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Algebraic constructions of families of double periodic arrays with good auto-

and cross-correlation have been used for applications in frequency hopping radar

and sonar, Optical Code Division Multiple Access, design of experiments, and more

recently in Digital Watermarking. We need the family size of these constructions to

be as large as possible to increase multiple user or multiple target detection capacity.

In this work we introduce the concept of Group Permutable Constant Weight

Codes and we extend the Johnson Bound, to bound the cardinality of families of

binary and non-binary Group Permutable Constant Weight Codes. These bounds

are used to prove the optimality of some of our new constructions of Double Periodic

Arrays.

We also present three methods to construct families of Double Periodic Arrays.

A method to increase the weight of double periodic arrays (Method A). With this

method we deal with the need of double periodic arrays with the weight as large as

possible while maintaining a good correlation value.

We present a new method to increase the size of families of double periodic

arrays (Method B).There are only a few families of double periodic arrays with

ii



perfect correlation properties. In many cases the new constructions generated with

Method B result in new families of double periodic arrays with perfect correlation

properties and in all cases at least the original correlation properties are preserved.

Finally we present a combination of Method A and Method B to produce

new families of double periodic constructions with increased family size and weight

(Method C). When Method C is applied to a double periodic array we obtain

new Fuja type families of double periodic arrays with unequal correlation con-

strains. More specifically, we obtain new families of double periodic arrays with

cross-correlation much lower than auto-correlation (λc < λa).
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ARREGLOS DOBLE PERIODICOS CON APLICACIONES

Por

José R. Ortiz-Ubarri

Mayo 2010

Consejero: Oscar Moreno
Departamento: Computación y Ciencias de Información e Ingenieŕıa

Construcciones algebráıcas de arreglos doble periódicos con buena auto y cor-

relación cruzada han sido utilizadas en aplicaciones de radares y sonares de salto de

frecuencia, Acceso Multiple por Division de Código Optico, diseo de experimentos,

y mas recientemente en Watermarking Digital. Necesitamos que el tamaño de las fa-

milias de estas construcciones sean lo mas largo posible para aumentar la capacidad

de usuarios o la capacidad para detectar multiples blancos.

En este trabajo introducimos el concepto de Códigos con Peso Constante de

Grupos Permutables y extendemos la cota de Johnson, para acotar el tamaño de

las familias de Códigos con Peso Constante de Grupos Permutables binarios y no

binarios. Estas cotas se usan para probar la optimalidad de algunas de nuestras

nuevas construcciones de arreglos doble periódicos.

También presentamos tres métodos para construir familias de arreglos doble

periódicos. Un método para aumentar el peso de los arreglos doble periódicos

(Método A). Con este método lidiamos con la necesidad de arreglos doble periódicos

con peso tan grande como posible mientras se mantiene un buen valor de correlación.
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Presentamos un nuevo método para aumentar el tamaño de las familias de

construcciones doble periódicas (Método B). Solo hay unas pocas familias de arreg-

los doble periódicos con propiedades de correlación perfecta. En muchos casos las

construcciones nuevas generadas con el Método B resultan en nuevas familias de

arreglos doble periódicos con correlación perfecta y en todos los casos como mı́nimo

las propiedades originales de correlación se preservan.

Finalmente presentamos una combinación del Método A y el Método B para

producir nuevas familias de construcciones doble periódicas con el tamaño de la fa-

milia y el peso aumentado (Método C). Cuando se aplica el Método C se obtienen

nuevas familias de arreglos doble periódicos del tipo Fuja con limitaciones de cor-

relación diferente. Espećıfcamente, se obtienen nuevas familias de arreglos doble

periódicos con correlación cruzada mucho menor que la auto-correlación (λc < λa).
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CHAPTER 1

INTRODUCTION

1.1 Multiple Target radar and sonar

Sequences with good auto- and cross-correlation have been studied by our group

for their applications in frequency hopping radar and sonar, spread spectrum com-

munications, optical communications, and more recently in digital watermarking.

Costas and sonar sequences were respectively introduced by Costas [9] and

Golomb [16] to deal with the following problem:

“There is an object which is moving towards (or away) from us and we want to

determine the distance and velocity of that object.”

The solution to the problem makes use of the Doppler effect. Doppler observed

that when a signal hits a moving object, its frequency changes in direct proportion

to the velocity of the moving object relative to the observer. In other words, if

the observer sends out a signal towards a moving target, the change between the

frequency of the outgoing and that of the returning signal can be used to determine

the velocity of the target, and the time it took to make the round trip can be used

to determine the distance.

In a frequency hopping radar or sonar system, the signal consists of one or

more frequencies being chosen from a set {f1, f2, . . . , fm} of available frequencies,

for transmission at each of a set of {t1, t2, . . . , tn} of consecutive time intervals. The

case when m = n is called a Costa type signal, and the general case is called a sonar

type signal.

1
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The Costas signal is represented by a n × n permutation matrix A, where the

n rows correspond to the n frequencies, the n columns correspond to the n time

intervals, and the entry aij equals 1 if and only if frequency i is transmitted in time

interval j. (Otherwise, aij = 0)

When this signal is reflected from the target and returns to the observer, the

signal is shifted in both time and frequency, and then from the shifts, both range

and velocity can be determined. The amount of shifts is determined by comparing

all shifts of the transmitted signal with the returning signal. This method is known

as the auto-correlation. The auto-correlation may be thought of as counting the

number of coincidences between 1’s in the matrix A = (aij) with 1’s in a shifted

version A∗ of A, in which all entries have been shifted r units to the right (r is

negative if there is a shift to the left), and s units upward (s is negative if the shift

is downward). The number of such coincidences, C(r, s), is the two-dimensional

auto-correlation function between A and A∗.

C(0, 0) = n

C(r, s) = 0 if |r| ≥ n or if |s| > n

0 ≤ C(r, s) ≤ n except for r = s = 0

If we have another Costas type of signal represented by a matrix B = (bij), we

can similarly define the two-dimensional cross-correlation function by substituting

A∗ by B∗ in the above definition.

The following is the formal definition of Costas arrays, but first we need to

define the distinct difference property.

Definition 1.1.1. A function f : N → M has the distinct difference property if for

all integers h, i and j, with 1 ≤ h ≤ n − 1 and 1 ≤ i, j ≤ n − h,

f(i + h) − f(i) = f(j + h) − f(j) implies i = j.



3

Definition 1.1.2. A Costas array is an n × n permutation matrix (ai,j) such that

n2 vectors connecting two 1’s of the matrix are all distinct as vectors. Equivalently

a Costas sequence of length n is a permutation f : N → N with the distinct different

property.

Example.

a) A Costas Sequence: b) Not a Costas Sequence:

2 4 3 1 2 1 4 3

2 -1 -2 -1 3 -1

1 -3 2 2

Next is the mathematical definition of the aperiodic autocorrelation for an n×n

matrix.

Definition 1.1.3. The aperiodic auto-correlation of A is ≤ λ if

n−1
∑

i=0

n−1
∑

j=0

A(i + α, j + τ)A(i, j) ≤ λ (1.1)

for any α ≤ n, τ ≤ n, the maximum such λ is the auto-correlation.

In the general sonar case, n signals are sent out with frequencies ranging from 1

to m, at times ranging from 1 to n. Once the whole pattern of signals has returned,

the velocity and the distance of the object can be determined using the Doppler

effect, and the correlation properties. For sonars you must have exactly a 1 in every

column but the rows can have multiple 1’s or they can be empty of 1’s. The problem

in sonars (see [23]) is for any n obtain the largest possible m.

Definition 1.1.4. An m × n sonar sequence is a function f : N → M with the

distinct different property.

In [13] Freedman et al. proved that for n > 3 there are no two different Costas

sequences with cross-correlation 1 as they have in their auto-correlation. Since for

the case of multiple targets and other applications discussed later in this introduc-

tion, we need sets of sequences with good auto- and cross-correlation properties
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(correlation values as low as possible) our group and researchers in the area had

settled for constructing sets of sequences with nearly ideal properties, or in other

words cross-correlation 2. Later in this work we call these sets: families of sequences

or families of arrays.

Figure 1–1: Frequency Hopping

In spread spectrum communications sequences with good correlation properties

are used to spread the data sent through a communication channel to avoid its

interception and to avoid channel jamming from a third party. Similar to Costas

and sonar the signal consists of one or more frequencies being chosen from a set

of available frequencies, for transmission at each of a set of time intervals. The

interception of the signal is avoided by dividing the signal in codewords which are

unknown by the interceptor but known by the receiver such that only the receiver

can decode the signal. To be able to jam the communication channel, the entire set

of frequencies available to spread the signal needs to be filled with noise, such thing

is very costly.

1.2 Optical CDMA

In modern communications that make use of Code Division Multiple Access

(CDMA) sequences with good correlation properties are used for multiple access in

wireless and optical communication. A message sent in a communication channel

using code with good auto and cross-correlation properties can be easily recovered
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(decoded) in the other side of communication. Furthermore the use of code with

good cross-correlation properties allow multiple users communication limiting signal

interference. Similar to the application of radar and sonars: for Wireless CDMA

(WCDMA) the signal consists on a set of frequencies chosen from a set of available

frequencies, for transmission at each of a set of time intervals.

For the case of Optical CDMA (OCDMA) there are different approaches for

the Code Division:

• In one approach the signal consists on fiber optic cables chosen from a set of

available fiber optics cables (instead of frequencies), for transmission at each of a

set of time intervals.

• In the second approach the signal consists on a set of wave-lenghts (colors) chosen

from a set of available wave-lenghts for transmission over a single fiber optic cable,

for transmission at each of a set of time intervals.

• And the third approach we consider the one dimensional case where the signal

consists in time frames with the size of the code, and the time slots are 1 depending

on the code assigned to the transmitter. (See Figure 1–2)

The sequence properties needed for Optical Communications, and the relation-

ship between Optical Communications with the application of sonar and Costas is

presented with more detail in section 2.2.

Figure 1–2: Optic Channel

1.3 Digital Watermarking

More recently sequences with good auto- and cross-correlation have been used in

the area of digital watermarking because the correlation properties make watermarks

more difficult to detect, damage or remove from a digital medium. The idea is similar

to the application of spread spectrum communications where a secret message is
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spread into a channel in order to make the secret message difficult to be intercepted

or removed from the communication channel. In digital watermarking the watermark

is the secret message, and the digital medium is the communication channel.

Tirkel et al. [36, 39–41] introduced the application of spread spectrum commu-

nications into digital watermarking, using m-sequences as the arrays for the water-

marks. Also I.J. Cox et al. presented a technique of embedding digital watermarking

based in inserting the watermark into the spectral components of a digital image

using techniques analogous to spread spectrum communication [10, 12].

Digital watermarking applications require constructions of two dimensional se-

quences with good correlation properties. More specifically Digital watermarking

requires as many two dimensional sequences as possible with both good, auto- and

cross-correlation. Furthermore, it is necessary to have double-periodic sequences1

with as many dots as possible. Through this document by dots we mean any non

zero value in the matrix representation of the sequences. For example in the case

of Costas, sonar and Optical Orthogonal Codes (OOC) the number of dots is the

number of 1’s in their matrix representation.

Previous work [28, 30, 37] describes how to increase the weight of a double

periodic array using periodic shift sequences as columns. In the past Tirkel and Hall

applied this method to the Moreno-Maric construction [38] to generate new matrices

with good auto and cross correlation for watermarking. For detailed information on

digital watermarking, its applications, and the applications of frequency hopping in

digital watermarking please review Appendix B.

1 we will refer to them as Double Periodic Arrays later in this work
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1.4 Thesis Outline

In this work we start by introducing the concepts of Constant Weight Codes

(CWC), Optical Orthogonal Codes (OOC), Distinct Different Sets (DDS), Double

Periodic Arrays (DPA) and the relationship among them.

In chapter 3 we present the new concept of Group Permutable Constant Weight

Codes (GPCWC), Group Permutable Double Periodic Arrays (GPDPA), and present

improvements to the Johnson Bound to bound the cardinality of the family of

GPCWC.

In chapter 4 we present a method to increase the weight of double periodic ar-

rays. Then in chapter 5 we present methods to increase the size of families of double

periodic arrays without increasing their correlation properties. One method to in-

crease the size of families of double periodic arrays that uses the Chinese Reminder

Theorem (CRT) which is due to (Moreno-Omrani-Maric), and our new method to

increase the size of families of double periodic arrays without the need of the CRT

Using these methods we obtain new families of double periodic arrays with optimal

correlation properties.

Finally in chapter 6 we combine the methods from Chapter 4 and Chapter 5

to produce new families of DPA with increased weight and increased family size,

resulting in new families of DPA with cross-correlation values different to the auto-

correlation, i.e λa 6= λc. In fact our new constructions generate families of arrays

where λc < λa.

The correlation property (λc < λa) is very important as discussed by Yang and

Fuja in [4]. The auto-correlation properties of an array is used for synchronization,

to check that a sequences is unlike cyclic shifts of itself. While the cross-correlation

properties is used to check that a sequence is unlike cyclic shifts of other distinct

sequences, thus cross-correlation serves for synchronization and user identification.
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Therefore with better cross-correlation properties we are able to achieve a very

important part of any frequency hopping communication which is user identification.



CHAPTER 2

CONSTANT WEIGHT CODES

In this chapter we introduce the concept of Constant Weight Codes, Optical

Orthogonal Codes, Distinct Different Sets, and Double Periodic Arrays. We present

the main bounds on the cardinality of CWC and OOC. And also explain the rela-

tionship among the CWC, OOC, DDS, and DPA.

All the codes generated in this work are nonlinear constant weight codes. The

main characteristic of nonlinear codes is their Hamming distance.

Definition 2.0.1. The Hamming distance between two codewords of equal length is

the number of positions at which the corresponding symbols are different.

Example. The Hamming distance between codeword (011001) and codeword (010101)

is 2, because symbols in positions 3 and 4 are different. The Hamming distance be-

tween codeword (2,1,7,3,4) and (2,2,7,4,3) is 3, because symbols in positions 2, 4

and 5 are different.

Definition 2.0.2. A (n, k) linear code of length n and rank k is a linear subspace

with dimension k of the vector space F
n
q where Fq is the finite field with q elements.

If C has Hamming distance d then we also say that C is a linear (n, k, d) code over

Fq.

Such codes with parameters q are called a q-ary codes. For example codes with

q = 2 are called binary codes, codes with q = 3 are called ternary codes, and so on.

Definition 2.0.3. Let V be a vector space over the field K, and let W be a subset

of V. Then W is a subspace if and only if it satisfies the following 3 conditions:

• The zero vector, 0, is in W.

9
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• If u and v are elements of W, then the sum u + v is an element of W.

• If u is an element of W and c is a scalar from K, then the scalar product cu

is an element of W.

Example. The code C = { (10111), (11110), (01001), (00000) } is an example of

a binary (5, 2) linear code.

Note that if you chose any two codewords c1, c2 ∈ C, then (c1 + c2) ∈ C

Definition 2.0.4. A (n, k, d) nonlinear code is a code with length n, size k (k

codewords), and minimum Hamming distance d in the vector space F
n
q , where Fq is

the finite field with q elements.

Example. The code C = { (10110), (01101), (11010), (10101), (01011) } is an

example of a binary (5, 5, 2) nonlinear code.

Note that (10110) + (01101) = (11011) 6∈ C.

Definition 2.0.5. Hamming Weight is the number of nonzero digits in a codeword.

Definition 2.0.6. A binary (n, ω, λ) Constant Weight Code (CWC) is a binary

{0,1} code of length n in which every codeword has Hamming weight equal to ω and

the real inner product between any two codewords does not exceed λ1 .

Example. The Hamming weight of codeword 0,1,1,0,0,1 is 3.

