise

would obtain a factor in [±6](12) and the other in the equivalence class of [0](12).

Therefore when considering the minimum of the powers of 2, we must choose among

n2 − 2 (to assume that the τ(12)-MCD only has 2 and it is not divisible by 4) and

m2 − (m1 − 1). The rest would follows as in the previous case.
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Theorem 23. Let x = 2n13n2x′ and y = 2m13m2y′ with n1,m1 ≥ 4 and m2, n2 > 1.

Then τ(12)-MCD(x, y) = 2min{n1,m1}−2 · 3min{n2,m2}−1GCD(x′, y′)

Proof. Without loss of generality let d1 = GCD(x′, y′), n1 = min{n1,m1} and

m2 = min{n2,m2}. Claim: 2n1−2 · 3m2−2d1 is the maximum common τ(12)-factor of

x and y. Since d1 = GCD(x′, y′), there exist x′′ and y′′ such that, x′ = d1 · x′′ and

y′ = d1 ·y′′. Since m2 = min{n2,m2} and n1 = min{n1,m1}, there are t, l ∈ Z+ such

that n2 = t+n1 and m1 = l+n1. Now we can rewrite x and y as follows x = 2n1−2+2 ·

3t+m2d1 ·x′′ and y = 2t1+n1 ·3m2d1 ·y′′. Hence x = (2n1−2 · 3m2−1d1)︸ ︷︷ ︸
[0](12)

∗ (2 · 3t2+2x′′)︸ ︷︷ ︸
[0](12)

and

y = (2n1−2 · 3m2−1d1)︸ ︷︷ ︸
[0](12)

∗ (2t1+2 · 3y′′)︸ ︷︷ ︸
[0](12)

are τ(12)-factorizations of x and y respectively.

Thus 2n1−2 · 3m2−1d1|τ(12)x, y. Now suppose c = 2n · 3mc1 is a common τ(12)-factor of

x and y. Then by Lemma (2) n < n1, m < m2 and c1|x′, y′, which forces c1 to be

less or equal than d1. Hence 2n1−2 · 3m2−1 · d1 = τ(12)-MCD(x, y).

An element x ∈ [±2](12) is of the form x = 2x′ where 2 - x′ and 3 - x′, hence

the elements in [±2](12) are τ(12)-atoms. On the other hand, if x ∈ [±6](12), then

x = 2 · 3nx′ with GCD(x′, 12) = 1, then x is a τ(12)-atom. If x ∈ [±a](12), where

a ∈ {2, 6} and y ∈ Z#, with x -τ(12) y. Then τ(12)MCD(x, y) = 1.

As a summary are presented the tables (3–9) and (3–10), where are the formulas

found for the τ(12)-MCD(x, y) when τ(12)-MCD(x, y) 6= 1. Since the numbers in

[±1](12) and [±5](12) are relative prime to 12 and these classes have the same behavior

than the [±1](8) and [±3](8). And the formulas found also are similar, the reader can

observe the Table (3–6) for a summary of these formulas. On other hand, suppose

x = 2n3mx′ where GCD(12, x′y′) = 1. If x ∈ [0](12), then n ≥ 2 and m > 1. In the

case of x ∈ [±4](12), m = 0 and if x ∈ [±3](12), then n = 0. Table (3–9) summarizes

the results found for the τ(12)-MCD for elements in [0](10).
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Table 3–9: The τ(12)-MCD for numbers in [0](12)

(2n13n2x′, 2m13m2y′) τ(12)-MCD(x, y)

n1 = 2 2 · 3min{n2−1,m2−(m1−1)}GCD(x′, y′)

n1 = 3 2 · 3min{n2−2,m2−(m1−1)}GCD(x′, y′)

n1,m1 ≥ 4 2min{n1,m1}−2 · 3min{n2,m2}−1GCD(x′, y′)

In Table (3–10) there are the formulas for the τ(12)-MCD(x, y), when both

x, y ∈ [±b](12) for b ∈ {4, 3}.

Table 3–10: The τ(12)-MCD when (x, y) ∈ [±b](10) for b ∈ {4, 3}
(x, y) τ(12)-MCD(x, y)

(2nx′, 2my′)
n ∈ {2, 3} 2 ·GCD(x′, y′)

(2nx′, 2my′)
n,m ≥ 4

2min{n,m}−2 ·GCD(x′, y′)

(3nx′, 3my′)
n,m ≥ 2

3min{n,m}−1 ·GCD(x′, y′)

In this section we had address the formula of the τ(n)-MCD for an n for which

Z is not τ(n)-atomic. But it turns out that it behaved very similar as the case when

n ∈ {5, 8, 10}. This is because as expected they have the same level of difficulty,

determined by the Euler Number of 12 (respectively, 5,8, and 10) which is 4. The

main difference appears on the equivalence class of [0](12), which needed more atten-

tion, because the element of in such equivalence classes are the ones that makes Z

not τ(12)-atomic. The next non-τ(n)-atomic case happens when n = 7. This case is

studied in the next chapter.



Chapter 4

About τ(n)-MCD when φ(n) = 6 and some

generalizations

In this chapter there are three sections. The first section is about the study

of the τ(7)-MCD of the numbers that are not divisible by 7. The second section is

about some generalizations done, which help us to find the τ(7)-MCD, for any n.

For the last section the reader can find some results when n satisfies the equation

φ(n) = 6, that is n ∈ {9, 14, 18}.

4.1 On the τ(7)-MCD

In this section, we present a characterization of the τ(7)-MCD between two inte-

gers in Z#. The complexity of the case n = 7 is higher than when n ∈ {5, 8, 10, 12},

which is given when Z is not τ(12)-atomic. The complexity arise because the tech-

nique used depends on the distribution of the prime integers distinct from 7. In this

case, the positive primes are distributed in the other six equivalence classes modulo

7. Using τ ′(7), they are reduced to 3 distinct equivalence classes, given by [±1](7),

[±2](7) and [±3](7). The cases analyzed before only deal with at most two distinct

equivalence classes with respect to τ ′(7). Hence the need to understand, how the

elements of these three equivalence classes interact among them.

54
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Proposition 22. Let x =
α∏
k=1

xk, where each xk are in the same equivalence class

[±a](7) for a ∈ {1, 2, 3}, then the following holds.

1. If α = 3m, x ∈ [±1](7).

2. If α = 3m+ 1 and xk ∈ [±a](7), then x ∈ [±a](7), where a ∈ {2, 3}.

3. If α = 3m+ 2 and xk ∈ [±a](7), then x ∈ [±b](7), where a 6= b ∈ {2, 3}.

Proof. Let a ∈ Z#. By the Euler’s Theorem aφ(n)/2 ≡ ±1 (modn). This says

a3m ≡ a6m/2 ≡ ±1 (mod 7) for any m ∈ Z, so (1) follows. For (2), let us re-write x =(
α−1∏
k=1

xk

)
xα, then

α−1∏
k=1

xk ·xα−1α ∈ [±1](7). Then xα ∈ [±a](7) if and only if x ∈ [±a](7).

Similarly for (3), let α1, α2 ∈ {1, . . . , α}, then x =

(
α∏
k=1

xk/(xα1 · xα2)

)
(xα1xα2).

Notice that, if xα1 , xα2 ∈ [±a](7), then (xα1xα2) ∈ [±b](7). Hence x ∈ [±b](7),

because
α∏
k=1

xk/(xα1 · xα2) ∈ [±1](7).