A binary constant weight code is a binary nonlinear code where all the code-

words have constant hamming weight ω. The previous example is also a (5, 3, 2)

Constant Weight Code with k codewords. The number of codewords in a Constant

Weigh Code is denoted by A(n, ω, λ).

Example. The code C = { (10110), (01101), (11010), (10101), (01011) } is an ex-

ample of a binary (5, 3, 2) Constant Weight Code; which is also a (5, 5, 2) nonlinear

code with constant Hamming weigh 3.

1 The real inner product (λ) is related to the minimum Hamming distance (d) by
the equation d = 2(ω − λ).
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2.1 Bounds on Constant Weight Codes

Let A(n, ω, λ) denote the largest possible size (number of codewords) of a

constant-weight, binary {0, 1} code of length n in which every codeword has Ham-

ming weight equal to ω and the real inner product between any two codewords does

not exceed λ. In [18] Johnson presented three principal bounds on the cardinality

of constant weight codes that has been referred as the Johnson Bound A, B, and C.

Theorem 1. (Johnson Bound A)

A(n, ω, λ) ≤

⌊

n

ω

⌊

n − 1

ω − 1

⌊

n − 2

ω − 2
. . .

⌊

n − λ

ω − λ

⌋⌋⌋⌋

(2.1)

Lemma 1.

A(n, ω, λ) ≤
⌊n

ω
A(n − 1, ω − 1, λ − 1)

⌋

(2.2)

Proof. Assume a constant weight code (n, ω, λ), C of size A(n, ω, λ). If we arrange

all the codewords in rows of a matrix, the total weight of the matrix is ωA(n, ω, λ).

There are on average, ω
n
A(n, ω, λ) 1s in each column. It follows that there exists a

column c having at least ω
n
A(n, ω, λ), 1s. However, the number of occurrences of

1 in column c cannot exceed A(n − 1, ω − 1, λ − 1). This is because if we select

all the rows that contain a 1 in columns c, and then delete this column c from all

these rows, we will obtain a constant weight code of length n− 1, weight ω − 1 and

correlation value λ − 1.

Example. Given a CWC with length n = 10, hamming weight ω = 5, and correla-

tion value λ = 2. The maximum size of this CWC is given by

A(10, 5, 2) ≤

⌊

10

5

⌊

9

4

⌊

8

3

⌋⌋⌋

≤ 8 (2.3)

Theorem 2. (Johnson Bound B) Provided ω2 > nλ

A(n, ω, λ) ≤

⌊

n(ω − λ)

ω2 − nλ

⌋

(2.4)
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Proof. Assume a constant weight code (n, ω, λ), C of size A(n, ω, λ). Let the code-

words form the rows of a matrix M and let us compute the sum of the inner product

of every pair of rows:

∑

i6=j

ci.cj ≤

(

A(n, ω, λ)

2

)

λ

Next let assume each column j in M has ωj 1s. Then we have

∑

i6=j

ci.cj =

n
∑

j=1

(

ωj

2

)

=

n
∑

j=1

ωj(ωj − 1)

2
=

1

2

(

n
∑

j=1

ω2
j −

n
∑

j=0

ωj

)

=

1

2

(

n
∑

j=1

ω2
j − A(n, ω, λ)ω

)

It follows that

n
∑

j=1

ω2
j ≤ A(n, ω, λ)2λ − A(n, ω, λ)(λ− ω)

Minimum of the left hand side should satisfy the same inequality and the min-

imum occurs when all ωjs are equal which lead to ωj =
A(n, ω, λ)ω

n

n

(

A(n, ω, λ)ω

n

)2

≤ A(n, ω, λ)2λ − A(n, ω, λ)(λ − ω) ⇒

(ω2 − nλ)A(n, ω, λ) ≤ n(ω − λ)

Example. Given a CWC with length n = 5, hamming weight ω = 5, and correlation

value λ = 4. Since ω2 = 25 > nλ = 20. The maximum size of this CWC is given by

A(5, 5, 4) ≤

⌊

5(5 − 4)

25 − 20

⌋

≤ 1 (2.5)
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The third Johnson bound is known as the hybrid of bounds A and B. Let l, be

the smallest integer, 1 ≤ l ≤ λ−1, such that (ω− l)2 > (n− l)(λ− l). By combining

Johnson bounds A and B the following bound is obtained:

Theorem 3. (Johnson Bound C)

A(n, ω, λ) ≤

⌊

n

ω

⌊

n − 1

ω − 1
. . .

⌊

n − (l − 1)

ω − (l − 1)
h

⌋⌋⌋

(2.6)

with h =

⌊

(n − l)(ω − λ)

(ω − l)2 − (n − l)(λ − l)

⌋

Using Collorary 5 from Agrell, Vardy, and Zeger [1]

A(n, ω, λ) ≤

⌊

n(ω − λ)

ω2 − nλ

⌋

ω2 − nλ ≥ ω − λ (2.7)

A(n, ω, λ) ≤ n 0 < ω2 − nλ ≤ ω − λ (2.8)

A(n, ω, λ) ≤ 2n − 2 ω2 − nλ = 0 (2.9)

the following improvement to the Johnson Bound B and C was provided [34]:

Theorem 4. (Moreno et al., Improved Johnson Bound B for CWC)

Provided ω2 > nλ

A(n, ω, λ) ≤ min

(

n,

⌊

n(ω − λ)

ω2 − nλ

⌋)

(2.10)

Provided ω2 = nλ

A(n, ω, λ) ≤ 2n − 2 (2.11)

Theorem 5. (Moreno et al., Improved Johnson Bound C for CWC) Provided l, is

some integer, 1 ≤ l ≤ λ − 1, such that (ω − l)2 > (n − l)(λ − l).

A(n, ω, λ) ≤

⌊

n

ω

⌊

n − 1

ω − 1
. . .

⌊

n − (l − 1)

ω − (l − 1)
h

⌋⌋⌋

(2.12)
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with h = min

(

n − l,

⌊

(n − l)(ω − λ)

(ω − l)2 − (n − l)(λ − l)

⌋)

The improvements to the Johnson Bound B and C are specially useful for

bounds in OCCs and Group Permutable Constant Weight Codes. The concept

of GPCWC is introduced in chapter 3.

In this section we introduced the concept of CWC and presented bounds on the

cardinality of the codes. In sections 2.2.3 and 2.3.2 respectively we present some

improvements to the bounds on CWC to bound the cardinality of 1-D OOC, and the

cardinality 2-D OOC. And in Chapter 3 we introduce improvements to the bounds

on CWC to bound the cardinality of Group Permutable Constant Weight Codes.

2.2 OOC, DDS, Double Periodic Arrays of families and their
equivalence

In this section we define the concepts of OOC and DDS; and review the corre-

spondence between the set of (n, ω, λ)-OOC’s and the set of (v, k, t)-DDS’s.

2.2.1 1-D Optical Orthogonal Codes

Definition 2.2.2. An (n, ω, λ) Optical Orthogonal Code [5] (OOC) C where 1 ≤

λ ≤ ω ≤ n, is a family of {0,1}-sequences of length n, Hamming weight ω, and

maximum correlation λ satisfying:

n−1
∑

k=0

x(k)y(k ⊕n τ) ≤ λ (2.13)

for every pair of codewords x, y in C whenever either x 6= y or τ 6= 0, and ⊕n

denotes addition modulo n.

Example. The code C = { (10110) } is an example of a binary (5, 3, 2) Optical

Orthogonal Code with 1 codeword. More examples of OOCs can be found in section

5.1.
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2.2.3 Bounds on 1-D Optical Orthogonal Codes

For a given set of values of n, ω, λ, let Φ(n, ω, λ), denote the largest possible

cardinality of an (n, ω, λ) OOC, and P the cardinality of a specific construction.

Since Φ(n, ω, λ) denotes the largest possible size of a 1-D OOC , an OOC C of size

P is said to be optimal when

P = Φ(n, ω, λ)

and asymptotically optimal if:

lim
n→∞

P

Φ(n, ω, λ)
= 1

An upper bound [6] by Chung and Kumar derived from the Johnson Bound [18]

on the cardinality of constant weight codes A(n, 2(ω − λ), ω) states that:

P ≤ Φ(n, ω, λ) ≤

⌊

A(n, ω, λ)

n

⌋

(2.14)

Theorem 6. (Chung et al., Improved Johnson Bound A for OOCs)

P ≤ Φ(n, ω, λ) ≤

⌊

1

ω

⌊

n − 1

ω − 1

⌊

n − 2

ω − 2
. . .

⌊

n − λ

ω − λ

⌋⌋⌋⌋

(2.15)

Proof. The proof is straight forward by applying Equation (2.14) to the Johnson

Bound A.

Theorem 7. (Moreno et al., Improved Johnson Bound B for OOCs)

Provided ω2 > nλ

Φ(n, ω, λ) ≤ min

(

1,

⌊

(ω − λ)

ω2 − nλ

⌋)

(2.16)
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Provided ω2 = nλ

Φ(n, ω, λ) ≤ 1 (2.17)

Proof. The proof is straight forward by applying Equation (2.14) to the Improved

Johnson Bound B of Equations (2.10) and (2.9).

Example. Given an OOC with length n = 12, hamming weight ω = 6, and corre-

lation value λ = 3. Since nλ = 36 and ω2 = 36 The maximum size of this OOC is

given by

Φ(12, 6, 3) ≤ 1 (2.18)

Theorem 8. (Moreno et al., Improved Johnson Bound C for OOCs)

Provided l, is some integer, 1 ≤ l ≤ λ − 1, such that (ω − l)2 > (n − l)(λ − l).

Φ(n, ω, λ) ≤

⌊

1

ω

⌊

n − 1

ω − 1
. . .

⌊

n − (l − 1)

ω − (l − 1)
h

⌋⌋⌋

(2.19)

with h = min

(

n − l,

⌊

(n − l)(ω − λ)

(ω − l)2 − (n − l)(λ − l)

⌋)

Proof. Proof is similar to the proof in Theorem 7.

To the best of our knowledge the improvement to the Johnson Bound B and C

as applied to 1-D OOCs were introduced by our group in [34].

2.2.4 Distinct Different Sets

Definition 2.2.5. A (k, v)-Distinct Difference Set (DDS) [7] is a set {ci|0 ≤ i ≤

k − 1} of distinct integers such that the k(k − 1) differences ci − cj where i 6= j are

distinct modulo v.

By a (v, k, t)-DDS, we mean a family (Bi|i ∈ I, t = |I|) of subsets of Zv each of

cardinality k, such that among the tk(k−1) differences (a− b|a, b ∈ Bi; a 6= b; i ∈ I)

each nonzero element g ∈ Zv occurs at most once. This notion of a (v, k, t)-DDS is
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a more recent generalization of the earlier concept of a (k, v)-DDS. A (k, v)-DDS is

a (v, k, t)-DDS with parameter t = 1.

Lemma 2. (Moreno et al.) There is a one to one onto correspondence between the

set of (n, ω, λ)-OOC’s and the set of (v, k, t)-DDS’s when λ = 1 with n = v, k = ω

and Φ(n, ω, 1) = t, and Φ(n, ω, 1) is the family size of the OOCs.

Proof. The incidence vectors associated to the subsets comprising a (v, k, t)-DDS

can be seen to form an (n, ω, λ)-OOC of size t with parameters n = v, w = k,

and λ = 1. Conversely, given an OOC and a maximal set of cyclically distinct

representatives drawn from the code, one obtains a DDS by considering the support

of these vectors. Thus, the concept of (v, k, t)-DDS is precisely the same as that of

an OOC with λ = 1.

2.2.6 OOC’s is the same concept as that of Double Periodic Arrays

Let A = [A(i, j)] and B = [B(i, j)] be r × s matrices having 0,1 entries, and r

and s are relatively prime.

2.2.7 Double Periodic Arrays

Definition 2.2.8. The double-periodic cross-correlation between any pair A and B

of a set or family of arrays is ≤ λ if

r−1
∑

i=0

s−1
∑

j=0

A(i ⊕r α, j ⊕s τ)B(i, j) ≤ λ (2.20)

for any α ≤ r, τ ≤ s, where ⊕m denotes addition modulo m. The maximum such λ is

the correlation. The double-periodic auto-correlation is also obtained with equation

2.20 but with A = B. Let a(.) and b(.) be the sequences of length rs associated

with the matrices A and B respectively via the Chinese Remainder Theorem, a(L) =

A(L( mod r), L( mod s)) and similarly b(L) = B(L( mod r), L( mod s)) for all

L, 0 ≤ L ≤ rs − 1. For example if A[i, j] = 1, a(L) = L iff (i mod r) = L and (j

mod s) = L.
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From the previous definitions the following theorem is obtained:

Theorem 9. (Moreno et al.) The collection of one-dimensional periodic auto- and

cross-correlation values of a family of codes of length rs is precisely the same as the

set of two dimensional double-periodic auto- and cross-correlation values of r × s

matrices associated with these sequences via the residue map, whenever r and s are

relatively prime.

Corollary 1. (Moreno et al.) The concept of an OOC with auto- and cross-

correlation λ is the same as that of a double-periodic multi-target arrays with auto-

and cross-correlation λ.

In the case when the auto- and cross-correlation are different an OOC with

parameters (n, ω, λa, λc) is a code with length n, Hamming weight ω, auto-correlation

λa, and cross-correlation λc. If the auto-correlation and the cross-correlation are

equal we will use only λ, and the parameters (n, ω, λ). We define Φ(n, ω, λa, λc, )

and Φ(n, ω, λ) the size of the family; i.e. the size of the set of codewords that meet

the same auto- and cross-correlation properties.

2.3 2-D Optical Orthogonal Codes

There are two ways of spreading information for multiple access on 2-D Optical

Orthogonal Codes.

• Spreading over a set of fiber optics and time.

• Spreading over a set of wave-lengths and time, known as Wavelength-Division-

Multiplexing (WDM).

The concept is similar to spread spectrum communication but the transmission

medium is a fiber optic cable or a set of fiber optic cables instead of frequencies.

Definition 2.3.1. An 2-D (m × n, ω, λ) Optical Orthogonal Code [31] (OOC) C

where 1 ≤ λ ≤ ω ≤ mn, is a family of {0,1}-sequences of m rows and n columns,



19

Hamming weight ω, and maximum correlation λ satisfying:

m
∑

k=1

n−1
∑

t=0

x(k, t)y(k, (t ⊕n τ)) ≤ λ (2.21)

whenever either x 6= y or τ 6= 0.

Note that by definition every DPA is a 2-D OOC but not otherwise because

DPA are periodic in both time and wave-length while 2-D OOC requires periodicity

only in time.

To simplify the WDM implementation, additional restrictions on the codewords

may be placed such as [31]:

• one-pulse per wavelength(OPPW) restriction: each row of every code array

in C must have Hamming weight 1.

• the at-most one-pulse per wavelength(AM-OPPW) restriction: each row of

each code in C must have Hamming weight ≤ 1.

• one-pulse per time slot (OPPTS) restriction: each column of every code in

C is required to have Hamming Weight = 1.

• the at most one-pulse per time slot (AM-OPPTS) restriction: each column

of each code in C must have Hamming weight ≤ 1.

2.3.2 Bounds on 2-D OOCs

Omrani and Kumar [31] improved the Johnson Bound to obtain the following

bounds on the cardinality of the families of 2-D OOCs.

If C is a (m× n, ω, λ) 2-D OOC, then by including every column-cyclic shift of

each codeword in C one can construct a constant weight code using any mapping

that reorders the elements of a m × n array to form a 1-D string of length mn .

The resultant constant weight code has parameters (mn, ω, λ) and size = n|C|. This

observation allows to translate bounds on constant weight codes to bounds on 2-D

OOCs:
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Φ(m × n, ω, λ) ≤

⌊

A(m × n, ω, λ)

n

⌋

(2.22)

Theorem 10. (Omrani and Kumar, Improved Johnson Bound A for 2-D OOCs)

P ≤ Φ(m × n, ω, λ) ≤

⌊

m

ω

⌊

mn − 1

ω − 1

⌊

mn − 2

ω − 2
. . .

⌊

mn − λ

ω − λ

⌋⌋⌋⌋

(2.23)

Proof. The proof is straight forward by applying Equation (2.22) to the Johnson

Bound A.

Theorem 11. (Omrani and Kumar, Improved Johnson Bound B for 2-D OOCs)

Provided ω2 ≥ mnλ

Φ(m × n, ω, λ) ≤ min

(

m,

⌊

m(ω − λ)

ω2 − nλ

⌋)

(2.24)

Proof. The proof is straight forward by applying Equation (2.22) to the Johnson

Bound B for CWC.

Theorem 12. (Omrani and Kumar, Improved Johnson Bound C for 2-D OOCs)

Provided l, is some integer, 1 ≤ l ≤ λ− 1, such that (ω− l)2 > (mn− l)(λ− l).

Φ(n, ω, λ) ≤

⌊

m

ω

⌊

mn − 1

ω − 1
. . .

⌊

mn − (l − 1)

ω − (l − 1)
h

⌋⌋⌋

(2.25)

with h = min

(

mn − l,

⌊

(mn − l)(ω − λ)

(ω − l)2 − (mn − l)(λ − l)

⌋)

Proof. Proof is similar to the proof in Theorem 11.

Remark: Note that Omrani and Kumar improvements to the Johnson Bounds

are based in the assumption that the 2-D OOC is mapped into a 1-D string.

2.4 Well Known Families of Double Periodic Arrays

Double periodic arrays are sequences that meet the double periodic auto- and

cross-correlation properties (see definition 2.2.8). In simple words DPAs are 2-D
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arrays whose correlation value does not change when they are periodically shifted in

both coordinates (columns and rows). In this section we present well known sonar

and Costas double periodic constructions that are used later in the next chapters

to apply the new methods to increase the weight and size of DPA to produce new

families of DPAs.

2.4.1 Quadratic family

Construction 1. Quadratic Construction [14]: Let p be any odd prime; let k be

a integer not congruent to 0 (mod p). Then f : {0, 1, . . . , p− 1} → {0, 1, . . . , p − 1}

defined by f(x) = kx2 (mod p) is a family of OOC’s with parameters (p × p, ω =

p, λa = 1, λc = 2), periodicity p × p, and Φ = (p − 1).

Figure 2–1: 5x5 Quadric DPA with f(x) = x2 and p = 5

Example. Let p = 5 and f(x) = kx2, the family for the Quadratic Construction is

for k = 1 (0, 1, 4, 4, 1)

for k = 2 (0, 2, 3, 3, 2)

for k = 3 (0, 3, 2, 2, 3)

for k = 4 (0, 4, 1, 1, 4)

with parameters (5 × 5, 5, 1, 2).

When k = 1 and p = 5, f(0) = 0, f(1) = 12 mod 5 = 1, f(2) = 22 mod 5 = 4,

f(3) = 32 mod 5 = 4, f(4) = 42 mod 5 = 1.
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2.4.2 Hyperbolic family

Figure 2–2: 5x5 Hyperbolic DPA with f(x) = 1/x and p = 5

Construction 2. Hyperbolic Construction: [20] Let p be any odd prime; let

k, x ∈ Zp, k, x = 1 . . . p − 1. Then f : {1, 2, . . . , p − 1} → {1, 2, . . . , p − 1} defined

by f(x) = k
x

is a family of OOC’s with parameters (n = p × p, ω = p − 1, λ = 2),

periodicity p × p and Φ = (p − 1) .

Example. Let p = 5 the family for the Hyperbolic Construction is

for k = 1 (1, 3, 2, 4, ∗)

for k = 2 (2, 1, 4, 3, ∗)

for k = 3 (3, 4, 1, 2, ∗)

for k = 4 (4, 2, 3, 1, ∗)

with parameters (5 × 5, 4, 2).

Note the asterisk at the end of the sequences. This asterisk represents an empty

(all zero values) column that we have to add to the end of the array in order to make

it double periodic. See example 2.4.2
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2.4.3 Welch family

Construction 3. Welch Construction : [15, 16] Let α be a primitive root of an

odd prime p. Then the array with αk = αk(mod p), 1 ≤ k ≤ p − 1 is an OOC with

parameters (n = p × (p − 1), ω = p − 1, λ = 1), periodicity p × (p − 1) and Φ = 1.

Figure 2–3: 5x4 Welch DPA with α = 3 and p = 5

Example. Let α = 3 and p = 5 the family for the Welch Construction is (3, 4, 2,

1) with parameters (5 × 4, 4, 1).

In more details the Welch DPA in this example is obtained by α1 = 31 mod

5 = 3, α2 = 32 mod 5 = 4, α3 = 33 mod 5 = 2, and α4 = 34 mod 5 = 1.

2.4.4 Lempel-Golomb family

Construction 4. Lempel-Golomb [15, 16]: Let α and β be primitive elements

in the finite field Fq where q = pm. Then the sequence αi = logβ(1−αi) where i goes

from 1 to q− 2 is a Costas sequence of size pm − 2. This is equivalent to saying that

in the position i of the sequence there is a j if and only if αi + βj = 1. The double

periodicity of this construction is (q − 1) × (q − 1) and its autocorrelation is 1.

Figure 2–4: 6x6 Lempel-Golomb DPA with α = 3, β = 5, and q = 7
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Example. Let α = 3 and β = 5 primitive elements in the finite field F7 the family

for the Lempel Construction is (1, 3, 4, 2, 5, *) with parameters (6 × 6, 5, 1).

The Lempel-Golomb DPA in this example is obtained by:

α1 = 3, β1 = 5, (3 + 5) mod 7 = 1

α2 = 9, β3 = 125, (9 + 125) mod 7 = 1

α3 = 27, β4 = 625, (27 + 625) mod 7 = 1

α4 = 81, β2 = 25 (81 + 25) mod 7 = 1

α5 = 243, β5 = 3125 (243 + 3125) mod 7 = 1

2.4.5 Moreno-Maric family

Construction 5. Moreno-Maric [24]: Whenever x2 + x + α is irreducible, and

α primitive in GF (q), q = pn, then the polynomial −α
(x+1)

gives a cycle (permutation)

of length q + 1. The set of non-equivalent permutations obtained after applying

the linear transformations f(xi) = kxi and f(xi) = k
xi

for k = 1 . . . q − 1 to the

permutation sequence obtained by the recursion:

T : xi+1 =
−α

(xi + 1)
, starting with x0 = 0

produce a family of OOC with parameters (n = (q + 1) × (q + 1), ω = q + 1, λ = 2),

periodicity (q + 1) × (q + 1) and Φ = q − 1.

Example. Let q = 7 and α = 3 using the recursion: T : xi+1 = −α
(xi+1)

we obtain the

sequence (0, 4, 5, 3, 1, 2, 6,∞). See table 2–1.
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Figure 2–5: 8x8 Moreno-Maric double-periodic array with α = 3, and q = 7
Table 2–1: Moreno-Maric recursion with q = 7

x0 = 0
x1 = 4

0+1
= 4

x2 = 4
4+1

= 5

x3 = 4
5+1

= 3

x4 = 4
3+1

= 1

x5 = 4
1+1

= 2

x6 = 4
2+1

= 6

x7 = 4
6+1

= ∞

Applying the linear transformation f(xi) = kxi we obtain the following permutation

sequences:

for k = 1 0, 4, 5, 3, 1, 2, 6,∞

for k = 3 0, 5, 1, 2, 3, 6, 4,∞

for k = 6 0, 3, 2, 4, 6, 5, 1,∞

Applying the linear transformation f(xi) = k
xi

we obtain the following permutation

sequences:

for k = 1 ∞, 2, 3, 5, 1, 4, 6, 0

for k = 2 ∞, 4, 6, 3, 2, 1, 5, 0

for k = 4 ∞, 1, 5, 6, 4, 2, 3, 0
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The set of the non-equivalent permutation sequences obtained applying the linear

transformations is the family of the Moreno-Maric construction with parameters

(8 × 8, 8, 2) and Φ = 6.

Table 2–2: Known Families of Double Periodic arrays

Construction Periodicity ω Φ λa λc

Quadratic p × p p p − 1 1 2
Hyperbolic p × p p − 1 p − 1 2 2

Welch p × (p − 1) p − 1 1 1 n/a
Lempel-Golomb (q − 1) × (q − 1) q − 2 1 1 n/a
Moreno-Maric (q + 1) × (q + 1) q + 1 q − 1 2 2

2.4.6 Section Summary

Table 2–2 summarizes the parameters and properties of the double periodic

arrays presented in this section. These constructions are going to be used through

the next chapters of this work. In Chapter 4 we increase their weight utilizing

a periodic sequence as column sequence. In the next section we describe a few

periodic sequences that can be used to increase the weight of DPA, specially those

whose column size is prime.

2.5 Periodic Binary Sequences

In Chapters 4 and 6 we present constructions of double periodic families using

the well known constructions of sonars: Quadratic and Hyperbolic, and the well

known constructions of Costas: Welch, Lempel-Golomb, and Moreno-Maric defined

in section 2.4 .

To produce these new constructions we apply a method to increase the weight

of DPA based on matrix column multiplication (See chapter 4). The columns used

are binary periodic sequences with good correlation properties. In this work we call

them column sequences.

The size of the column sequence depends on the size of the columns of the DPA

of the sonar or Costas to be used. In the case of the Quadratic matrix of size (p×p),

the Welch matrix of size (p × p − 1), and the Hyperbolic matrix of size (p × p) the
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column sequence needed is of size p. There are two well known periodic binary

constructions of size p that we can utilize.

An element i ∈ GF (p), i 6= 0 is said to be a quadratic residue (QR) mod p if i

is the square of some element of GF (p), and to be a quadratic non-residue (QNR)

mod p otherwise. The element 0 is neither QR mod p nor QNR mod p. [30]

Theorem 13. A Legendre sequence is a periodic binary sequence l = (l0, l1, . . . , lp−1)

where p is a prime and (p−1)
2

is odd, such that li = 0 if i is a QR module p and li = 1

if i is a QNR mod p, and l0 can be either 0 or 1.

Remark: In our work we set l0 = 1 to obtain the greatest weight of the periodic

sequence.

Lemma 3. The weight of the binary Legendre sequence is ω = (p+1)
2

, and its corre-

lation is λ = (p+1)
4

.

Example. Let p = 7 such that p = (7−1)
2

= 3 is odd. The QR of the GF (p) are

1 = 12, 2 = 32, and 4 = 22. The QNR of the GF (p) are 3, 5, and 6. Chose l0 = 1.

The Legendre sequence of size 7 is (1, 0, 0, 1, 0, 1, 1).

Alternatively for the purpose of this work and for the applications of binary

sequences as columns in most of our constructions introduced in Chapters 4 and 6,

there is another construction of binary sequences which produces sequences of size

p called binary m-sequences. There exists binary m-sequences of length 2n − 1 for

every integer n > 1. Hence, there exists a binary m-sequence of size p if and only if

p = 2n − 1 [30].

For the cases when we use a Lempel-Golomb DPA of size (q − 1) × (q − 1),

we need periodic sequences of size q − 1 and with the Moreno-Maric DPA of size

(q+1)×(q+1), we need periodic sequences of size q+1. There are many constructions

of binary periodic sequences that produce special cases where the length is equal to

(q − 1) or (q + 1) but not in general like the constructions for periodic sequences of
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size p. For example for size q − 1 there are m-sequences whenever q = 2n and and

q − 1 is prime.

In Chapters 4 and 6 we use special cases of sequences to give examples of the

new constructions obtained. For example we use the Milewski [21] ternary periodic

sequence of size 8 with the Moreno-Maric construction of size (8 × 8). For such

reason, for the sake of clarity, in the next chapters we give results based on the

Legendre sequences for the Quadratic, Welch, and Hyperbolic constructions, and

general results for the Lempel-Golomb and Moreno-Maric constructions independent

of the (size, weight, and correlation) parameters of periodic sequences.

2.6 Chapter Summary

In this Chapter we introduce the historical background of arrays with good

auto- and cross-correlation properties. Also we describe the different applications

of these arrays. We define the concept of Constant Weigh Codes, Double Periodic

Arrays, Distinct Different Sets, 1-D Optical Orthogonal Codes, and 2-D Optical Or-

thogonal codes, and the relationship among them. We provide the Johnson Bound

improvements used to bound the cardinality of the families of 1-D and 2-D Optical

Orthogonal Codes. Finally we reviewed the well known families of double peri-

odic arrays that are used through the remaining Chapters of this work: Quadratic,

Hyperbolic, Welch, Lempel-Golomb, and Moreno-Maric. Finally we described the

column sequences used in Chapters 4 and 6.



CHAPTER 3

GROUP PERMUTABLE CONSTANT WEIGHT

CODES

In this chapter we introduce the new concept of Group Permutable Constant

Weight Codes (GPCWC). GPCWC are a class of Constant Weight Codes with the

double periodicity property. Meaning that every two dimensional periodic shift is

also a codeword of a Constant Weight Code. For more details in CWC please refer

to section 2. In this chapter we formally define the concept GPCWC and introduce

improvements to the Johnson Bound, to bound the family size of Group Permutable

Constant Weight Codes.

In the past we have used the Johnson bound improvements for OOCs to check

the optimality of DPA with row and column length relatively prime. In this work

we obtain different DPAs where the row and column length are not relatively prime.

In the next sections we prove that DPAs with correlation less than their weight

(λ < ω) are GPCWC, such that we can use the improvements to the Johnson bound

on GPCWC to prove the optimality of some of our DPA families.

Massey [30] defined a cyclically permutable code to be a binary block code of

block length N such that each codeword has cyclic order N(has N distinct cyclic

shifts) and such that the codewords are cyclically distinct (no codeword can be

obtained by the cyclic shifting of another codeword).

Let R denote the operator that shifts the columns of a Double Periodic Array

(DPA) periodically one position to the right, and let D denote the operator that

shifts the rows of a DPA periodically one position down.

29
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For a DPA

A =



















a b c

d e f

g h i

j k l



















we have that

R(A) =
















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c a b

f d e

i g h

l j k












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
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D(A) =
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















j k l

a b c

d e f

g h i
















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and

DR(A) =



















l j k

c a b

f d e

i g h



















Definition 3.0.1. A (Zm × Zn) Group permutable constant weight code (Zm × Zn

GPCWC) C is a 2-D code with rows length m and column length n

• such that each codeword in C can be periodically permuted m times in the

rows with the operator R and periodically permuted n times in the columns

with the operator D(i.e. has mn distinct double periodic shifts),

• and such that no codeword in C can be obtained by the double periodic shift-

ing, one or more times, of another codeword in C.
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For GPCWC and their applications we want the correlation values to be as low

as possible than its code weight. If the code weight is equal to the auto correlation

value it means that in some point two different double periodic shift of a codeword

has the same result, therefore that codeword does not have mn distinct double

periodic shifts. If the code’s weight is equal to the cross correlation value then a

codeword can be obtained by the double periodic shifting, one or more times, of

another codeword. Therefore if the correlation value of a code is equal to the code’s

weight, the code is not a GPCWC.

3.1 Bounds on Group Permutable Constant Weight Codes

If C is a (m × n, ω, λ) (Zm × Zn) GPCWC, then by including every double

periodically permuted shift of the rows and columns of each codeword in C one can

construct a CWC with parameters (m × n, ω, λ) and size (mn)|C|.