We recall the previously used notation Πb(x) =
αb∏
k=1

pakbkb , where each pkb is a

positive prime factor of x and pkb ∈ [±b](7), with b ∈ {1, 2, 3}. With this notation,

the canonical factorization of a number x that is not divisible by 7 can be rewritten

as, x = Π1(x) · Π2(x) · Π3(x), and note that Π1(x) ∈ [±1](7). But the product of

primes in [±2](7) and [±3](7) have other patterns and we study how this affects the

τ(7)-factors of x. The following propositions addresses this situation.

Proposition 23. Let x ∈ Z#. Suppose that x = Π1(x) · Π2(x) · Π3(x) (as in the

notation in the previous paragraph) and
α2∑
k=1

ak2 = 3m+j and
α3∑
k=1

ak3 = 3n+i. Then

j ≡ (i+ t) (mod 3) if and only if x ∈ [±(1 + t)](7) for t ∈ {0, 1, 2}.

Proof. (⇒) Assume j ≡ (i+ t) (mod 3). The proof follows by dividing it into several

cases. First, let us split into 3 cases (based on whether t ∈ {0, 1, 2}).

First case t = 0 or j ≡ i (mod 3). We need to show that x ∈ [±1](7). For this, let

us show it again by exhausting all the possible cases.
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• Case 1.1 Suppose j ≡ 0 (mod 3). Since i ≡ j (mod 3), then i ≡ 0 (mod 3).

Therefore the number of primes in the classes [±2](7) and [±3](7), is a multiple of

3. By Proposition (22), Π2(x) ∈ [±1](7) and Π3(x) ∈ [±1](7), so x ∈ [±1](7).

• Case 1.2 Assume j ≡ e ≡ i (mod 3), where e ∈ {1, 2}. Then this forces

Π2(x) ∈ [±b](7) and Π3(x) ∈ [±a](7), for a 6= b ∈ {2, 3}. Since Π2(x) · Π3(x) is in

[±1](7), then x ∈ [±1](7).

If t = 0, x ∈ [±1](7), in all the cases .

For the second case assume t = 1, j ≡ (i + 1) (mod 3). The proof follows similarly

as in the previous case.

• Case 2.1 Suppose, j ≡ 0 (mod 3), then i ≡ 2 (mod 3). So
α2∑
k=1

ak2 = 3m

and
α3∑
k=1

ak3 = 3n + 2. By Proposition (22) Π2(x) ∈ [±1](7) and Π3(x) ∈ [±2](7).

Therefore, x ∈ [±2](7).

• Case 2.2 Now let us assume, j ≡ 1 (mod 3), then i ≡ 0 (mod 3). Hence

Π2(x) ∈ [±2](7) and Π3(x) ∈ [±1](7). As a consequence, x ∈ [±2](7).

• Case 2.3 For the lasta case let j ≡ 2 (mod 3). Then i ≡ 1 (mod 3). So∑α2

k=1 a(k2) = 3m + 2 and
∑α3

k=1 a(k3) = 3n + 1. Since Π2(x) and Π3(x) are in

[±3](7), x ∈ [±2](7).

Therefore, if j ≡ (i+ 1) (mod 3), then x ∈ [±2](7).

For the case 3, t = 2 or j ≡ (i+ 2) (mod 3). A similar technique is used.

• Case 3.1 If j ≡ 0 (mod 3), i ≡ 1 (mod 3). Therefore, Π2(x) ∈ [±1](7) and

Π3(x) ∈ [±3](7), and hence x ∈ [±3](7).

• Case 3.2 Now, suppose j ≡ 1 (mod 3), then i ≡ 2 (mod 3). This conditions

force Π2 ∈ [±2](7) and Π3 ∈ [±2](7), and hence x ∈ [±3](7).

• Case 3.3 Finally assume, j ≡ 2 (mod 3) and i ≡ 0mod 3. By Proposition

(22), x ∈ [±3](7).

Therefore, if j ≡ (i + 2) (mod 3), then x ∈ [±3](7). These cases concludes this

direction.
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(⇐) The converse follows by the previous construction. Suppose x ∈ [±1](7). Now,

there are three options for j. The possibilities are j ≡ i (mod 3) j ≡ (i+1) (mod 3)

or j ≡ (i + 2) (mod 3). The last two options force x ∈ [±2](7) and x ∈ [±3](7),

respectively. Therefore, the only possible choice is j ≡ i (mod 3). Similarly, if

x ∈ [±2](7), then the only one possible option is j ≡ (i + 1) (mod 3); and for

x ∈ [±3](7), the only one option is j ≡ (i+ 2) (mod 3).

Proposition 24. Let x ∈ [±1](7). If d1|x and d1 ∈ [±1](7), then d1|τ(7)x.

Proof. By hypothesis x = d1x
′, for some x′. Since x ∈ [±1](7) and d ∈ [±1](7), this

forces x′ ∈ [±1](7), then with an appropriate choice of signs, (±1)d1 ∗ (±x′) is a

τ(7)-factorization of x and d1|τ(7)x.

If x ∈ [±b](7) where b ∈ {1, 2, 3} and d1|x with d1 ∈ [±c](7), c ∈ {2, 3}. We

denote uc(
x
d1

) =
αc∑
k=1

akc, the sum of the power of the prime positive numbers in the

factorization of x
d1

, which are in [±c](7). We said that x
d1

satisfies the condition C1 :

if u2

(
x
d1

)
+ u3

(
x
d1

)
6= 1.

Proposition 25. Let x ∈ [±1](7) and d1 /∈ [±1](7). If x
d1

satisfies the condition C1,

then d1|τ(7)x.

Proof. By hypothesis x = d1x
′, for some x′ = x

d1
. Since x ∈ [±1](7), is necessary

to consider two cases for d1. First case, d1 ∈ [±2](7). A priori x′ ∈ [±3](7). Notice

that x
d1

= Π1

(
x
d1

)
· Π2

(
x
d1

)
· Π3

(
x
d1

)
. By Proposition (23) on x′, if

α2∑
k=1

ak2 =

3m0+j and
α3∑
k=1

ak3 = 3n0+i, then j ≡ (i+2) (mod 3). First subcase, j ≡ 0 (mod 3).

Consequently i ≡ 1 (mod 3), and hence
α2∑
k=1

ak2 = 3m and
α3∑
k=1

ak3 = 3n + 1. By

hypothesis
α2∑
k=1

ak2 +
α3∑
k=1

ak3 = 3m + (3n + 1) 6= 1, hence m 6= 0 or n 6= 0. Now,
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Suppose m = 0, then n 6= 0. Let p and q two prime factors of Π3

(
x
d1

)
. Then we

have that
∏α3

k=1 p
ak3
k3 = (p · q)︸ ︷︷ ︸

[±2](7)

(
α3∏
k=1

pak3k3 /p · q

)
︸ ︷︷ ︸

[±2](7)

. Therefore,

x = d1 · x′

= d1 · (Π1(x
′) · Π2(x

′)) · (Π3(x
′))

= d1 · (Π1(x
′) · Π2(x

′)) ·

(
α3∏
k=1

pak3k3 /pq

)
· (pq)

= (±1) d1︸︷︷︸
[±2](7)

∗

(
Π1(x

′) · Π2(x
′)

α3∏
k=1

pak3k3 /pq

)
︸ ︷︷ ︸

[±2](7)

∗ (pq).︸︷︷︸
[±2]7

Note that this method also works whether m = 0. Now, if n = 0, by hypothesis

m 6= 0, then the following gives a τ(7)-factorization of x.