From this observation an easy upper bound derived from the Johnson bound A

A(m × n, ω, λ) states that:

Φ(m × n, ω, λ) ≤

⌊

A(m × n, ω, λ)

mn

⌋

(3.1)

Theorem 14. (Moreno and Ortiz, Johnson Bound A)

Φ(m × n, ω, λ) ≤

⌊

1

ω

⌊

(mn) − 1

ω − 1

⌊

(mn) − 2

ω − 2
. . .

⌊

(mn) − λ

ω − λ

⌋⌋⌋⌋

(3.2)

Proof. The proof comes from applying Equation 3.1 to the Johnson Bound A.

Φ(m × n, ω, λ) ≤

⌊

1

mn

⌊

mn

ω

⌊

(mn) − 1

ω − 1
. . .

⌊

(mn) − λ

ω − λ

⌋⌋⌋⌋

(3.3)

≤

⌊

1

ω

⌊

(mn) − 1

ω − 1
. . .

⌊

(mn) − λ

ω − λ

⌋⌋⌋

(3.4)
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Example. Given a GPCWC with m = 5 rows and n = 4 columns, hamming weight

ω = 4, and correlation value λ = 1. The maximum size of this CWC is given by

Φ(5 × 4, 4, 1) ≤

⌊

1

4

⌊

20 − 1

3

⌋⌋

≤ 1 (3.5)

Theorem 15. (Moreno and Ortiz) Let n, m, ω, λ be integers, mn > 1, 1 ≤ ω ≤

mn, 0 ≤ λ ≤ ω. Then the size Φ(m × n, ω, λ) of an GPCWC having parameters

(m × n, ω, λ) satisfies:

Φ(m × n, ω, λ) ≤ 1 if ω2 > mnλ.

The following proof is a modification to the proof from Chung and Kumar on

OOCs to GPCWC.

Proof. Assume the contrary. Let x(i, j) and y(i, j), 0 ≤ i < m, 0 ≤ j < n, be two

distinct codewords. Since

m−1
∑

α=0

n−1
∑

τ=0

m−1
∑

i=0

n−1
∑

j=0

x(i, j)y(i ⊕m α, j ⊕n τ) = ω2 (3.6)

and

λ ≥

m−1
∑

i=0

n−1
∑

j=0

x(i, j)y(i ⊕m α, j ⊕n τ) (3.7)

for all α and τ we have mnλ ≥ ω2 which is a contradiction.

A more general upper bound derived from the Johnson bound B and the Col-

lorary 5 from Agrell, Vardy, and Seger on CWC [1] states that

Theorem 16. (Moreno and Ortiz, Johnson Bound B)

Provided ω2 > (mn)λ ,

Φ(m × n, ω, λ) ≤ min

(

1,

⌊

(ω − λ)

ω2 − nλ

⌋)

(3.8)
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Provided ω2 = (mn)λ ,

Φ(mn, ω, λ) ≤ 1 (3.9)

Proof. The proof is similar to the proof for Theorem 14, by applying the Equation

3.1 to Johnson Bound B improved with the Collorary 5 by Agrell, Vardy and Seger

on CWC.

Provided ω2 − mnλ ≥ ω − λ

Φ(m × n, ω, λ) ≤
1

mn

⌊

(mn)(ω − λ)

ω2 − (mn)λ

⌋

(3.10)

≤

⌊

(ω − λ)

ω2 − nλ

⌋

(3.11)

Provided 0 < ω2 − mnλ ≤ ω − λ

Φ(m × n, ω, λ) ≤
1

mn
mn (3.12)

≤ 1 (3.13)

Provided ω2 = (mn)λ ,

Φ(mn, ω, λ) ≤

⌊

2(mn) − 2

mn

⌋

≤

⌊

2 −
2

mn

⌋

(3.14)

≤ 1 (3.15)

Example. Given a GPCWC with m = 5 rows and n = 5 columns, hamming weight

ω = 15, and correlation value λ = 9. Since mnλ = 225 and ω2 = 225 The maximum

size of this GPCWC is given by

Φ(5 × 5, 15, 9) ≤ 1 (3.16)

A third bound for GPCWC is obtained by the following improvement to the

Johnson Bound C (an hybrid of JB A and improved JB B)



34

Theorem 17. (Moreno and Ortiz, Johnson Bound C) Provided l, is some integer,

1 ≤ l ≤ λ − 1, such that (ω − l)2 > ((mn) − l)(λ − l).

Φ(m × n, ω, λ) ≤

⌊

1

ω

⌊

(mn) − 1

ω − 1
. . .

⌊

(mn) − (l − 1)

ω − (l − 1)
h

⌋⌋⌋

(3.17)

with h = min

(

(mn) − l,

⌊

((mn) − l)(ω − λ)

(ω − l)2 − ((mn) − l)(λ − l)

⌋)

Proof. The proof is similar to the proof in Theorem 16.

In general terms the way the JB C works is that when λ > 1 and ω2 < mnλ

the Johnson Bound A is used until a point l from where the Johnson Bound B can

be used because (ω − l)2 ≥ (mn − l)(λ − l), and finally both results are multiplied

to obtain the bound.

3.2 Group Permutable Double Periodic Array

Definition 3.2.1. A (m × n, ω, λ) {(Zm × Zn), < R,D >} group permutable DPA

(GPDPA) C is a 2-D binary {0,1} code with m columns and n rows in which every

codeword has Hamming weight equal to ω, 1 ≤ λ < ω < mn, and satisfies the double

periodicity property:

m−1
∑

i=0

n−1
∑

j=0

x(i, j)x(i ⊕m α, j ⊕n τ) ≤ λ (3.18)

for all codewords x ∈ C and for any 1 ≤ α < m, 1 ≤ τ < n, where ⊕n denotes

addition modulo n.

m−1
∑

i=0

n−1
∑

j=0

x(i, j)y(i ⊕m α, j ⊕n τ) ≤ λ (3.19)

for all codewords x, y ∈ C and for any 0 ≤ α < m, 0 ≤ τ < n, where ⊕n denotes

addition modulo n.

In the past we have used the Johnson bound improvements for OOCs to check

the optimality of DPA with row and column length relatively prime. In this work
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we obtain different DPAs where the row and column length are not relatively prime.

Here we prove that DPAs with correlation lower than their weight (λ < ω) or

GPDPA are also GPCWC, such that we can use the improvements to the Johnson

bound on GPCWC to prove the optimality of some of our DPA families.

Lemma 4. (Moreno and Ortiz) Whenever 1 ≤ λ < ω, each array of a (m×n, ω, λ)-

GPDPA family has mn distinct double periodic shifts.

Proof. Assume the contrary, and select two different double periodic shifts c and c′

from the same array such that they are equal. Since they are equal all the ones of

c coincides with the ones of c′, and therefore the correlation of c and c′ is equal to

the weight of the GPDPA family(λ = ω), implying that the auto-correlation of the

family must also be equal to the weight of the family, which is a contradiction.

Lemma 5. (Moreno and Ortiz) Whenever 1 ≤ λ < ω, no GPDPA array can be

obtained by the double periodic shifting, one or more times, of another GPDPA.

Proof. Assume the contrary and select two arrays c and c′ of a (m×n, ω, λ)-GPDPA

with Φ > 1 with a double periodic shift of the array c equal to the array c′, it

follows that the correlation between c and c′ is equal to the weight of the GPDPA

family(λ = ω), implying that the cross-correlation of the GPDPA family is also

equal to the weight of the GPDPA family, which is a contradiction.

Theorem 18. (Moreno and Ortiz) Whenever 1 ≤ λ < ω, a (m×n, ω, λ) - GPDPA

produces a {Zm × Zn, < R, D >} GPCWC.

Proof. The proof of this theorem follows from lemmas 4, and 5.

3.3 Non-binary Group Permutable Constant Weight Codes

Given two codewords over an alphabet of size (T + 1) containing 0, we define

their Hamming correlation to be the number of nonzero agreements between the two

codewords.
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Theorem 19. (Omrani and Kumar) If A(Λ, ω, λ) is the maximum possible size of

a constant weight code over an alphabet of size (T + 1) containing the element 0, of

length Λ, Hamming weight ω and correlation ≤ λ, then A(Λ, ω, λ) is bounded by the

following upper bound:

A(Λ, ω, λ) ≤

⌊

TΛ

ω

⌊

T (Λ − 1)

ω − 1
. . .

⌊

T (Λ − λ)

ω − λ

⌋⌋⌋

(3.20)

Remark: This generalization of the Johnson Bound to non-binary constant

weight codes was presented by Omrani and Kumar in [31].

Since a Group Permutable Constant Weight Code can be regarded as a constant

weight code over an alphabet of size (n + 1), the bound 3.20 can be translated to

the following bound on the size of Group Permutable Constant Weight Codes .

Theorem 20. (Ortiz and Moreno),

Given a (m × n, ω, λ)-GPCWC the bound on the number of codewords in the

family is given by:

Φ(m × n, ω, λ) ≤

⌊

1

ω

⌊

n(m − 1)

ω − 1
. . .

⌊

n(m − λ)

ω − λ

⌋⌋⌋

(3.21)

Proof. The proof comes from applying Equation 3.1 to the Omrani-Kumar general-

ization of the Johnson Bound for non-binary constant weight codes Equation 3.20

with T = n and Λ = m.

Example. Given a non-binary GPCWC with length m = 5 rows and n = 25

columns, hamming weight ω = 5, and correlation value λ = 1. The maximum

size of this CWC is given by

Φ(10, 5, 2) ≤

⌊

1

5

⌊

25(4)

4

⌋⌋

≤ 5 (3.22)
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Theorem 21. (Ortiz and Moreno)

Given a (m × n, ω, λ)-GPCWC with m = ω, the bound on the number of code-

words in the family is given by:

Φ(m × n, ω, λ) ≤

⌊

nλ

ω

⌋

(3.23)

Proof. Substitute m by ω in Equation 3.21

3.4 Chapter Summary

In this chapter we introduced the new concept of Group Permutable Constant

Weight Codes and present improvements to the Johnson Bound (A, B, and C) to

provide bounds on the family size of binary and non-binary Group Permutable Con-

stant Weight Codes . Group Permutable Constant Weight Codes have applications

in 1-D Optical Orthogonal Codes, 2-D Optical Orthogonal Codes, Multiple Target

radar and sonars, and Digital Watermarking. The bounds that we introduce can be

used to proof optimality of Double Periodic Arrays when the row and column length

are not relatively prime.



CHAPTER 4

WEIGHT INCREASING METHOD

Previous work [28, 30, 37, 38] describes how to increase the weight of a DPA

using periodic shift sequences as columns. This is only for the case where the DPA

have at most a single one per column. In the past Tirkel and Hall applied this

method with the Moreno-Maric construction [38] to create new matrices with good

auto- and cross-correlation properties.

In this Chapter we review the method to increase the weight of double periodic

constructions and call it Method A (Weight Increasing Method). It is important

to review the Weight Increasing Method because it is used in Chapter 6 combined

with new methods to increase the size of families of double periodic arrays (Chapter

5) to produce new families of double periodic arrays with cross-correlation < auto-

correlation. Here we also present theorems to calculate the new auto- and cross-

correlation of the families obtained after applying the Weight Increasing Method to

the original double-periodic families1 .

Method A (Weight Increasing Method): Let Wn,m be a DPA of size n×m,

weight ω, auto-correlation λa and cross-correlation λc. Let s be a cyclically shifted

periodic sequence of size n, weight ω′ and correlation λ′. The Weight Increasing

Method (WIM) consists in replacing the columns of the double periodic matrix

1 To the best of the author’s knowledge, the theorems for the auto- and cross-
correlation obtained after applying the Weight Increasing Method as presented by
the author, and applied to DPAs are new
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(a) 5x4 Welch array (b) 5x4 Welch array
with binary column
sequence

(c) 5x4 Welch ar-
ray with Column Se-
quence

(d) 5x4 Welch array
with ternary Column
Sequence

Figure 4–1: 5x4 Welch array with and w/o column sequence

Wn,m with the periodic sequence s. The size of s is the same size of the columns of

the DPA. We call s the column sequence. (See Figure 4–1(a)-4–1(b)).

Start with a DPA Wn,m of size n × m. Then find a periodic sequence s of

size n with good correlation properties to use as column sequence. Construct sl,

l = 1 . . . n − 1 such that sl is the result of shifting the sequence s, l times to the

same direction (right or left).



40

For example for the result in Figure 4–1(b) we use the Legendre sequence s =

(1, 0, 1, 1, 0) and the set sl is constructed as follows:

s0 = (1, 0, 1, 1, 0)

s1 = (0, 1, 1, 0, 1)

s2 = (1, 1, 0, 1, 0)

s3 = (1, 0, 1, 0, 1)

s4 = (0, 1, 0, 1, 1)

Now for each column j in W , find the row i where Wi,j = 1 and replace the

column j with the sequence si.

Figure 4–1(b) is an example of a 5×4 Welch DPA (0, 2), (1, 4), (2, 3), (4, 1) with

the columns replaced by a binary Legendre sequence (1,0,1,1,0) of size 5. And Figure

4–2 is a second example of a 5 × 5 Quadratic DPA (0, 0), (1, 1), (2, 4), (3, 4), (4, 1)

with the columns replaced by the Legendre sequence (1,0,1,1,0).

Method A applied to a Welch array of size p(p − 1) using a binary Legen-

dre sequence as a column produces OOCs with parameters (n, ω, λ) = (p(p −

1), p2−1
2

, [p(p+1)
4

]). These codes are asymptotically optimum.

In section 4.1 we present the DPAs with increased weight obtained after apply-

ing Method A to the Quadratic, Welch, Hyperbolic, Lempel-Golomb and Moreno-

Maric DPA constructions.

In general to obtain the correlation of the new double periodic families obtained

after applying Method A: Let Wn,m be a double periodic matrix of size n×m, weight

ω, auto-correlation λa and cross-correlation λc. Let s be a cyclically shifted periodic

sequence of size n, weight ω′ and correlation λ′.
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Theorem 22. (Moreno and Ortiz) The auto-correlation properties of the double

periodic families obtained after applying Method A is λ′ × m + λa(ω
′ − λ′).

Proof. Let matrix An,m be a DPA obtained after applying Method A with a column

sequence with correlation λ′. If we correlate a shifted version of matrix A, call it

matrix Bn,m. Each column of matrix A correlates with a column of matrix B. But

the column in matrix B is a shifted version of a column in matrix A. Therefore if

all columns are different shifted versions, we obtain that the correlation is m × λ′.

But we know that the original matrix (before applying Method A) has auto-

correlation λa, therefore we know that at most λa columns in the matrix A can be

exactly the same to a column in matrix B where all ω′ symbols (dots) correlate.

Therefore in the new correlation we need to add the dots or symbols that are not

taken in consideration by m × λ′, which is λa(ω
′ − λ′).

Therefore the auto-correlation of a new DPA A obtained from applying Method

A to a DPA of size n×m with auto-correlation λa using a periodic sequence of size

n, weight ω′, and correlation λ′ is λ′ × m + λa(ω
′ − λ′).

Theorem 23. (Ortiz and Moreno) The cross-correlation properties of the double

periodic family obtained after applying Method A is λ′ × m + λc(ω
′ − λ′).

Proof. The proof is similar to the proof on auto-correlation, but matrix B is a

different matrix in the family; and this time a column in matrix A will be exactly

the same to a column in matrix B λc times.

Remark Method A works with any non-binary periodic sequence used as col-

umn sequence. Note that the parameters in our theorems 22 and 23 are independent

of whether the column sequence is binary or not. We mostly use binary examples

for the sake of clarity.
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4.1 Families of Double Periodic Arrays with Increased Weight

In the introduction we described digital watermarking as an example of arrays

that need to have many dots (weight increased). Here we present more double

periodic families constructed using the Method A (WIM) described in section 4.

Proof for the following theorems come from applying Method A to the well know

families of DPAs and the results of Theorems 22 and 23.

4.1.1 Quadratic families

(a) 5x5 Quadratic array (b) 5x5 Quadratic array
with binary Column Se-
quence

Figure 4–2: 5x5 Quadratic array with and w/o Column Sequence

Theorem 24. (Moreno and Ortiz) Applying Method A to the Quadratic Con-

struction using a Legendre sequence as a column produces OOCs with parameters

(p × p, ω = (p2+p)
2

, λa ≤ (p+1)2

4
, λc ≤

(p2+3p+2)
4

, periodicity p × p, and Φ = (p − 1).

Proof. Following Method A, the new weight is given by p ×
(

p+1
2

)

. The auto- and

cross-correlation properties are given by Theorem 22 and Theorem 23 respectively.

Figure 4–3: 5x5 Quadric DPA with f(x) = x2 after WIM
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Example. Let p = 5 and (1,0,1,1,0) the column sequence, the Quadratic family

obtained after applying Method A to the Quadratic family { (0, 1, 4, 4, 1) for k =

1, (0, 2, 3, 3, 2) for k = 2, (0, 3, 2, 2, 3) for k = 3, (0, 4, 1, 1, 4) for k = 4} is:

for k = 1 (0, 1), (0, 2), (0, 4), (1, 0), (1, 1), (1, 3), (2, 0), (2, 2), (2, 3),

(3, 0), (3, 2), (3, 3), (4, 0), (4, 1), (4, 3)

for k = 2 (0, 1), (0, 2), (0, 4), (1, 0), (1, 2), (1, 4), (2, 1), (2, 3), (2, 4),

(3, 1), (3, 3), (3, 4), (4, 0), (4, 2), (4, 4)

for k = 3 (0, 1), (0, 2), (0, 4), (1, 1), (1, 3), (1, 4), (2, 0), (2, 2), (2, 4),

(3, 0), (3, 2), (3, 4), (4, 1), (4, 3), (4, 4)

for k = 4 (0, 1), (0, 2), (0, 4), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3),

(3, 0), (3, 1), (3, 3), (4, 0), (4, 2), (4, 3)

and (1,0,1,1,0) the column sequence,

with parameters (5 × 5, 15, 9, 11).

Figure 4–2 is an example of the double-periodic Quadratic 5×5 matrix sequence

with p = 5, k = 1 (Figure 4–2(a)), and the same double-periodic Quadratic matrix

with the columns replaced by the Legendre sequence (1,0,1,1,0) (Figure 4–2(b)).

4.1.2 Hyperbolic families

Figure 4–4: 5x5 Hyperbolic DPA with f(x) = 1/x after WIM
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Theorem 25. (Moreno and Ortiz) Applying Method A to the Hyperbolic Con-

struction using a Legendre sequence as a column produces OOCs with parameters

(p × p, ω = (p2−1)
2

, λ ≤ (p+1)2

4
), periodicity p × p, and Φ = (p − 1).

Proof. Following Method A, the new weight is given by (p−1)×
(

p+1
2

)

. The auto- and

cross-correlation properties are given by Theorem 22 and Theorem 23 respectively.

Example. Let p = 5 and (1,0,1,1,0) the column sequence, the Hyperbolic family

obtained after applying Method A to the Hyperbolic family {(1, 3, 2, 4, *) for k =

1, (2, 1, 4, 3, *) for k = 2, (3, 4, 1, 2, *) for k = 3, (4, 2, 3, 1, *) for k = 4} is:

for k = 1 (0, 0), (0, 1), (0, 3), (1, 1), (1, 3), (1, 4), (2, 0), (2, 2), (2, 4),

(3, 0), (3, 2), (3, 3)

for k = 2 (0, 0), (0, 2), (0, 4), (1, 0), (1, 1), (1, 3), (2, 0), (2, 2), (2, 3),

(3, 1), (3, 3), (3, 4)

for k = 3 (0, 1), (0, 3), (0, 4), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3),

(3, 0), (3, 2), (3, 4)

for k = 4 (0, 0), (0, 2), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 3), (2, 4),

(3, 0), (3, 1), (3, 3)

with parameters (5 × 5, 12, 9).

4.1.3 Welch families

Theorem 26. (Moreno and Ortiz) Method A applied to a Welch array of size p(p−

1) using a binary Legendre sequence as a column produces OOCs with parameters

(n, ω, λ) = (p(p − 1), p2−1
2

, [p(p+1)
4

]).
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Proof. Following Method A, the new weight is given by (p − 1) ×
(

p+1
2

)

. The auto-

correlation value is given by Theorem 22.

Figure 4–5: 5x4 Welch DPA with α = 3 and p = 5 after WIM

Example. Let p = 5, α = 3 and (1,0,1,1,0) the column sequence, the Welch family

obtained after applying Method A to the Welch sequence (3, 4, 2, 1) is:

(0, 0), (0, 2), (0, 4),

(1, 0), (1, 2), (1, 3),

(2, 1), (2, 3), (2, 4),

(3, 0), (3, 1), (3, 3)

with parameters (5 × 4, 12, 8).

See Figure 4–1(b) presented previously.

4.1.4 Lempel-Golomb families

Theorem 27. (Moreno and Ortiz) Method A applied to a Lempel-Golomb array of

size (q−1)× (q−1) using a binary sequence of weight ω′ and correlation λ′ produces

OOCs with parameters (n, ω, λ) = ((q − 1) × (q − 1), (q − 2)ω′, λ′(q − 3) + ω′).

Proof. Following Method A, the new weight is given by (q − 2) × ω′. The auto-

correlation value is given by Theorem 22.

Example. For Lempel-Golomb we use a case where q − 1 is prime. Let q = 23, α =

3, β = α and the Legendre sequence (1, 0, 0, 1, 0, 1, 1) the column sequence,
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Figure 4–6: 7x7 Lempel-Golomb DPA with α = 3 and q = 23 after WIM

the Lempel-Golomb family obtained after applying Method A to the Lempel-Golomb

sequence (3, 6, 1, 5, 4, 2, *) is:

(0, 2), (0, 3), (0, 4), (0, 6),

(1, 0), (1, 2), (1, 5), (1, 6),

(2, 0), (2, 1), (2, 2), (2, 4),

(3, 1), (3, 4), (3, 5), (3, 6),

(4, 0), (4, 3), (4, 4), (4, 5),

(5, 1), (5, 2), (5, 3), (5, 5)

with parameters (7 × 7, 24, 14).

4.1.5 Moreno-Maric families

Theorem 28. (Moreno and Ortiz) Method A applied to the Moreno-Maric array of

size (q+1)× (q+1) using a binary sequence of weight ω′ and correlation λ′ produces

OOCs with parameters (n, ω, λ) = ((q + 1) × (q + 1), (q + 1)ω′, λ′(q − 1) + 2ω′).

Proof. Following Method A, the new weight is given by (q + 1)×ω′. The auto- and

cross-correlation properties are given by Theorem 22 and Theorem 23 respectively.
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Figure 4–7: 8x8 Moreno-Maric double-periodic array with α = 3 and q = 7 after
WIM

Example. To show an example of the WIM applied to the Moreno-Maric construc-

tion we use the ternary periodic sequence (1, 1, i , -1, 1, -1, i, 1) of size 8 from the

Milewski [21] construction as column sequence applied to the sequence (0, 4, 3, 6, 5,

1, 2, 7) of the family of the 8x8 Moreno-Maric construction with q = 7 and α = 3.

See figure 4–7.

In Chapter 6 we use the DPA with weight increased presented in this section

combined with the methods to increase the size of DPA families presented in Chapter

5 to produce new families of DPAs with λc < λa.

4.2 Optimal GPCWC constructions

Theorem 29. (Moreno and Ortiz) The (p × p, ω = (p2+p)
2

, λ ≤ (p+1)2

4
) DPA with

family size 1 obtained after applying Method A to a Quadratic array is optimal with

respect to the Johnson Bound B modification for GPCWC .

Proof. The resulting double periodic array obtained after applying Method A to a

Quadratic array has λ ≤ (p+1)2

4
< ω = (p2+p)

2
, and has double periodicity p × p.

By Lemma 4 the double periodic Quadratic construction has p2 distinct double

periodic shifts, and no array can be obtained by the double periodic shifting, one or

more times, of another array.

By Theorem 18 our (p×p, ω, λ)-GPDPA Quadratic construction is also a {Zp×

Zp, < R,D >} GPCWC.
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It follows that from each codeword of the Quadratic GPCWC we obtain p2

CWC. Using our improvement of the Johnson Bound B for GPCWC we determine

that ω2 = nλ.

ω2 =
p4 + 2p3 + p2

4
(4.1)

nλ = p2

(

(p + 1)2

4

)

(4.2)

nλ =
p4 + 2p3 + p2

4
(4.3)

ω2 − nλ = 0 (4.4)

and Φ(p × p, ω = (p2+p)
2

, λ ≤ (p+1)2

4
) ≤ 1.

4.3 Chapter Summary

Here in this chapter we presented a method to increase the weight of DPAs

(Method A). Applying Method A to DPAs increase the correlation value of the

new families. This increase in correlation is obtained by the equations in Theorems

22 and 22. Using this method we obtain an optimal construction in the size of

the families with respect to the improvement to the Johnson Bound B for Group

Permutable Constant Weight Codes.

Some applications like Digital Watermarking require the families of double-

periodic constructions to have a balanced weight. In other words for our examples

we want the number of ones to be approximately half the size of the arrays. All the

codes in this chapter can be used for application of 2-D Optical Orthogonal Codes.

The Welch code can be used in 1-D Optical Orthogonal Codes if we use the Chinese

Remainder Theorem to arrange the code in one dimension. Digital Watermarking

applications require the family size to be as big as possible to be able to handle

multiple users. Families with family size one like the Welch family are not really

useful for Digital Watermarking.
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Table 4.3 is a summary of the new DPAs that we obtain after applying Method

A.
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Table 4–1: New DPA using the Weight Increasing Method

Construction Periodicity ω Φ λa λc

Quadratic p × p (p2+p)
2

p (p+1)2

4
(p2+3p+2)

4

Hyperbolic p × p (p2−1)
2

p (p+1)2

4
(p+1)2

4

Welch p × (p − 1) (p2−1)
2

p (p2+p)
4

N/A
Lempel-Golomb (q − 1) × (q − 1) (q − 2)ω′ p λ′(q − 3) + ω′ N/A
Moreno-Maric (q + 1) × (q + 1) (q + 1)ω′ p λ′(q − 1) + 2ω′ λ′(q − 1) + 2ω′



CHAPTER 5

METHOD TO CONSTRUCT DOUBLE

PERIODIC ARRAYS WITH OPTIMAL

CORRELATION

In previous work [25, 26, 29] our group presented a method to construct fami-

lies of DPA with perfect correlation from the Welch Costas construction using the

Chinese Remainder.1

There are not many constructions of multiple target arrays with ideal correla-

tion properties [35]. In this work we extend the number of new constructions with

ideal correlation properties, by using a similar method that does not use the CRT.

These methods increase the family size of DPAs without changing their original cor-

relation value. Without using the CRT we can apply the new method to any DPA

such as the Quadratic, Hyperbolic, Welch, Lempel-Golomb, and Moreno-Maric con-

structions presented in Chapter 1 section 2.4. In the following sections we describe

both methods to increase the size of the families. First in section 5.1 we review

the Moreno-Omrani-Maric method and then section 5.2 we describe the method to

increase the size of families without using the CRT.

5.1 Moreno-Omrani-Maric method to increase family size of DPA
using the Chinese Remainder Theorem

The Moreno-Omarani-Maric (MOM) method to increase the size of the families

of double periodic arrays consists in applying a modified method of the Colbourn and

1 The work presented in [25, 26] are result of this thesis work.
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Colbourn construction for cyclic Balanced Incomplete Block Design (BIBD’s) to the

MZKZ construction (See definition 30). Here we review the MZKZ construction and

then review the MOM method to increase the family size of DPA. In section 5.1.1

we present two extended Costas and two sonar constructions obtained from using

the MOM method, and give an example using a Welch array of size n = p(p − 1)

and p = 5.

Theorem 30. (MZKZ Construction A) When m is a divisor of p − 1, m|(p − 1),

and p is a prime, the construction of an (n = mp, w = m, λ = 1), Φ = p−1
m

OOC

(Construction A in Moreno et al. [28]) yields a (v = mp, k = m, p−1
m

)-DDS for any

m|(p − 1).

This construction is optimal with respect to the Johnson Bound [18] on the

cardinality of a constant weight binary code when p > 3 and m = p − 1. The

construction is given for m = p − 1 in the following:

If we choose any degree one polynomial f(x) over Fp, and fill out the elements

of a p × (p − 1) matrix M with the following rule:

M(i, j) =











1, if f(αj) = p − 1 − i

0, otherwise
(5.1)

where α is a primitive element of Fp, then the resulting M matrix has one 1 per col-

umn and has the double-periodic auto-correlation property. If we apply the Chinese

Remainder Theorem to the matrix M we will end up with an OOC sequence µ of

length p(p − 1):

µ(l) = M(l mod (p), l mod (p − 1)) (5.2)

M.J. Colbourn and C.J. Colbourn [8] proposed two recursive constructions for

cyclic BIBD’s. Their Construction A was generalized [44] to form DDS recursively.

The following is an easy generalization of Colbourn Construction B:
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Theorem 31. (Moreno-Omrani-Maric, Construction B) Given a (vk, k, t)-DDS,

((vk mod k) = 0) if gcd(r, (k − 1)!) = 1, then a (vkr, k, rt)-DDS may be con-

structed as follows. For each D = {0, d1, . . . , dk−1}, take the r difference sets

{0, d1 + ikv, d2 + 2ikv, . . . , dk−1 + (k − 1)ikv}, 0 ≤ i < r, with addition performed

modulo vkr. If furthermore, there exists an (rk, k, t′)-DDS D′, then a (vkr, k, rt+t′)-

DDS can be constructed by adding the t′ difference sets {0, vs1, . . . , vsk−1} for each

D′
i = {0, s1, . . . , sk−1} of D′ = {D′

i|1 ≤ i ≤ t′}.

Proof is similar to the one in [8]. Lemma 6 will be proved which is the special

case that interests in this work.

Theorem 32. (Construction CMZKZ) Applying construction B recursively to

MZKZ family A construction, we obtain a (pi(p − 1), p − 1, 1)-OOC of size pi−1 +

pi−2 + · · ·+ p+1. This OOC is not optimal with respect to the Johnson Bound [18].

Lemma 6. In the (pi(p − 1), p − 1, 1)-OOC of the above construction, all residues

occur exactly once except multiples of p − 1 and pi.

Proof. In the base OOC all the residues occur except multiples of p and p − 1.

Now applying the recursive construction to the (p(p− 1), p− 1, 1) base OOC, in the

resulting (p2(p − 1), p − 1, 1)-OOC all the multiples of residues present in the base

OOC will be present in addition to the multiples of p times the residues of the base

OOC. So in the new OOC the multiples of p− 1 do not occur. In addition since the

multiples of p were not present in the base residues so in the new OOC the multiples

of p2 also do not occur.

The same proof can be used inductively to prove that in (pi(p− 1), p− 1, 1) all

the residues occur exactly once except the multiples of pi and p − 1.

5.1.1 Two Multiple Target Families for Extended Costas and for Sonar
Arrays

Using the CMZKZ construction, the Chinese Remainder Theorem and Theorem

9 of Section 2.2, since pi is relatively prime to p − 1 we obtain:
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Construction 1(V): A family of p2 × (p − 1) sonar arrays with family size of

p + 1 with auto- and cross-correlation 1.