x = d1 · x′

= d1 · (Π1(x
′) · Π2(x

′) · p13)

= d1 · (Π1(x
′) · p13 · (p12 · p22)) · p32 · · · pα22

= (±1) (d1)︸︷︷︸
[±2](7)

∗ (±Π1(x
′) · p13 · (p12 · p22))︸ ︷︷ ︸

[±2](7)

∗ (±p32)︸ ︷︷ ︸
[±2](7)

∗ ∗ ∗ (±pα22).︸ ︷︷ ︸
[±2](7)

For the second subcase, suppose j ≡ 1 (mod 3) and i ≡ 2 (mod 3). By Proposition

(22), Π2(x
′) ∈ [±2](7) and Π3(x

′) ∈ [±2](7). Hence d1|τ(7)x, because

x = d1 · x′

= d1 · (Π1(x
′) · Π2(x

′) · Π3(x
′))

= (±1) ∗ (d1)︸︷︷︸
[±2](7)

∗ (±Π1(x
′) · Π2(x

′))︸ ︷︷ ︸
[±2](7)

∗ (±Π3(x
′)) .︸ ︷︷ ︸

[±2](7)
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For the last subcase, assume that j ≡ 2 (mod 3) and i ≡ 0 (mod 3). By Proposition

(24) Π2(x
′) ∈ [±3](7) and Π3(x

′) ∈ [±1](7), thus

x = d1 · x′

= d1 · (Π1(x
′) · Π2(x

′) · Π3(x
′))

= d1 · (Π1(x
′) · Π2(x

′) · p13) ·
α3∏
k=1

pak3k3

p13

= (±1) (d1)︸︷︷︸
[±2](7)

∗ (Π1(x
′) · Π2(x

′) · p13)︸ ︷︷ ︸
[±2](7)

∗

(
α3∏
k=1

pak3k3

p13

)
.︸ ︷︷ ︸

[±2](7)

Note that
α3∏
k=1

p
ak3
k3

p13
∈ [±2](7), because the amount of primes in this product is of

the form 3n− 1 = 3(n− 1) + 2, with a suitable choice of signs, d1|τ(7)x.

Finally suppose d1 ∈ [±3](7), hence x′ ∈ [±2](7). As a consequence we can

rewrite x′ as x′ = Π1(x
′) ·Π2(x

′) ·Π3(x
′) where

α2∑
k=1

ak2 = 3m0 + j,
α3∑
k=1

ak3 = 3n0 + i,

and j ≡ (i + 1) (mod 3). Once one again we need to consider three cases when

j ∈ {0, 1, 2}.

If j ≡ 0 (mod 3), i ≡ 2 (mod 3). Now

(
α3∑
k=1

ak3

)
−1 = (3n+2)−1 = 3n+1. By

Proposition (24) Π2(x
′) ∈ [±1](7), Π3(x

′) ∈ [±2](7) and

(
α3∏
k=1

p
ak3
k3

p13

)
∈ [±3](7). Hence,

we have d1 is a τ(7)-factor of x, with a suitable choice of signs:

x = (±1) (d1)︸︷︷︸
[±3](7)

∗ (±Π1(x
′)Π2(x

′)p13)︸ ︷︷ ︸
[±3](7)

∗

(
±

α3∏
k=1

pak3k3

p13

)
︸ ︷︷ ︸

[±3](7)

.

If we suppose j ≡ 1 (mod 3), i ≡ 0 (mod 3). By hypothesis the condition C1 says

that:
α2∑
k=1

ak2 +
α3∑
k=1

ak3 = (3m + 1) + 3n 6= 1, then m 6= 0 or n 6= 0. First, we

suppose that m 6= 0 and let p and q are prime factors of Π2(x
′). And notice that

(3m+ 1)− 2 = 3(m− 1) + 2. By Proposition (22) Π2(x
′)/pq ∈ [±3](7). So we get,
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x = (±1) (d1)︸︷︷︸
[±3](7)

∗ (±Π1(x
′) · Π3(x

′) · Π2(x
′)/pq)︸ ︷︷ ︸

[±3](7)

∗ (±p · q) .︸ ︷︷ ︸
[±3](7)

Suppose n 6= 0. As in the proof of the previous cases, if m > 0, d1|τ(7)x.

If m = 0, then Π2(x
′) = p12. Let p and q prime factors of Π3(x

′). Note that

3n− 2 = 3(n− 1) + 1, so
α3∏
k=1

pk3/pq ∈ [±3](7).

x = (±1) (d1)︸︷︷︸
[±3](7)

∗ (±Π1(x
′) · p · q · p12)︸ ︷︷ ︸
[±3](7)

∗

(
±

α3∏
k=1

pak3k3 /pq

)
︸ ︷︷ ︸

[±3](7)

and d1|τ(7)x.

If j ≡ 2 (mod 3), i ≡ 1 (mod 3). Therefore Π2(x
′) ∈ [±3](7) and Π3(x

′) ∈ [±3](7).

So x = (±1) (d1)︸︷︷︸
[±3](7)

∗ (±Π1(x
′) · Π2(x

′))︸ ︷︷ ︸
[±3](7)

∗ (±Π3(x
′))︸ ︷︷ ︸

[±3](7)

, thus d1|τ(7)x. In conclusion, if

d1 ∈ [±3](7), d1 is a common τ(7)-factor of x.

Proposition 26. Let x ∈ [±1](7) and d1 /∈ [±1](7). If d1|τ(7)x, then x
d1

satisfies the

condition C1 : u2

(
x
d1

)
+ u3

(
x
d1

)
6= 1.

Proof. Since d1|τ(7)x, there exist d2, . . . , ds such that x = λ d1 ∗ d2 ∗ ∗ ∗ ds, where

λ ∈ {1,−1}. If d1 ∈ [±a](7), then each di ∈ [±a](7). Now, x
d1

= d2 ∗ · · · ∗ ds ∈ [±b](7),

where a 6= b ∈ {2, 3}. Note that ua

(
x
d1

)
= ua(d2) + · · · + ua(ds). Suppose by

contradiction that ua

(
x
d1

)
+ ub

(
x
d1

)
= 1. That is, ua

(
x
d1

)
= 0 or ub

(
x
d1

)
= 0. If

ua

(
x
d1

)
= 0, then ub

(
x
d1

)
= 1. Hence, there are no primes factor of x

d1
in [±a](7) and

there is only one prime factor of x
d1

in [±b](7). Thus for all i ∈ {2, . . . , s}, ub(di) = 0,

except for one of them. Suppose ub(dk) 6= 0 and rewrite dk = Π1(dk) · pkb. Since

dk ∈ [±b](7), d1 -τ(7) x a contradiction to the assumption of the hypothesis of d1|τ(7)x.

Now, if ub

(
x
d1

)
= 0 and ua

(
x
d1

)
= 1, then there is no primes factors of x

d1
in [±b](7)
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and only one prime pka ∈ [±a](7). So x
d1

= Π1

(
x
d

)
· pka ∈ [±a](7). Hence x ∈ [±b](7),

that is a contradiction, because x ∈ [±1](7).

Corollary 4. Let x ∈ [±1](7) and d1 /∈ [±1](7), with d1|x. Then d1|τ(7)x, if and only

if x
d1

satisfies the condition C1 : u2

(
x
d1

)
+ u3

(
x
d1

)
6= 1.