Construction 2(V): A family of pi × (p − 1) sonar arrays with family size of

pi−1 + pi−2 + · · ·+ 1 with auto- and cross-correlation 1.

Construction 1(H): A family of (p − 1) × p2 extended Costas arrays with

family size of p + 1 with auto- and cross-correlation 1.

Construction 2(H): A family of (p − 1) × (pi) extended Costas arrays with

family size of pi−1 + pi−2 + · · ·+ 1 with auto- and cross-correlation 1.

Example. An example to generate the family of Construction 1(V). Start with a

Welch array of Figure 5–1 2,4,3,1. Now notice that (0,2) corresponds to 12 using

Figure 5–1: 5x4 Welch Costas

the Chinese Remainder Theorem since 12 ≡ 0 mod (4) and 12 = 2 mod (5). Also

(1, 4) → 9, (2, 3) → 18, and (3, 1) → 11. Where in (x, y) → z, x is the value of

the column, y is the value of the row, and z is the Chinese Remainder for (x, y).

Applying the Chinese Remainder Theorem to the Welch array we obtain the OOC

D:

D = {9, 11, 12, 18}

which is equivalent to D′:

D′ = {9, 11, 12, 18}

From D′ using our construction B we obtain the 6 arrays D1, D2, D3, D4, D5

and D6 as follows: (See section 2.1):

D1 = {0, 2, 3, 9} for i = 0
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D2 = {0, 22, 43, 69} for i = 1

D3 = {0, 29, 42, 83} for i = 2

D4 = {0, 23, 62, 89} for i = 3

D5 = {0, 49, 63, 82} for i = 4

Now we multiply D′ by 5:

D6 = {0, 10, 15, 45}

Finally apply the Chinese Remainder Theorem again to each Di to construct

the family of 25 × 4 sonars arrays of size 6. I.E. To construct sonar Si for each

element d ∈ Di, calculate s = (d mod 4, d mod 25)) ∈ Si. See Figure 5–2.

Figure 5–2: 25x4 Moreno-Omrani-Maric sonars family

5.2 New method to increase the family size of DPA without using the
Chinese Remainder Theorem

In section 5.1 we reviewed the Moreno-Omrani-Maric method to increase the

size of the families of DPAs with length n = mp and m = (p − 1) using the CRT.



56

In this section we present a new similar method but without the need of us-

ing the CRT. [27].2 Now we can apply the new method to any DPA such as the

Quadratic, Hyperbolic, Welch, Lempel-Golomb, and Moreno-Maric constructions

presented in Chapter 1 section 2.4. In section 5.3 we present new families of DPAs

with optimal correlation properties obtained from applying Method B to those con-

structions. Some of the DPAs result in new families of extended Costas, sonars, or

2-D Optical Orthogonal Codes.

Method B : (Recursive Construction) Given a (v×n, ω, λ)-OOC, ((vn mod n) =

0) if gcd(r, (ω − 1)!) = 1, then a (vr × n, ω, λ)-OOC may be constructed as follows.

For each D = (0, d1, . . . , dω−1), take the r different sequences Dj = (0, d1 + jv, d2 +

2jv, . . . , dω−1 + (ω − 1)jv), 0 ≤ j < r, with addition modulo vr.

Example. Start with the Quadratic sonar of length p = 5, and k = 1 (0, 1, 4, 4, 1).

After applying Method B with r = 5 (gcd(5,4!) = 1) we obtain the family:

for j = 0, D0 = (0 + 0, 1 + 0, 4 + 0, 4 + 0, 1 + 0) = (0, 1, 4, 4, 1)

for j = 1, D1 = (0, 1 + 5, 4 + 10, 4 + 15, 1 + 20) = (0, 6, 14, 19, 21)

for j = 2, D2 = (0, 1 + 10, 4 + 20, 4 + 30, 1 + 40) = (0, 11, 24, 9, 16)

for j = 3, D3 = (0, 1 + 15, 4 + 30, 4 + 45, 1 + 60) = (0, 16, 9, 24, 11)

for j = 4, D4 = (0, 1 + 20, 4 + 40, 4 + 60, 1 + 80) = (0, 21, 19, 14, 6)

with parameters (25 × 5, 5, 1), and Φ = 5.

2 The work presented in [27] is result of this thesis work.
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Theorem 33. (Moreno and Ortiz) Applying method B to a family of (v×n, ω, λ)−DPA

A, produces a new family of (vr × n, ω, λ)-DPAs B with the same auto-correlation

value as A.

Proof. Let D = (0, d1, . . . , dω−1) a (vn, ω, λ)-DPA, applying Method B produces a

family of arrays D
′

j = (0, d1 + vj, d2 + 2vj, . . . , dω−1 + (ω − 1)vj), for j = 0 . . . r − 1.

Let M be the difference matrix for array D such that:

Mi,i+c = di − di+c mod v

Lets construct the difference matrix for D
′

j :

M
′

i,i+c = di + ivj − (di+c + (i + c)vj) mod vr

M
′

i,i+c = (di − di+c) − vjc mod vr

vcj is constant and therefore M
′

i,i+c is the same to another M
′

i′,i′+c if and only

if in the difference matrix M of D, Mi,i+c = Mi′,i′+c.

Theorem 34. (Ortiz and Moreno) Applying Method B to a (v × n, ω, λa, λc)-DPA

A, produces a new family of (vr×n, ω, λa, λ
′
c)-DPAs B with cross-correlation λ′

c ≤ 2.

Proof. Lets construct the difference matrix M ′ between any two arrays from B

constructed with j = r1 and j = r2, 0 ≤ r1, r2 < r such that:

M
′

i,i+c = di + ivr1 − (di+c + (i + c)vr2) mod vr

M
′

i,i+c = (di − di+c) + v(i(r1 − r2) − cr2) mod vr

The values (r1 − r2) and −cr2 are constants in Zp. Let i′ = i(r1 − r2) − cr2;

as i varies i′ cycles in Zp. Therefore the product vi′ mod vr for i′ ∈ Zp produces

multiples of v modulo vr {0, v, 2v, . . . , v(p − 1)}.

Since di, di+c ∈ Zv the equation (di − di+c) + vi′ mod vr produces values of the

form v′ + v(i′) for v′ = {−v + 1, . . . ,−1, 0, 1, . . . , v − 1}.
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Therefore values of the difference (di − di+c)+ vi′ can only be equal with values

of other difference (dj − dj+c) + vj′ iff:

(di − di+c) = (dj − dj+c) and vi′ = vj′ ⇐⇒ i = j (5.3)

or

(dj − dj+c) = −((−(di − di+c)) mod v) and vj′ = v(i′ + 1) (5.4)

i. e. (dj − dj+c) mod v = (di − di+c mod v).

Equation 5.3 implies that we are comparing the same differences.

Equation 5.4 implies that the difference with i can be equal to another difference

with j only once, because of the distance between the multiples vi′ and vj′.

Therefore λ′
c < 2.

Theorem 35. (Ortiz and Moreno) Applying Method B to a (v×n, ω, λa, λc)-DPA A

with λ = 1, produces a new family of (vr×n, ω, λa, λ
′
c)-DPAs B with cross-correlation

λ′
c = 1.

Proof. If λ = 1 then (di − di+c) 6= (dj − dj+c); and therefore in equation 5.4 (dj −

dj+c) 6= −((−(di − di+c)) mod v) because −((−(di − di+c)) mod v) mod v = (di −

di+c) mod v and we will have a contradiction in the value of λ.

Therefore λc = 1

Theorem 36. (Ortiz and Moreno) Applying Method B to a family of (v×n, ω, λa, λc)-

DPAs A, produces a new family of (vr×n, ω, λa, λ
′
c)-DPAs B with cross-correlation

λ′
c ≤ max(λc,min(2, λ)).

Proof. Proof is similar theorem 34. If the r1 and r2 used to construct any two arrays

from family B are different (r1 6= r2), then the proof in theorem 34 applies. From

theorem 34 and 35 the λ′
c = min(2, λ)
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Now lets construct the difference matrix M ′ between two arrays from B con-

structed with j = r1, 0 ≤ r1 < r such that:

M
′

i,i+c = di + ivr1 − (di+c + (i + c)vr2) mod vr

M
′

i,i+c = (di − di+c) − vcr2 mod vr

−vcr2 is constant and therefore M
′

i,i+c is the same to another M
′

j,j+c if and only

if in the difference matrix M , Mi,i+c = Mj,j+c. In which case the cross-correlation is

λ′
c ≤ λc.

Therefore λ′
c ≤ max(λc, min(2, λ)).

Applying this new method to families of double-periodic arrays produces new

families of double periodic arrays with increased family size where the auto-correlation

does not change and the cross-correlation is less or equal to the original cross-

correlation. Next section contains new families of DPAs obtained using Method B

and examples.

5.3 New Constructions of Double Periodic Arrays with Optimal
Correlation

In this section we present new constructions of families of sonar and extended

Costas obtained from applying the general Method B described in section 5.2 to the

Quadratic, Hyperbolic, Welch, Moreno-Maric, and Lempel constructions.

5.3.1 Quadratic families

Theorem 37. (Moreno and Ortiz) Applying Method B to the Quadratic array with

f(x) = kx2 we obtain a family of DPA with parameters (p2 × p, ω = p, λ = 1),

periodicity p2 × p, and Φ = p. And a family of DPAs with parameters (pi × p, p, 1),

periodicity pi × p, and Φ = pi−1.
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Proof. Following Method B with r = p, the new column size of the DPA is p2,

because of the modular addition, and the family size is p. When applied recursively

the column size of the DPA increase to pi, and the family size increases to pi−1.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 35 respectively.

Figure 5–3: 25x5 Quadratic DPA family after applying Method B.
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Example. Let p = 5 and k = 1, the new DPA family obtained from applying Method

B to the Quadratic Construction is

for j = 0 (0, 1, 4, 4, 1)

for j = 1 (0, 6, 14, 19, 21)

for j = 2 (0, 11, 24, 9, 16)

for j = 3 (0, 16, 9, 24, 11)

for j = 4 (0, 21, 19, 14, 6)

with parameters (25 × 5, 5, 1).

Theorem 38. (Moreno and Ortiz) Applying Method B to the Quadratic family with

f(x) = kx2 we obtain a family of DPA with parameters (p2 × p, ω = p, λa = 1, λc =

2), periodicity p2 ×p, and Φ = (p× (p−1)). And a family of DPAs with parameters

(pi × p, p, 1, 2), periodicity pi × p, and Φ = (p − 1) × pi−1).

Proof. Following Method B with r = p, the new column size of the DPA is p2,

because of the modular addition, and the family size is p − 1 codewords from the

original family times p. When applied recursively the column size of the DPA

increase to pi, and the family size increases to (p − 1) × pi−1.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 36 respectively.

Example. Let p = 5 and k = 1 . . . 4, the new DPA family obtained from applying

Method B to the Quadratic family Construction is
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k = 1 j = 0 (0, 1, 4, 4, 1)

j = 1 (0, 6, 14, 19, 21)

j = 2 (0, 11, 24, 9, 16)

j = 3 (0, 16, 9, 24, 11)

j = 4 (0, 21, 19, 14, 6)

k = 2 j = 0 (0, 2, 3, 3, 2)

j = 1 (0, 7, 13, 18, 22)

j = 2 (0, 12, 23, 8, 17)

j = 3 (0, 17, 8, 23, 12)

j = 4 (0, 22, 18, 13, 7)

k = 3 j = 0 (0, 3, 2, 2, 3)

j = 1 (0, 8, 12, 17, 23)

j = 2 (0, 13, 22, 7, 18)

j = 3 (0, 18, 7, 22, 13)

j = 4 (0, 23, 17, 12, 8)
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k = 4 j = 0 (0, 4, 1, 1, 4)

j = 1 (0, 9, 11, 16, 24)

j = 2 (0, 14, 21, 6, 19)

j = 3 (0, 19, 6, 21, 14)

j = 4 (0, 24, 16, 11, 9)

with parameters (25 × 5, 5, 1, 2).

5.3.2 Hyperbolic families

Theorem 39. (Moreno and Ortiz) Applying Method B to the Hyperbolic array with

f(x) = k
x

we obtain a family of OOC with parameters (n = p2 × p, ω = p − 1, λa =

2, λc = 1), periodicity p2 × p and Φ = p. And a family of OOCs with parameters

(pi × p, p − 1, 2), periodicity pi × p, and Φ = pi−1.

Proof. Following Method B with r = p, the new column size of the DPA is p2,

because of the modular addition, and the family size is p. When applied recursively

the column size of the DPA increase to pi, and the family size is pi−1.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 34 respectively.
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Figure 5–4: 25x5 Hyperbolic DPA family after applying Method B.
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Example. Let p = 5 and k = 1, the new DPA family obtained from applying Method

B to the Hyperbolic array (1, 3, 2,4, *) = (0, 2, 1, 3, *) is:

for j = 0 (0, 2, 1, 3, ∗)

for j = 1 (0, 7, 11, 18, ∗)

for j = 2 (0, 12, 21, 8, ∗)

for j = 3 (0, 17, 6, 23, ∗)

for j = 4 (0, 22, 16, 13, ∗)

with parameters (25 × 5, 4, 2, 1).

Theorem 40. (Moreno and Ortiz) Applying Method B to the Hyperbolic family with

f(x) = k
x

we obtain a family of OOC with parameters (n = p2×p, ω = p−1, λ = 2),

periodicity p2 × p and Φ = ((p − 1) × p). And a family of OOCs with parameters

(pi × p, p − 1, 2), periodicity pi × p, and Φ = (p − 1)pi−1.

Proof. Following Method B with r = p, the new column size of the DPA is p2,

because of the modular addition, and the family size is p − 1 codewords from the

original family times p. When applied recursively the column size of the DPA

increase to pi, and the family size increases to pi−1.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 36 respectively.

5.3.3 Welch families

Theorem 41. (Moreno and Ortiz) Applying Method B to the Welch array with

αk = αk(mod p), 1 ≤ k ≤ p − 1 we obtain a family of OOCs with parameters

(n = p2 × (p − 1), ω = p − 1, λ = 1), periodicity p2 × (p − 1) and Φ = (p). And a

family of OOCs with parameters (n = pi × (p − 1), ω = p − 1, λ = 1), periodicity

pi × (p − 1) and Φ = pi−1.
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Figure 5–5: 25x4 Welch DPA family after applying Method B.

Proof. Following Method B with r = p, the new column size of the DPA is p2,

because of the modular addition, and the family size is p. When applied recursively

the column size of the DPA increase to pi, and the family size increases to pi−1.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 35 respectively.
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Example. Let p = 5 and α = 3, the new DPA family obtained from applying Method

B to the Welch array (3, 4, 2, 1) = (0, 1, 4, 3) is:

for j = 0 (0, 1, 4, 3)

for j = 1 (0, 6, 14, 18)

for j = 2 (0, 11, 24, 8)

for j = 3 (0, 16, 9, 23)

for j = 4 (0, 21, 19, 13)

with parameters (25 × 4, 4, 1).

5.3.4 Lempel-Golomb families

Theorem 42. (Moreno and Ortiz) Let q = 2n, n ∈ N and q−1 is a Mersenne prime.

Applying Method B to the Lempel-Golomb construction we obtain a family of OOCs

with parameters ((q−1)2×(q−1), q−2, 1) periodicity (q−1)2×(q−1), and Φ = q−1.

And a family of OOCs with parameters (n = (q − 1)i × (q − 1), ω = q − 2, λ = 1),

periodicity (q − 1)i × (q − 1) and Φ = (q − 1)i−1 , for i > 1 and i ∈ N.