Notice that if x ∈ [±1](7), d1|x (with d1 /∈ [±1](7)) and x
d1

does not satisfies the

condition C1, pi1 · xd1 satisfies the condition C1, where pi1 ∈ [±1](7) and pi1|d1. The

condition C1 will help us to compute the τ(7)-MCD between two numbers in Z#.

We did not find a formula to compute the maximum common τ(7)-factor between

two integers in [±1](7), but found a procedure of logical steps is presented, or an

algorithm to compute the τ(7)-MCD.

Algorithm 1 τ(7)-MCD for elements in [±1](7)

Input: x, y ∈ [±1](7)
Output: τ(7)-MCD(x, y)
1: d1 ← GCD(x, y)
2: if d1 ∈ [±1](7) then
3: return d1
4: else
5: while d1 6= 1 do
6: x′ ← x

d1
and y′ ← y

d1
7: if x′ and y′ satisfies condition C1 or d1 ∈ [±1](7) then
8: return d1
9: else
10: d1 ← d1/pd1
11: end if
12: end while
13: end if

The Algorithm (1) takes as entry two integers x, y ∈ [±1](7) and returns the

τ(7)-MCD(x, y). From lines 1 to 3, the algorithm verifies whether GCD(x, y) is in

[±1](7). In case it is affirmative, then GCD(x, y) coincides with the τ(7)-MCD(x, y),
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(which was predicted by Proposition (24)). From lines 6 to 12, the algorithm asks

if d1 satisfies the condition C1 or d1 is in [±1](7). If d1 satisfies the condition then

C1 or d1 ∈ [±1](7), immediatly d1|τ(7)x and d1|τ(7)y, (proved in Corollary (4) and

Proposition (24)) : and d1 is the maximum common τ(7)-factor, of x and y. If d1

does not satisfies C1, then d1 is divided by pd1 , where pd1 is the smallest positive

prime factor of d1 that is not in [±1](7), (pd1 exists because otherwise all prime

factors belong to [±1](7)). While d1 6= 1, the process from line 6 to 12 is repeated.

For example if we have x = 32 · 22 · 172 · 192 ∈ [±1](7) and y = 23 · 3 · 172 ∈ [±1](7),

so GCD(x, y) = d1 = 22 · 3 · 172 ∈ [±3](7). Hence x
d1

= 3 · 192 and y
d1

= 2. And

u2

(
x
d1

)
+ u3

(
x
d1

)
= 2 + 1 = 3 and x

d1
satisfies C1. But, u2

(
y
d1

)
+ u3

(
y
d1

)
= 1

and x
d1

does not satisfies C1. Now, taking pd1 = 2, let d1 ← d1
pd1

= 2 · 3 · 172. Then

x
d1

= 3 · 192 · 2 and x
d1

satisfies C1. And y
d1

= 22, so u2

(
y
d1

)
+ u3

(
y
d1

)
= 2 and y

d1

satisfies C1. Therefore, d1 = 2 · 3 · 172 = τ(7)-MCD(x, y).

Proposition 27. Let x ∈ [±c](7) and d1|x if d1 ∈ [±a](7) where a 6= c ∈ {2, 3}.

Then d1|τ(7)x.

Proof. Suppose x = d1 · x′, for some x′. If x ∈ [±2](7), d1 ∈ [±3](7). This forces

x′ ∈ [±3](7) which implies that (±1) d1 ∗ (±x′) with an appropriate choice of signs

is a τ(7)-factorization of x. Now, If x ∈ [±3](7), d1 ∈ [±2](7). Hence, x′ ∈ [±3](7).

Therefore (±1) d1 ∗ (±x′) with an appropriate choice of signs is a τ(7)-factorization

of x. In conclusion, d1|τ(7)x.

Suppose x ∈ [±b](7) and d1 ∈ [±c](7), where c, b ∈ {2, 3}. If b 6= c, by Proposition

(27), d1|τ(7)x. In the case of b = c, we say that x
d1

satisfies the following condition

C2,3 : (1.)ub

(
x
d1

)
6= 0 or u5−b /∈ {0, 3} and (2.)ub

(
x
d1

)
/∈ {0, 1} or u5−b

(
x
d1

)
6= 1.
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Note that the choice of the subindex 5 − c was made so that if c = 2 (or 3) then

u− 5 = 3 (respectively 2).

Theorem 24. Let x ∈ [±b](7) where b 6= c ∈ {2, 3}. Suppose d1|x and d1 /∈ [±1](3).

Recall x
d1

= Π1

(
x
d1

)
Πb

(
x
d1

)
Πc

(
x
d1

)
=

(
α1∏
k=1

pak1k1

)
·
(

αb∏
k=1

pakbkb

)
·
(

αc∏
k=1

pakckc

)
. If x

d1

satisfies the condition C2,3. Then, d1|τ(7)x.

Proof. Suppose x = d1·x′, that is x′ = x
d1

and d1 ∈ [±b](7) or d1 /∈ [±c](7). Notice that

by Proposition (27), d1|τ(7)x, because d1 ∈ [±c](7). If d1 ∈ [±b](7), then x′ ∈ [±1](7).

So
αb∑
k=1

akb = 3m0 + j and
αc∑
k=1

akc = 3n0 + i, where j ≡ i (mod 3). Hence, there are

3 cases:

• Case 1.1 If j ≡ 0 (mod 3), i ≡ 0mod 3, hence
αb∑
k=1

akb = 3m and
αc∑
k=1

akc = 3n

then if m 6= 0, d1|τ(7)x, because

x = (±1) d1 ·

(
Π1(x

′) ·
αb∏
k=1

pakbkb

αc∏
k=1

pakckc

)

= (±1) d1 ·

(
Π1(x

′) ·
αc∏
k=1

pakckc p1b

)(
αb∏
k=1

pakbkb

p1b

)
= (±1) (d1)︸︷︷︸

[±b](7)

· (Π1(x
′) · Πc(x

′) · p1b)︸ ︷︷ ︸
[±b](7)

∗ (±p1b)︸ ︷︷ ︸
[±b](7)

∗ ∗ ∗ (±pαbb).︸ ︷︷ ︸
[±b](7)

If m = 0 and n > 1. Suppose n = 2t, for some t ∈ Z+
∑αc

k=1 akc = 3(2t) = 6t.

Take primes in [±c](7) and put them in pairs, that is of the form (pl1cpljc), which

are in [±b](7). Then,

x = d1 ·

(
Π1(x

′) ·
αc∏
k=1

pakckc

)
= (±1) (d1)︸︷︷︸

[±b](7)

∗ (±Π1(x
′) · (pl1c · pl2c))︸ ︷︷ ︸
[±b](7)

∗ (±pl3c · pl4c)︸ ︷︷ ︸
[±b](7)

∗ ∗ ∗
(
±pli′c · plj′c

)
︸ ︷︷ ︸

[±b](7)

with a suitable choice of signs, d1|τ(7)x. If n = 2n1 + 1, for some n1, and n > 1

then n1 6= 0. And 3n can be rewritten as follows
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3n = 3(2n1 + 1)− 5 + 5

= (6n1 + 3− 5) + 5

= (6n1 − 2) + 5

= 2(3n1 − 1) + 5

= (3n1 − 1) + (3n1 − 1) + 5.

Therefore, there are γ1, γ2, such that
γ1∑
k=1

akc = 3n1 − 1,
γ2∑

k=γ1+1

akc = 3n1 − 1 and

α3∑
k=γ2+1

akc = 5. These arrangements force all
γ1∏
k=1

pakckc ,
γ2∏

k=γ1+1

pakckc and
αc∏

k=γ2+1

pakckc to

belong in [±b](7). This gives a τ(7)-factorization of x

x = (±1) (d1)︸︷︷︸
[±b](7)

∗

(
±Π1(x

′) ·
γ1∏
k=1

pakckc

)
︸ ︷︷ ︸

[±b](7)

∗

(
±

γ2∏
k=γ1+1

pakckc

)
︸ ︷︷ ︸

[±b](7)

∗

(
±

αc∏
k=γ2+1

pakckc

)
.︸ ︷︷ ︸

[±b](7)

Therefore, d1|τ(7)x. Note that n = 0 and m = 0 is not possible, because x
d1

satisfies

the condition C2,3.

• Case 1.2 If j ≡ 1 (mod 3), then i ≡ 1 (mod 3). Hence,
αb∑
k=1

akb = 3m + 1

and
αc∑
k=1

akc = 3n + 1. Observe that Πb(x
′) ∈ [±b](7) and Πc(x

′) ∈ [±c](7). Now, if

m 6= 0,

x = (±1) d1︸︷︷︸
[±b](7)

∗ (±Π1(x
′) · Πc(x

′) · (p1b · p2b))︸ ︷︷ ︸
[±b](7)

∗ (±p3b)︸ ︷︷ ︸
[±b](7)

∗ ∗ ∗ (±pαbb).︸ ︷︷ ︸
[±b](7)

then d1|τ(7)x. If m = 0, there is only one prime in [±b](7), without loss of generality

suppose that this prime is p1b. On the other hand, n > 0 and we have that

3(n) + 1 = (3(n− 1) + 2) + 2. Then there exist γ1 a nonnegative integer such that
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the following holds
αc∑
k=1

akc =

(
γ1∑
k=1

akc

)
+

(
αc∑

k=γ1+1

akc

)
= (3(n− 1) + 2) + 2, then

x = (±1) (d1)︸︷︷︸
[±b](7)

∗ (±Π1(x
′) · p1b)︸ ︷︷ ︸

[±b](7)

∗

(
±

γ1∏
k=1

pakckc

)
︸ ︷︷ ︸

[±b](7)

∗

(
±

αc∏
k=γ1+1

pakckc

)
.︸ ︷︷ ︸

[±b](7)

Hence, d1|τ(7)x. Note that, m = 0 and n = 0 is not possible, because x
d1

satisfies

C2,3.

• Case 1.3 If j ≡ 2 (mod 3), i ≡ (2mod 3) and d1|τ(7)x, because:

x = (±1) (d1)︸︷︷︸
[±b](7)

∗ (±Π1(x
′) · Πc(x

′))︸ ︷︷ ︸
[±b](7)

∗

(
±

αb∏
k=1

pakbkb

p1b

)
︸ ︷︷ ︸

[±b](7)

∗ (±p1b) .︸ ︷︷ ︸
[±b](7)

In conclusion, d1|τ(7)x.

Proposition 28. Let x, d1 ∈ [±b](7), where b 6= c ∈ {2, 3}. If d1|τ(7)x, then x
d1

satisfies the conditions C2,3 :

(1). ub

(
x
d1

)
6= 0 or uc

(
x
d1

)
/∈ {0, 3}, and

(2). ub

(
x
d1

)
/∈ {0, 1} or uc

(
x
d1

)
6= 1.

Proof. Suppose x, d1 ∈ [±b](7), where b ∈ {2, 3}. Since d1|τ(7)x, there is a τ(7)-

factorization x = λd1 ∗ ∗ ∗ ds, where each dk ∈ [±b](7) and x
d1

= d2 · · · ds ∈ [±1](7).

By contradiction suppose that x
d1

does not satisfies the condition C2,3, that is:

(1)ub

(
x
d1

)
= 0 and (uc

(
x
d1

)
= 0 or uc

(
x
d1

)
= 3 or (2)

(
ub

(
x
d1

)
= 0 or ub

(
x
d1

)
= 1
)

and uc

(
x
d1

)
= 1. If ub

(
x
d1

)
= 0 and uc

(
x
d1

)
= 0, then for all k, ub(dk) = 0 and

uc(dk) = 0. This implies that d1 ∈ [±1](7), a contradiction. If ub

(
x
d1

)
= 0 and

uc

(
x
d1

)
= 3, there are no primes in [±b](7), (for all k, ub(dk) = 0) and there are 3

primes in [±c](7). Without loss of generality, let us call these prime factors of x
d1

,

p1c, p2c, p3c. So, x
d1

= Π1

(
x
d1

)
· p1c · p2c · p3c. Since x

d1
= d2 · · · dk, then p1c, p2c, p3c|dj,
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for some j < s. If dj = Π1(dj)plc, for some l ∈ {1, 2, 3}, then dj ∈ [±c](7), a contra-

diction to the fact that dj ∈ [±b](7). In the case of dj = Π1(dj)p1cp2c, dj ∈ [±b](7).

But there exists dl = Π1(dl) · p3c ∈ [±c](7) a contradiction. Hence p1cp2cp3c|dj, but

this says dj = Π1(dj)p1cp2cp3c ∈ [±1](7), a contradiction. Now, if ub

(
x
d1

)
= 1, (that

is Πb

(
x
d1

)
= p1b) and uc

(
x
d1

)
= 1, (that is Πc

(
x
d1

)
= p1c). For some j < k,

dj = Π1(dj)p1c ∈ [±c](7), or dj = Π1(dj)p1bp1c ∈ [±1](7). If ub

(
x
d1

)
= 0 and

uc

(
x
d1

)
= 1 (that is, Πc

(
x
d1

)
= p1c). For some j < k, dj = Π1(dj)p1c ∈ [±c](7), a

contradiction. Both leads to the hypothesis of d1|τ(7)x.

Corollary 5. Let x, d1 ∈ [±c](7), where c ∈ {2, 3}. Then d1|τ(7)x if and only if x
d1

satisfies the condition C2,3 :

(1). ub

(
x
d1

)
6= 0 or uc

(
x
d1

)
/∈ {0, 3} and

(2). ub

(
x
d1

)
/∈ {0, 1} or uc

(
x
d1

)
6= 1

Algorithm 2 τ(7)-MCD for elements in [±b](7)
Input: x, y ∈ [±b](7)
Output: τ(7)-MCD(x, y)
1: d1 ← GCD(x, y)
2: if d1 ∈ [±c](7) with b 6= c ∈ {2, 3} then
3: return d1
4: else
5: while d1 6= 1 do
6: x′ ← x

d1
and y′ ← y

d1
7: if x′ and y′ satisfies the condition C2,3 or d1 ∈ [±c](7) then
8: return d1
9: else
10: d1 ← d1/pd
11: end if
12: end while
13: return d1
14: end if

The Algorithm (2) takes as entries two integers x, y ∈ [±b](7), where b ∈ {2, 3},

and returns the τ(7)-MCD(x, y). From lines 1 to 4, the algorithm verifies whether
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GCD(x, y) ∈ [±c](7) where b 6= c ∈ {2, 3}. In case it is affirmative, then GCD(x, y)

coincides with the τ(7)-MCD(x, y). This is true by Proposition (27). From lines 6

to 12, the algorithm asks whether d1 satisfies the condition C2,3 or d1 ∈ [±c](7). If d1

satisfies the condition C2,3 or d1 ∈ [±c](7), immediately d1|τ(7)x and d1|τ(7)y, (proven

in Corollary (5) and Proposition (27)), and d1 is the maximum common τ(7)-factor

of x and y. If d1 does not satisfies C2,3, then d1 is divided by pd1 , where pd1 is the

smallest positive prime factor of d1 that is not in [±1](7). While d1 6= 1, the process

from line 6 to 12 is repeated. For example if is considered, x = 32 · 22 · 172 · 192 · 11 ∈

[±3](7) and y = 23 · 3 · 172 · 31 ∈ [±3](7), GCD(x, y) = d1 = 22 · 3 · 172 ∈ [±3](7).