Proof. Following Method B with r = (q − 1), the new column size of the DPA is

(q−1)2, because of the modular addition, and the family size is q−1. When applied

recursively the column size of the DPA increase to (q − 1)i, and the family size

increases to (q − 1)i−1.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 35 respectively.

Theorem 43. (Moreno and Ortiz) Let (q − 2), and q be twin primes. Applying

Method B to the Lempel-Golomb construction we obtain a family of OOCs with

parameters ((q− 2)(q − 1)× (q − 1), q− 2, 1) periodicity (q− 2)(q− 1)× (q − 1), and

Φ = q−2. And a family of OOCs with parameters (n = (q−2)i−1(q−1)×(q−1), ω =
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q − 2, λ = 1), periodicity (q − 2)i−1(q − 1) × (q − 1) and Φ = (q − 2)i−1, for i > 1

and i ∈ N.

Proof. Following Method B with r = q − 2, the new column size of the DPA is

(q − 2)(q − 1), because of the modular addition, and the family size is q − 2. When

applied recursively the column size of the DPA increase to (q−2)i−1(q−1), and the

family size increases to (q − 2)i−1.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 35 respectively.

Theorem 44. (Moreno and Ortiz) Let q = p. Applying Method B to the Lempel-

Golomb construction we obtain a family of OOCs with parameters (p(p − 1) × (p −

1), p − 2, 1) periodicity p(p − 1) × (p − 1), and Φ = p. And a family of OOCs with

parameters (n = pi−1(p−1)×(p−1), ω = p−2, λ = 1), periodicity pi(p−1)×(p−1)

and Φ = pi, for i ≥ 1 and i ∈ N.

Proof. Following Method B with r = p, the new column size of the DPA is p(p− 1),

because the modular addition, and the family size is p. When applied recursively

the column size of the DPA increase to pi−1(p− 1), and the family size increases to

pi.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 35 respectively.

Theorem 45. (Moreno and Ortiz) Let p be a prime such that greatest common

divisor: gcd(p, (ω− 1)!). Applying Method B to the Lempel-Golomb construction we

obtain a family of OOCs with parameters (p(q − 1) × (q − 1), q − 2, 1) periodicity

p(q − 1) × (q − 1), and Φ = p. And a family of OOCs with parameters (n =

pi(q − 1) × (q − 1), ω = q − 2, λ = 1), periodicity pi−1(q − 1) × (q − 1) and Φ = pi,

for i ≥ 1 and i ∈ N.
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Proof. Following Method B with r = p, the new column size of the DPA is p(q− 1),

because of the modular addition, and the family size is p. When applied recursively

the column size of the DPA increase to pi−1(q − 1), and the family size increases to

pi.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 35 respectively.

Example. Let q = 71, α = 3, β = 5, and r = 7, the new DPA family obtained from

applying Method B to the Lempel-Golomb array (1, 3, 4, 2, 5, *) = (0, 2, 3, 1, 4,

*) is:

for j = 0 (0, 2, 3, 1, 4, ∗)

for j = 1 (0, 8, 15, 19, 28, ∗)

for j = 2 (0, 14, 27, 37, 10, ∗)

for j = 3 (0, 20, 39, 13, 34, ∗)

for j = 4 (0, 26, 9, 31, 16, ∗)

for j = 5 (0, 32, 21, 7, 40, ∗)

for j = 6 (0, 38, 33, 25, 22, ∗)

with parameters (42 × 6, 5, 1).

5.3.5 Moreno-Maric families

Theorem 46. (Moreno and Ortiz) Let p be a prime such that greatest common

divisor: gcd(p, q!). Applying Method B to a Moreno-Maric array we obtain a family

of OOCs with parameters (p(q + 1)× (q + 1), q + 1, 2) periodicity p(q + 1)× (q + 1),

and Φ = p. And a family of OOCs with parameters (n = pi(q + 1) × (q + 1), ω =

q + 1, λ = 2), periodicity (p)i(q + 1) × (q + 1) and Φ = pi, for i ≥ 1 and i ∈ N.
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Proof. Following Method B with r = p, the new column size of the DPA is p(q +1),

because of the modular addition, and the family size is p . When applied recursively

the column size of the DPA increase to pi(q +1), and the family size increases to pi.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 34 respectively.

Example. Let q = 71, α = 3, and r = 11, the new DPA family obtained from

applying Method B to the Moreno-Maric array (0, 4, 3, 6, 5, 1, 2, 7) is:

for j = 0 (0, 4, 3, 6, 5, 1, 2, 7)

for j = 1 (0, 12, 19, 30, 37, 41, 50, 63)

for j = 2 (0, 20, 35, 54, 69, 81, 10, 31)

for j = 3 (0, 28, 51, 78, 13, 33, 58, 87)

for j = 4 (0, 36, 67, 14, 45, 73, 18, 55)

for j = 5 (0, 44, 83, 38, 77, 25, 66, 23)

for j = 6 (0, 52, 11, 62, 21, 65, 26, 79)

for j = 7 (0, 60, 27, 86, 53, 17, 74, 47)

for j = 8 (0, 68, 43, 22, 85, 57, 34, 15)

for j = 9 (0, 76, 59, 46, 29, 9, 82, 71)

for j = 10 (0, 84, 75, 70, 61, 49, 42, 39)

with parameters (88 × 8, 8, 2).

Theorem 47. (Moreno and Ortiz) Let p be a prime such that greatest common

divisor: gcd(p, q!). Applying Method B to a Moreno-Maric family we obtain a family

of OOCs with parameters (p(q+1)×(q+1), q+1, 2) periodicity p(q+1)×(q+1), and

Φ = (q − 1)p. And a family of OOCs with parameters (n = pi(q + 1) × (q + 1), ω =

q + 1, λ = 2), periodicity pi(q + 1)× (q + 1) and Φ = (q − 1)pi, for i ≥ 1 and i ∈ N.
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Proof. Following Method B with r = p, the new column size of the DPA is p(q +1),

because of the modular addition, and the family size is (q − 1) codewords from

the original family times p. When applied recursively the column size of the DPA

increase to pi(q + 1), and the family size increases to (q − 1)pi.

The auto- and cross-correlation properties are given by Theorem 33 and Theo-

rem 36 respectively.
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Figure 5–6: 42x6 Lempel-Golomb DPA family after applying Method B.
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5.4 Optimal GPCWC constructions

Theorem 48. (Moreno and Ortiz) The (p× pi, p, 1) GPCWC with family size pi−1,

obtained after applying Method B to a quadratic array is optimal with respect to the

generalization of the Johnson Bound modification for non-binary GPCWC Theorem

20.

Proof. Using the Johnson Bound modification for non-binary GPCWC Theorem 20.

Φ(p × pi, p, 1) ≤

⌊

1

p

⌊

pi(p − 1)

p − 1

⌋⌋

≤

⌊

pi

p

⌋

≤ pi−1

Therefore the (p × pi, p, 1) GPCWC with family size pi−1 is optimal with respect

to the generalization of the Johnson Bound modification for non-binary GPCWC

Theorem 20.

Theorem 49. (Moreno and Ortiz) The ((p − 1) × p2, p − 1, 1) GPCWC with fam-

ily size p, obtained after applying Method B to a quadratic array is asymptotically

optimal with respect to the generalization of the Johnson Bound modification for

non-binary GPCWC Theorem 20.

Proof. Using the Johnson Bound modification for non-binary GPCWC Theorem 20.

Φ((p − 1) × p2, p, 1) ≤

⌊

1

(p − 1)

⌊

p2(p − 2)

p − 2

⌋⌋

≤

⌊

p2

(p − 1)

⌋

=

⌊

p2 − 1

p − 1
+

1

p − 1

⌋

=

⌊

(p + 1) +
1

p − 1

⌋

= p + 1

To prove that it is asymptotically optimal:

lim
p→∞

p

p + 1
= 1

Therefore the (p×pi, p, 1) GPCWC with family size pi−1 is optimal with respect

to the generalization of the Johnson Bound modification for non-binary GPCWC

Theorem 20.



74

5.5 Chapter Summary

In this chapter we presented a method to increase the family size of double

periodic arrays with optimal correlation (Method B). This construction increase the

size of the family of DPAs without changing the original correlation value, and the

maximum cross-correlation value is 2 if the original correlation value is more than

one. We apply this method to well known families of double-periodic arrays like the

Quadratic, Hyperbolic, Welch, Lempel-Golomb, and Moreno-Maric constructions.

Using this method we obtain optimal constructions in the size of the families with

respect to the improvement to the Johnson Bound A for Group Permutable Constant

Weight Codes. Table 5.5 is a summary of the new DPAs that we obtain by using

our Method B. Table 5.5 is a summary of the new DPAs that we obtain by applying

Method B recursively.

These codes have applications in 1-D Optical Orthogonal Codes, 2-D Optical

Orthogonal Codes, and Digital Watermarking. The codes in section 5.1 and the

Welch code in section 5.3 are 1-D Optical Orthogonal Codes by using the Chinese

Remainder Theorem to arrange them in one dimension. All the codes in this chapter

can be used for application of 2-D Optical Orthogonal Codes. Also they can be used

in Digital Watermarking but they are not optimal for the application. We can make

these constructions optimal for Digital Watermarking if we finding column sequences

of size pi and then apply the Weight Increasing Method (Method A) on them. This

remain as part of our future work.
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Table 5–1: New Constructions Summary i = 2

Construction Periodicity ω Φ λa λc

Quadratic p2 × p p p 1 1
Quadratic

p2 × p p p × (p − 1) 1 2
k = 1 . . . p − 1

Hyperbolic p2 × p (p − 1) p 2 1
Hyperbolic

p2 × p (p − 1) p × (p − 1) 2 2
k = 1 . . . p − 1

Welch p2 × (p − 1) (p − 1) p 1 1
Lempel-Golomb

(q − 1)2 × (q − 1) (q − 2) q − 1 1 1
Mersenne Prime
Lempel-Golomb

(q − 2)(q − 1) × (q − 1) (q − 2) q − 2 1 1
Twin Primes

Lempel-Golomb
p × (p − 1) × (p − 1) (p − 2) p 1 1

q prime
Lempel-Golomb p × (q − 1) × (q − 1) q − 2 p 1 1
Moreno-Maric p(q + 1) × (q + 1) q + 1 p 2 2

Moreno-Maric family p(q + 1) × (q + 1) q + 1 (q − 1)p 2 2
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Table 5–2: New Constructions Summary i > 1

Construction Periodicity ω Φ λa λc

Quadratic pi × p p pi−1 1 1
Quadratic

pi × p p (p − 1)pi−1 1 2
k = 1 . . . p − 1

Hyperbolic pi × p (p − 1) pi−1 2 1
Hyperbolic

pi × p (p − 1) (p − 1)pi−1 2 2
k = 1 . . . p − 1

Welch pi × (p − 1) (p − 1) pi−1 1 1
Lempel-Golomb

(q − 1)i × (q − 1) (q − 2) (q − 1)i−1 1 1
Mersenne Prime
Lempel-Golomb

(q − 2)i−1(q − 1) × (q − 1) (q − 2) (q − 2)i−1 1 1
Twin Primes

Lempel-Golomb
pi × (p − 1) × (p − 1) (p − 2) pi 1 1

q prime
Lempel-Golomb pi × (q − 1) × (q − 1) q − 2 pi 1 1
Moreno-Maric pi(q + 1) × (q + 1) q + 1 pi 2 2

Moreno-Maric family pi(q + 1) × (q + 1) q + 1 (q − 1)pi 2 2



CHAPTER 6

DOUBLE PERIODIC ARRAYS WITH

UNEQUAL CORRELATION CONSTRAINTS

(λC < λA)

Yang and Fuja [4] presented constructions of codes with unequal correlation

constraints. Specifically for the case where λc = 1 < λa = 2. The auto- and

cross-correlation properties are used for synchronization and user identification re-

spectively. Fuja and Yang explained that with good cross-correlation we are able to

deal with both synchronization and user identification. This is for the case were we

can find constructions with a much better cross-correlation than auto-correlation.

The auto-correlation properties of an array are used for synchronization, to

check if a sequence is unlike cyclic shifts of itself. While the cross-correlation prop-

erties are used to check if a sequence is unlike cyclic shifts of other distinct sequences,

thus cross-correlation serves for synchronization and user identification. With bet-

ter cross-correlation properties we are able to achieve a very important part of any

frequency hopping communication which is user identification.

In previous sections we presented methods to increase the weight (Method A,

Chapter 4) and to increase the family size (Method B, Section 5) of double-periodic

arrays. The weight increasing method is used for security in digital watermarking;

and we also use it to obtain families with λ > 1. The method to increase the family

size increase the number of targets or users in any spread spectrum application.

In this Chapter we combine both methods to construct new families of DPA

with λa > 1 and λc < λa. This new method consist in applying the Weight Increasing

77
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Method to a double-periodic construction to obtain new families with λa > 1, and

then apply the method to increase the family size that results in new DPA families

with λc < λa.
1 Here we apply our new method to the Quadratic, Hyperbolic,

Welch, Lempel-Golomb, and Moreno-Maric DPA constructions. Section 6.1 uses

the Moreno-Omrani-Maric method to increase the family size, and section 6.2 uses

the general method.

6.1 Method to produce DPA families with Unequal Correlation
Constraints using the CRT

We construct families of DPAs from a Welch Costas array using a Legendre

sequence as the column sequence and applying the Moreno-Omrani-Maric construc-

tion.

Method C: (Ortiz and Moreno)First generate a Welch Costas array, replace

the columns with a suitable periodic sequence using Method A, and finally apply

the Moreno-Omrani-Maric construction to generate the new family of size p+1. See

the next example for a detailed explanation.

(a) 5x4 Welch array (b) 5x4 Welch array
with binary column
sequence

Figure 6–1: Example: 5x4 Welch array before and after Method A

Example. Start with the Welch array with points (0, 2), (1, 4), (2, 3), and (4, 1).

Using Method A, replace the columns of the matrix in that figure with the periodic

sequence 1, 0, 1, 1, 0 which is a binary Legendre sequence with auto-correlation 2.

1 The work presented in [32] is result of this thesis work, and introduce the new
method to construct new families of DPAs with λc < λa .
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Figure 6–1(a) is the Welch array before applying Method A, and figure 6–1(b) is the

Welch array after applying Method A.

Now apply the Moreno-Omrani-Maric construction to the new matrix of size

p× (p−1). The Chinese Remainder for the points in the new matrix are (0, 0) → 0,

(0, 2) → 12, (0, 4) → 4, (1, 0) → 5, (1, 2) → 17, (1, 3) → 13, (2, 1) → 6, (2, 3) → 18,

(2, 4) → 14, (3, 0) → 15, (3, 1) → 11, (3, 3) → 3.

From the CRT we obtain D′ = {0, 3, 4, 5, 6, 11, 12, 13, 14, 15, 17, 18}. Now fol-

lowing the Moreno-Omrani-Maric construction we obtain from D′:

D1 = {0, 3, 4, 5, 6, 11, 12, 13, 14, 15, 17, 18}

D2 = {0, 11, 17, 23, 32, 38, 44, 53, 65, 74, 86, 95}

D3 = {0, 11, 17, 25, 34, 43, 52, 58, 66, 75, 84, 93}

D4 = {0, 11, 17, 24, 33, 46, 55, 63, 72, 78, 85, 94}

D5 = {0, 11, 17, 26, 35, 45, 54, 64, 73, 83, 92, 98}

And multiplying D′ by 5:

D6 = {0, 15, 20, 25, 30, 55, 60, 65, 70, 75, 85, 90}

Figure 6–2: 4x25 Matrix Construction using a binary column sequence

Finally apply the CRT again to convert them to 4 × 25 matrices. (see Figure

6–2)
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Theorem 50. (Ortiz and Moreno) Method C applied to a Welch array of size p(p−1)

using a Legendre sequence as a column produces OOCs with parameters (n, ω, λ) =

(p2(p − 1), p2−1
2

, ⌊p(p+1)
4

⌋) and family size p + 1.