Hence x
d1

= 3 · 192 · 11 and y
d1

= 2 · 31. And u2

(
x
d1

)
+ u3

(
x
d1

)
= 2 + 2 = 4 and

x
d1

satisfies C2,3. But, u2

(
y
d1

)
= 1 and u3

(
y
d1

)
= 1 and y

d1
does not satisfies C2,3.

Now, let d1 ← d1
pd

= 2 · 3 · 172. Then x
d1

= 3 · 192 · 2 · 11 and x
d1

satisfies C2,3. And

y
d1

= 22 · 31, so u2

(
y
d1

)
= 2 and u3

(
y
d1

)
= 1 and y

d1
= satisfies C2,3. Therefore,

d1 = 2 · 3 · 172 = τ(7)-MCD(x, y).
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4.2 Some generalizations

In this section, the reader can find some generalizations of propositions and

theorems. With these generalizations is possible to compute the τ(n)-MCD between

two integers, for any n. We also consider other cases when both numbers either in

[0](n), [±1](n) or [±q](n), where n = rq and r|6. First, we consider elements in [0]n,

k ≥ 1, n = pk, and p a positive prime integer.

Theorem 25. Let x = pnx′ and y = pmy′, where p is a positive prime integer and

p - x′, y′. If n,m ≥ 2k, then τ(pk)-MCD(x, y) = pmin{n,m}−kGCD(x′, y′), for any k.

Proof. Let d1 = GCD(x′, y′). Then x′ = d1x
′′ and y′ = d1y

′′ for some x′′, y′′ ∈ Z∗.

Without loss of generality suppose n = min{n,m}, m = n + l for some integer

l ≥ 0. The following x = (pn−k · d1)︸ ︷︷ ︸
[0]

(pk)

∗ (pk · x′′)︸ ︷︷ ︸
[0]

(pk)

and y = (pn−k · d1)︸ ︷︷ ︸
[0]

(pk)

∗ (pl+k · y′′)︸ ︷︷ ︸
[0]

(pk)

are

τ(n)-factorizations, of x and y, respectively. If c|τ
(pk)
x, y, then by Lemma (2) c = pt·c′,

where 0 < t ≤ n− 1, and c′ must divide x′ and y′. Hence c′ ≤ d1. So, c ≤ (pn−1 · d1)

and τ ′
(pk)

-MCD(x, y) = pmin{n,m}−kGCD(x′, y′) = τ(pk)-MCD(x, y).

In Theorem (25), elements x = pnx′, in [0](pk), such that n ≥ 2k were considered.

But, the theorem does not consider all the cases when both x and y are in [0]pk ,

for example when k ≤ n < 2k. The formula for the τ(n)-MCD of these elements is

different from the one given in the above theorem. On other hand, if are considered

pa and pb, such that 0 < a < b < k, then pa and pb are in different equivalence classes

with respect to the relation τ ′
(pk)

. Such case is addressed in the following lemmas.

Lemma 5. Let x ∈ [0](pk), where x = pmx′ and GCD(x′, p) = 1. If c = ptc1 with

c1 ≡ ±x′

c1
≡ ±1 (mod pk−t) and t a proper divisor of m, then c|τ

(pk)
x.
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Proof. Since t|m, then m = ta. Also, x′ = c1 · c′′. Hence x = pmx′ = pta · c1 · c′′.

Thus, x = (pt · c1) · (pt · c′′) (pt) · · · (pt)︸ ︷︷ ︸
(a−2)−times

. By hypothesis, c1 ≡ ±c′′ ≡ ±1 (mod pk−t),

then pt · c1 ≡ ±pt · c′′ ≡ ±pt (mod pk). Then, x = (pt · c1)∗ (±pt · c′′)∗ (±pt)∗∗∗ (±pt)

is a τ ′
(pk)

-factorization of x. By Remark (1), c|τ
(pk)
x.

Lemma 6. Let x = pmx′, where k ≤ m < 2k and p - x′. If c = ptc1 and c|τ
pk
x, then

t is a proper divisor of m.

Proof. Suppose by contradiction that t is not a proper divisor of m. Note that

x′ = c1 · c′′ and note that t < m. So either k > t or k ≤ t. First assume,

k ≤ t. Since t < m, m = t + r0, where r0 < k (because k ≤ t < m < 2k).

Therefore, x = pt+r0 · c1 · c′′, and x = (pt · c1) · (pr0 · c′′), note that pt · c1 ∈ [0](pk),

but pr0 · c′′ /∈ [0](pk). Hence, a τ(pk)-factorization is not possible, with c = pt · c1

as a τ(pk)-factor. Now, suppose k > t. By the division theorem, there exist q and

0 ≤ r < t, with m = qt+ r. If assumme r 6= 0, then

x = pqt+r · c1 · c′′

= (pqt · c1)(pr · c′′)

= (pt · c1) · (pt) · · · (pt)︸ ︷︷ ︸
(q−1)−times

·(pr · c′′)

= (c) · (pt) · · · (pt)︸ ︷︷ ︸
(q−1)−times

·(pr · c′′).

Note that for any integer a, t(q − 1) + r > t (because r > 0), and we have

that pat+rc′′ /∈ [±pt · c1](pk), and c can not be a τ(pk)-factor of x. Hence, r = 0 and

m = qt.
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Definition 4.2.1. Let x, y ∈ Z#, we define the greatest common proper factor of x

and y (denoted by GCPD(x, y)) as the greatest common factor strictly less than x

and y.

Notice that this definition was motivated by Lemma 5. Such result was used in

several results and in (25): in which it is assumed that t ≤ n− 1 instead t ≤ n. At

the moment it was important to recognize that if x -τ(n)
y, then the proper powers

naturally arise. This concept is used to prove the following theorem.

Theorem 26. Let x = pn1 · x′ and y = pn2 · y′, where 2 ≤ k ≤ n1 < 2k and

GCD(x′y′, p) = 1. If GCD(x′, y′) ≡ x′

GCD(x′,y′)
≡ y′

GCD(x′,y′)
≡ 1 (mod pk−GCPD(n1,m1)).

Then τ(pk)-MCD(x, y) = pGCPD(n1,m1)GCD(x′, y′), where GCD(n1,m1), is as in

Definition (4.2.1).

Proof. Let d1 = GCD(x′, y′), then there are x′′ and y′′, such that x′ = d1 · x′′

and y′ = d1 · y′′. For simmplicity denote GCPD(n1,m1) = m. By Lemma (5),

pm · d1|τ
(pk)
x and pm · d1|τ

(pk)
y. If there exist c, such that c|τ

(pk)
x, y, then c = ptc1,

where c1 is a common divisor of x′, y′. By definition of d1, c1 ≤ d1. By Lemma (6), t

is a proper divisor of n1 and m1, thus t ≤ m. Therefore, c = pt · c1 ≤ pm · d1. Hence

τ(pk)-MCD(x, y) = pGCPD(n1,m1)GCD(x′, y′).

If n = 22, that was a case studied in [7], the results for elements x = 2ax′ in [0](4),

where a ∈ {2, 3}, coincide with the result of Theorem (26), because x′ ≡ ±1 (mod 4),

and satisfies the condition of the Theorem. Also, if n = 23, the Theorem (11), studied

in Chapter 3, coincides with the above theorem.
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Theorem 27. Let x, y ∈ [0](n), where n = pa11 · · · p
ak
k . If x = pn1

1 · · · p
nk
k x
′ and

y = pm1
1 · · · p

mk
k with ni,mi ≥ 2ai and GCD(pi, x

′ · y′) = 1. Then, the maximum

common τ(n)-factor of x and y is p
min{n1,m1}−a1
1 · · · pmin{nk,mk}−ak

k .

Proof. Let d1 = GCD(x′, y′). Since d1 = GCD(x′, y′), there exist x′′ and y′′ such

that, x′ = d1 · x′′ and y′ = d1 · y′′. Notice that,

x = (p
min{n1,m1}−a1
1 · · · pmin{nk,mk}−ak

k · d1)︸ ︷︷ ︸
[0](n)

∗ (pt1+a11 ∗ ptk+akk x′′)︸ ︷︷ ︸
[0](n)

and

y = (p
min{n1,m1}−a1
1 · · · pmin{nk,mk}−ak

k · d1)︸ ︷︷ ︸
[0](n)

∗ (pt1+a11 · · · ptk+akk y′′)︸ ︷︷ ︸
[0](n)

are τ(n)-factorizations of x and y. Hence, if m = (p
min{n1,m1}−a1
1 · · · pmin{nk,mk}−ak

k ·d1),

then m is a τ(n)-factor of x and y. Now suppose that there exists c = ps11 · · · p
sk
k c1,

a common τ(n)-factor of x and y, then si ≤ min{ni,mi}, and c1 ≤ d1, because

c1|x′, y′ and d1 = GCD(x′, y′). Since c|x, there is li ≥ 0 for i ∈ {1, . . . , k}, such that

ni = si + li, and x = (ps11 · · · p
sk
k c1) · (p

l1
1 · · · p

lk
k c
′′). Suppose by contradiction that

c ≥ m, then ps11 · · · p
sk
k c1 ≥ p

min{n1,m1}−a1
1 · · · pmin{nk,mk}−ak

k · d1 holds. Since c1 ≤ d1,

then
k∏
i=1

psii ≥
k∏
i=1

p
min{ni,mi}−ai
i . Then there is at least some st ≥ min{nt,mt} − at.

Without loss of generality, suppose nt = min{nt,mt}. Now, nt − at ≤ st ≤ nt, and

so st = (nt − at) + r for some r ≥ 0. On other hand, if st + lt = nt, then lt = at − r.

This mean that lt ≤ at. Since c|τ(n)
x, then x = c ∗ c2 ∗ ∗ ∗ cw, where each ci ∈ [0](n).

Therefore, c2 ∗ · · · ∗cw = pl11 · · · p
lk
k c
′′, but c2 ∗ · · · ∗cw ∈ [0](n), and pl11 · · · p

lk
k c
′′ /∈ [0](n),

a contradiction. Hence, τ(n)-MCD(x, y) =
k∏
i=1

p
min{n1,m1}−ai
i ·GCD(x′, y′).

Theorem (27) generalized because Theorems (5), (7), (16) and (23) presented

in Chapter 3. Note that the proof of Theorem (27) also generalized Lemma (2), for

any n = pa11 · · · p
ak
k .
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Lemma 7. Let x, d ∈ Z#, where x ∈ [±1](n) and d2 ≡ ±1 (modn), then d|τ(n)
x.

Proof. Since d|x, there exist x′ such that x = d·x′. Since x ∈ [±1](n), d and n are rel-

atively prime and d−1(modn) exist. By hypothesis d2 ≡ ±1 (modn), which implies

d ≡ ± d−1(modn). Since d · x′ ≡ ±1(modn), d−1 ≡ x′ (modn). And transitivity, we

obtain that d ≡ ±x′ (modn). Therefore, x = d ∗ (±x′) is a τ(n)-factorization of x

and d|τ ′
(n)
x. By Remark (1), d|τ(n)

x.

As consequence of Lemma (7), if x, y ∈ [±1](n) and GCD(x, y) ∈ [±1](n), then

GCD(x, y) = τ(n)-MCD(x, y).

Corollary 6. Let x, y ∈ [±1](n), and d = GCD(x, y). If d2 ≡ ±1(modn), then

d = τ(n)-MCD(x, y).

Proof. By Theorem (7), d|τ(n)
x and d|τ(n)

y. Hence d = τ(n)-MCD(x, y).

By Euler’s theorem if φ(n) = 4, then for all a, with GCD(a, n) = 1, a2 ≡

±1 (modn). In particular if x, y ∈ [±1](n), and d = GCD(x, y), then GCD(d, n) =

1. Hence d2 ≡ ±1 (modn), as consequence of Corollary (6), we have that d =

τ(n)-MCD(x, y). This is the reason why in the cases n ∈ {5, 8, 10, 12}, theGCD(x, y)

coincides with the τ(n)-MCD(x, y).

Lemma 8. Consider 2m, with GCD(m, 2) = 1. Then mk ≡ m (mod 2m) for all

k ∈ Z+.

Proof. Since GCD(m, 2) = 1, for all nonnegative integer k, mk−1 ≡ m (mod 2).

Thus, mk ≡ m (mod 2m).
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Lemma 9. Consider with GCD(m, 3) = 1. Then mk ≡ ±m (mod 3m) for all

k ∈ Z+.

Proof. Since GCD(m, 3) = 1, for all nonnegative integer k, mk−1 ≡ ±m (mod 3).

Thus, mk ≡ m (mod 3m).

Lemma 10. Consider with GCD(m, 6) = 1. Then for all nonnegative integer k,

mk ≡ ±m (mod 6m).

Proof. The proof follows from Lemmas (8, 9).

Theorem 28. Let n = qt where q - t for q|6. If x, y ∈ [t](n) with x = tn1x′,

y = tm1y′. If GCD(x′, y′) ≡ ± x′

GCD(x′,y′)
≡ ± y′

GCD(x′,y′)
(mod q). Then the maximum

common τ(n)-factor of x and y is tmin{n1,m1}−1GCD(x′, y′).

Proof. Without loss of generality, suppose n1 = min{n1,m1}. Let d1 = GCD(x′, y′),

then x′ = d1x
′′ and y′ = d1y

′′. We claim that tn1−1 · d1|τ(n)
x, y.

Since, x = (tn1−1d1) · (t · x′′), by Lemma (10) and tn1−1 ≡ t (modn). By hypothesis

d1 ≡ x′′ (mod q), hence td1 ≡ tx′′ (modn), and tn1−1d1 ≡ tx′′ (modn). Hence,

we have that x = (±1)(tn1−1d1) ∗ (t · x′′) a τ(n)-factorization of x. Analogously,

tn1−1 · d1|τ(n)
y. If there exist c a common τ(n)-factor by Lemma (2) c = prc′, with

c|τ(n)
x, y, then c′ ≤ d1 and r ≤ min{n1,m1}. So, c ≤ tmin{n1,m1}−1GCD(x′, y′).

Therefore, tmin{n1,m1}−1GCD(x′, y′) = τ(n)-MCD(x, y).

The above theorem, is the reason why, Theorem (28) and the Theorem (17)

work well. If any other prime q, satisfies qk ≡ ±q (mod qt), for all k, it is possible

to find the τ(qt)MCD as in the Theorem (28).
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Remark 2. Let n = pk, with p a prime number. Then the elements in [±p](n), are

τ(n)-atoms. Because, x = p · (p1 · · · pk), where pi /∈ [±p](n). If x ∈ [±p](n), hence

is not possible to find any τ(n)-factorization for x. Now, if y ∈ Z# in the case of

x|τ(n)
y, then τ(n)-MCD(x, y) = x. Otherwise, τ(n)-MCD(x, y) = 1.

4.3 About the τ(n)-MCD when φ(n) = 6.

Notice that φ(n) = 6, when n ∈ {7, 9, 14, 18}. In the first section of this chapter,

was studied the τ(n)-MCD, when n = 7. With the above section it is possible to

find a characterization of τ(n)-MCD, for some cases when n ∈ {9, 14, 18}.

For elements in [0](n) when n = 9, with Theorems (25) and (26), it is possible

to find the τ(9)-MCD. If n = 14 and n = 18, the τ(n)-MCD, can be computed with

Theorem (27).

For elements in [±1](n) we provide a method to find the τ(n)-MCD. If an element

d2 ≡ ±1 (modn), immediately by Theorem (7), d|τ(n)
x. As a consequence of Euler

Theorem, d3 ≡ ±1 (modn). So, at least 3 τ(n)-factors are necessary, to having d as a

τ(n)-factor. The other τ(n)-factors depend on x
d
. One needs some conditions for x

d
, to

guarantee the existence of d2, . . . , dk, such that di are in the same equivalence class

of d, with respect to the relation τ ′(n). For φ(n) = 6, if ua
(
x
d

)
+ ub

(
x
d

)
6= 0, then the

τ(n)-factors di exist, where a ≡ b−1 (modn). The algorithm (1), can be modified for

these computations.

By Remark (2), the elements in [±3](9) are τ(9)-atoms. With elements in [32](18)

and [7](14) is possible to apply Theorem (28) for finding a formula for the τ(n)-MCD.
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In the case of the classes [±a](n), where GCD(a, n) = 1, since φ(n)
2

= 3,

then there are 3 equivalence classes which elements are relative prime to n. Let

{1, a1, a2} be the set that represents the equivalence classes with respect to τ ′(n)

(where GCD(ai, n) = 1). Then a21 ≡ a2 (modn) and a3 ≡ ±1 (modn). The be-

havior of the elements of these classes is like the behavior of the elements in the

classes [±1](7), [±2](7) and [±3](7). Therefore, the theorems and algorithms of the

first section of this chapter, can be modified and can work for finding the τ(n)-MCD.



Chapter 5

Conclusions and future works

In the first section of this chapter, the reader can find a summary of the main

results of our work. In the second section, there are some advices for future works

about the maximum common τ(n)-factor.

5.1 Conclusions

After reviewing Ortiz and Luna [7] preliminary report on the cases when the

Euler’s number φ(n) is 4 and n ∈ {0, 1, 2, 3, 4}, there are two general conclusions: the

τ(n)-MCD of two nonzero nonunit integers is not easy to compute and its complexity

depends on the Euler’s number φ(n). Finding the τ(n)-MCD(x, y) formula, for

integers with the same Euler’s numbers (as φ(n)), required similar techniques. When

x, y lies on an equivalence classes represented by a relative prime integer to n.

This work confirms and coincides with the results of Ortiz and Luna [7] for

the cases when φ(n) = 2. Also, it uses a similar technique to find the formula of

τ(6)-MCD, with the exception that it requieres more individual cases.

One of our main results, is the formula of the τ(n)-MCD when φ(n) = 4. The

case when n = 5, basically served as the background to develop the techniques

to analyze the τ(n)-MCD when φ(n) = 4. That is when n ∈ {5, 8, 10, 12}. One

must note that by finding the formulas for n = 5, 8 and 10, the characterization
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of formulas of τ(n)-MCD for which n makes Z τ(n)-atomic (every nonzero nonunit

can be written as a τ(n)-product of τ(n)-irreducible elements ) is complete. This was

one of the item goals of Ortiz and Luna [7] in 2011. Juett [5] proved that Z is not

τ(12)-atomic. The problem arose in the equivalence class of [0](12), which difficulty

was studied by splitting it into several cases.

Another result was the identification of the following patterns summarized in

the following 3 theorems:

• Let x ∈ [±b](n), where b ∈ {1, a}, with a 6≡ ±1 (modn) and a2 ≡ ±1 (modn). If

there exist d|x and Πa

(
x
d

)
6= 1, then d|τ(n)

x.

• Let x ∈ [±b](n) and y ∈ [±a](n), where b ∈ {1, a}, with a 6≡ ±1 (modn) and

a2 ≡ ±1 (modn). Suppose d = GCD(x, y) and there exist c, such that c|d. If

Πa

(
x
d

)
6= 1, then c|τ ′

(n)
x, y if and only if c|τ ′

(n)
d.

• Let x ∈ [±b](n) and y ∈ [±a](n), where b ∈ {1, a}, with a 6≡ ±1 (modn) and

a2 ≡ ±1 (modn). Then τ(n)-MCD(x, y) = max{di ∈ [±a](n) : di|τ(n)
GCD(x, y)}.

Such patterns can be applied in future cases. As for example, it happens when

n = 3, τ(3)-MCD(x, y) when x, y ∈ [3](6). In other words, this will always work

with multiplicative closed equivalence classes. In this case the theorems just address

when x ∈ [±a](n) and y ∈ [±b](n) where a2 or b2 are equivalent to ±1 modulo n.

Finally, there are some results when n = 7. Including two algorithms to find

the τ(7)-MCD(x, y) when x and y can not be both in [±1](7). Both algorithms are

based in conditions C1 and C2,3. This conditions can be used to apply a similar

algorithm when n = 9, 14 and 18, by identifying who is playing the roles of the

equivalences classes of [±2](7) and [±3](7). For example, when n = 9, the roles are
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given by [±2](9) and [±4]9, respectively. When n = 14, the equivalence classes are

[±3](14) and [±5]14.

5.2 Future works

As a future work, the idea is to continue to find a formula or a general algorithm

to find the τ(n)-MCD. To accomplish this, it will be necessary to spent more time

studying case by case for each n. Try to find a pattern between classes for the cases

when φ(n) ≥ 6.

One must recognized that the study of the behavior between equivalence classes

requires more mathematical machinery. Some suggestion are results in additive

partitions of an integer and Lagrange polynomials. It seems that both theories will

give some other options or point of views to further analyze the cases when φ(n) is

greater than 6.



Bibliography

[1] D.D. Anderson and A.M. Frazier. “On a general theory of factorization in inte-

gral domains”. Rocky Mountain J. Math, Volume 41, Number 3(2011), 663-705,

2011.

[2] A. Florescu. “Reduced τn-factorizations in Z and τn-factorizations in N”. Phd

thesis, The University of Iowa, 2013.

[3] A. M. Frazier. “Generalized factorizations in integral domains.” Phd thesis, The

University of Iowa, 2006.

[4] S. M. Hamon. “Some topics in τ -factorizations”. Phd thesis, The University of

Iowa, 2007.

[5] J. R. Juett. “Some topics in abstract factorization”. Phd thesis, The University

of Iowa, 2013.

[6] R. Kumanduri and C. Romero. “Number theory with computer applications”

Prentice Hall, 1998.

[7] N. Luna and R.M. Ortiz-Albino. “Sobre máximo común τ(n)-factor, para n =
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