Proof. The auto-correlation value of the new families of OOCs is the auto-correlation

value obtained after applying Method A to the original Welch Array. Theorem 31

proves that the auto-correlation values does not change after applying the Moreno-

Omrani-Maric construction.

In our example we construct code sequences with (n, ω, λ) = (4 × 25, 12, 8, 4).

This method produces families of DPAs with λc < λa. The cross-correlation prop-

erties can be proved similar to the proofs of Theorem 52 and Theorem 53.

On the next section we present a general method that works without the need

of the CRT.

6.2 Method to produce DPA families with Unequal Correlation
Constraints without using the CRT

Here we present a new method similar to Method C but this time we use the

method to increase the size of a family of DPAs without using the Chinese Remainder

Theorem (CRT).

Method C2: (Ortiz and Moreno) First generate a double periodic array (d0, d1,

. . . , dω−1) (See section 2.4), then using Method A replace the columns with a suit-

able periodic sequence s to increase the weight in the matrix and obtain the new

matrix [[sd0 ], [sd1 ], . . . , [sdω−1]]. Finally apply the method to increase the number of

sequences of double periodic arrays as follows:

For each Dv×n = [[sd0 ], [sd1 ], . . . , [sdω−1]], where [sdi ] is the new column sequences

(shifted di times) used in Method A, generate the r different matrices Dj
vr×n such

that if (di,k) = 1 then (dj
i,k⊕vrijv) = 1, for 0 ≤ j < r, 0 ≤ k < v, and ⊕vr represents

addition modulo vr. See next example.
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Figure 6–3: 25x5 Quadratic double-periodic family after applying Method C2.

Example. Start with the Welch array of Figure 5–1 with points (0, 2), (1, 4), (2, 3),

and (4, 1). Using Method A (WIM) replace the columns of the matrix in that figure

with the periodic sequence 1, 0, 1, 1, 0 which is a binary Legendre sequence with auto-

correlation 2. Figure 6–1(a) is the Welch array before applying Method A and figure

6–1(b) is the Welch array after applying Method A.

Now apply the Method B to the matrix of size p× (p−1). Following the Method

B we obtain



82

D0 = {(0, 1), (0, 3), (0, 4), (1, 0), (1, 2), (1, 3), (2, 0), (2, 2),

(2, 4), (3, 0), (3, 1), (3, 3)}

D1 = {(0, 1), (0, 3), (0, 4), (1, 5), (1, 7), (1, 8), (2, 10), (2, 12),

(2, 14), (3, 15), (3, 16), (3, 18)}

D2 = {(0, 1), (0, 3), (0, 4), (1, 10), (1, 12), (1, 13), (2, 20), (2, 22),

(2, 24), (3, 5), (3, 6), (3, 8)}

D3 = {(0, 1), (0, 3), (0, 4), (1, 15), (1, 17), (1, 18), (2, 5), (2, 7),

(2, 9), (3, 20), (3, 21), (3, 23)}

D4 = {(0, 1), (0, 3), (0, 4), (1, 20), (1, 22), (1, 23), (2, 15), (2, 17),

(2, 19), (3, 10), (3, 11), (3, 13)}

Figure 6–3 is the graphical representation of applying Method C2 to the Quadratic

sonar of size p = 5.

Theorem 51. (Ortiz and Moreno) Applying method C to a family of (v×n, ω, λ)−DPA

A, produces a new family of (vr × n, ω, λ)-DPAs B with the same auto-correlation

value as A.

Note the proof is similar to the proof 33 for Method B auto-correlation. But in

this theorem the difference values of the matrix M , is a set of differences because

sdi and sdi+c are column sequences with weight ω > 1.

Proof. Let Dv×n = [[sd0 ], [sd1 , . . . , sdω−1] a (v × n, ω, λ)-DPA, applying Method C

produces a family of arrays Dj
vr×n such that if (di,k) = 1 then (dj

i,k⊕vrivj) = 1.

Let M be the difference matrix for array Dv×n such that:

Mi,i+c = {x − z mod v|(di,x) = 1 and (di+c,z) = 1}
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M ′
i,i+c = {x + ijv − (z − (i + c)jv) mod vr|(di,x) = 1 and (di+c,z) = 1}

M ′
i,i+c = {(x − z) − jvc mod vr|(di,x mod vr) = 1 and (di+c,z) = 1)}

Therefore the differences in M ′
i,i+c are going to be the same in M ′

i,i+c or in

another M ′
j,j+c if and only if they are also the same in Mi,i+c or Mj,j+c.

Theorem 52. (Ortiz and Moreno) Applying Method C to a (v × n, ω, λa, λc)-DPA

A using a periodic sequence s with parameters (v, ω′, λ′), produces a new family of

(vr × n, ω, λa, λ
′
c)-DPAs B with cross-correlation λ′

c ≤ 2ω′.

Proof. Lets construct the difference matrix M ′ between any two arrays from B

constructed with j = r1 and j = r2, 0 ≤ r1, r2 < r such that:

M ′
i,i+c = {x + ivr1 − (z + (i + c)vr2) mod vr|(dx,i) = 1 and (dz,i+c) = 1}

M ′
i,i+c = {(x − z) + v(i(r1 − ir2) − cr2) mod vr|(dx,i) = 1 and (dz,i+c) = 1}

The values (r1 − r2) and −cr2 are constants in Zp. Let i′ = i(r1 − r2) − cr2;

as i varies i′ cycles in Zp. Therefore the product vi′ mod vr for i′ ∈ Zp produces

multiples of v modulo vr {0, v, 2v, . . . , v(p − 1)}.

Since x, z ∈ Zv the equation (x − z) + vi′ mod vr produces values of the form

v′ + v(i′) for v′ = {−v + 1, . . . ,−1, 0, 1, . . . , v − 1}.

Therefore values of the difference (x− z) + vi′ can only be equal with values of

other difference (x′ − z′) + vj′ iff:

(x − y) = (x′ − z′) and v(i′) = v(j′) ⇐⇒ i = j (6.1)

or

(x′ − z′) = −((−(x − z)) mod v) and v(j′) = v(i′ ± 1) (6.2)
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i. e. (x′ − z′) mod v = (x − z) mod v.

Equation 6.1 implies that we are comparing the same column differences. In

which case we can have at most ω′ differences with the same value.

Equation 6.2 implies that the difference with column i can be equal to another

difference with column j at most ω′ times , because of the distance between the

multiples vi′ and vj′.

Therefore λ′
c < 2ω′.

Theorem 53. (Ortiz and Moreno) Applying Method C to a family of (v×n, ω, λa, λc)-

DPAs A using a periodic sequence s with parameters (v, ω′, λ′), produces a new family

of (vr × n, ω, λa, λ
′
c)-DPAs B with cross-correlation λ′

c ≤ (n × λ′ + λc(ω
′ − λ′)).

Proof. Proof is similar theorem 52. If the r1 and r2 used to construct any two arrays

from family B are different (r1 6= r2), then the proof in theorem 52 applies.

Now lets construct the difference matrix M ′ between two arrays from B con-

structed with j = r1, 0 ≤ r1 < r such that:

M ′
i,i+c = {x + ivr1 − (z + (i + c)vr2) mod vr|(dx,i) = 1 and (dz,i+c) = 1}

M ′
i,i+c = {(x − z) − vcr2) mod vr|(dx,i) = 1 and (dz,i+c) = 1}

−vcr2 is constant and therefore M
′

i,i+c is the same to another M
′

j,j+c if and only

if in the difference matrix M , Mi,i+c = Mj,j+c. In which case the cross-correlation is

λ′
c ≤ n × λ′ + λc(ω

′ − λ′).

Therefore λ′
c ≤ (n × λ′ + λc(ω

′ − λ′))

6.3 New families of Double Periodic Arrays with Unequal Constraints

Following Method C2 we construct different families of arrays with increased

weight and increased family size. The auto-correlation for the arrays in these new

families is the same auto-correlation of the original arrays after applying the Weight
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Increasing Method (Method A). Which for the Quadratic, Hyperbolic, and Welch

constructions increase quadraticly with respect to the prime p. However with Theo-

rem 52 we obtain that the cross-correlation of these new constructions increases

linearly with respect of its weight, thereby producing constructions with cross-

correlation lower than auto-correlation.

In general the following equation calculates the auto-correlation values of the

construction after applying Method A, which is also kept after applying methods C

and C2:

λ′ × m + λa(ω
′ − λ′) (6.3)

where λ′ is the auto-correlation of the periodic column sequence, λa the original

correlation of the double periodic array before applying Method A, ω′ the weight of

the column sequence, and m the number of columns with weight.

An interesting property of the following families is that λc < λa. Yang and

Fuja [4] write about the importance of this sequences with λc 6= λa and define

family size bounds derived from the Johnson Bound, and the lower bound for odd

prime n by Wei.

6.3.1 Quadratic families

Theorem 54. (Ortiz and Moreno) Let k, x ∈ Zp. Then applying Method C2 to

a Quadratic array with f(x) = kx2 we obtain a family of OOC with parameters

(p2 × p, ω = (p2+p)
2

, λa ≤ (p2+p)
4

, λc ≤ p + 1), periodicity p2 × p, and Φ = p.

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.
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Example. Let p = 5, k = 1, and the Legendre (1, 0, 1, 1, 0) the column sequence,

the family for the Quadratic Construction is

for i = 0 {(0, 1), (0, 2), (0, 4), (1, 0), (1, 1), (1, 3), (2, 0), (2, 2), (2, 3),

(3, 0), (3, 2), (3, 3), (4, 0), (4, 1), (4, 3)}

for i = 1 {(0, 1), (0, 2), (0, 4), (1, 5), (1, 6), (1, 8), (2, 10), (2, 12), (2, 13),

(3, 15), (3, 17), (3, 18), (4, 20), (4, 21), (4, 23)}

for i = 2 {(0, 1), (0, 2), (0, 4), (1, 10), (1, 11), (1, 13), (2, 20), (2, 22), (2, 23),

(3, 5), (3, 7), (3, 8), (4, 15), (4, 16), (4, 18)}

for i = 3 {(0, 1), (0, 2), (0, 4), (1, 15), (1, 16), (1, 18), (2, 5), (2, 7), (2, 8),

(3, 20), (3, 22), (3, 23), (4, 10), (4, 11), (4, 13)}

for i = 4 {(0, 1), (0, 2), (0, 4), (1, 20), (1, 21), (1, 23), (2, 15), (2, 17), (2, 18),

(3, 10), (3, 12), (3, 13), (4, 5), (4, 6), (4, 8)}

with parameters (25×5, 15, 9, 4). Figure 6–3 shows the graphical representation

for the family in this example.

Theorem 55. (Ortiz and Moreno) Let k, x ∈ Zp, k . . . p−1. Then applying Method

C2 to the Quadratic family with f(x) = kx2 we obtain a family of OOC with pa-

rameters (p2 × p, ω = (p2+p)
2

, λa ≤ (p2+p)
4

, λc ≤ (p2+3p+2)
4

), periodicity p2 × p, and

Φ = p × (p − 1).

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 53 respectively.
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Figure 6–4: 25x5 Hyperbolic double-periodic family after applying Method C2.
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6.3.2 Hyperbolic families

Theorem 56. (Ortiz and Moreno) Let k, x ∈ Zp, x = 1 . . . p − 1, k 6= 0. Then

applying Method C2 to an Hyperbolic array with f(x) = k
x

we obtain a family of

OOC with parameters (n = p2 × p, ω = (p2−1)
2

, λa ≤ (p2+p)
4

, λc ≤ p + 1), periodicity

p2 × p and Φ = p.

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.

Theorem 57. (Ortiz and Moreno) Let k, x ∈ Zp, k, x = 1 . . . p − 1. Then applying

Method C2 to the Hyperbolic family with f(x) = k
x

we obtain a family of OOC with

parameters (n = p2×p, ω = (p2−1)
2

, λ ≤ (p2+p)
4

), periodicity p2×p and Φ = p×(p−1).

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 53 respectively.

6.3.3 Welch families

Theorem 58. Let α be a primitive root of an odd prime p. Then applying Method

C2 to the Welch array with αk = αk(mod p), 1 ≤ k ≤ p − 1 we obtain a family

of OOCs with parameters (n = p2 × p − 1, ω = (p2−1)
2

, λa = (p2+p)
4

, λc ≤ p + 1),

periodicity p2 × (p − 1) and Φ = p.

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.
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Figure 6–5: 25x4 Welch double-periodic family after applying Method C2.

6.3.4 Lempel-Golomb families

For the next Lempel-Golomb constructions review definition 4. For the Lempel-

Golomb constructions we give auto-correlation values independent of the column

sequence used. Column sequences of size (q − 1) should be used in all cases. To

understand the expected auto-correlation value given in the following definitions,

recall that ω′ is the weight of the column sequence, and λ′ is the auto-correlation

value of the column sequence.

Theorem 59. (Ortiz and Moreno) Let q = 2n, n ∈ N and q − 1 is a Mersenne

prime. Applying Method C2 to the Lempel-Golomb construction we obtain a family



90

of OOCs with parameters ((q− 1)2 × (q − 1), (q− 2)ω′, λa = λ′(q− 3)+ω′, λc ≤ 2ω′)

periodicity (q − 1)2 × (q − 1), and Φ = q − 1.

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.

Theorem 60. (Ortiz and Moreno) Let (q − 2), and q be twin primes. Applying

Method C2 to the Lempel-Golomb construction we obtain a family of OOCs with

parameters ((q−2)(q−1)×(q−1), (q−2)ω′ , λa = λ′(q−3)+ω′, λc ≤ 2ω′) periodicity

(q − 2)(q − 1) × (q − 1), and Φ = q − 2.

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.

Theorem 61. (Ortiz and Moreno) Let q = p. Applying Method C2 to the Lempel-

Golomb construction we obtain a family of OOCs with parameters (p(p − 1) × (p −

1), (p− 2)ω′, λa = λ′(p− 3) + ω′, λc ≤ 2ω′) periodicity p(p− 1)× (p− 1), and Φ = p.

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.

Theorem 62. (Ortiz and Moreno) Let p be a prime such that gcd(p, (ω − 1)!).

Applying Method C2 to the Lempel-Golomb construction we obtain a family of OOCs

with parameters (p(q−1)×(q−1), (q−2)ω′, λa = λ′(q−3)+ω′, λc ≤ 2ω′) periodicity

p(q − 1) × (q − 1), and Φ = p.
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Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.

6.3.5 Moreno-Maric families

Theorem 63. (Ortiz and Moreno) Let p be a prime such that greatest common

divisor: gcd(p, q!). Applying Method C2 to a Moreno-Maric array we obtain a family

of OOCs with parameters (p(q+1)×(q+1), (q+1)ω′, λ′(q−1)+2ω′, 2ω′) periodicity

p(q + 1) × (q + 1), and Φ = p.

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 52 respectively.

Theorem 64. (Ortiz and Moreno) Let p be a prime such that greatest common

divisor: gcd(p, q!). Applying Method C2 to a Moreno-Maric array we obtain a family

of OOCs with parameters (p(q+1)× (q+1), (q+1)ω′, λ′(q−1)+2ω′, λ′(q−1)+2ω′)

periodicity p(q + 1) × (q + 1), and Φ = p(q − 1).

Proof. The new weight of the DPA comes from applying Method A, and the new

column size comes from the application of Method B.

The auto- and cross-correlation properties are given by Theorem 51 and Theo-

rem 53 respectively.

6.4 Chapter Summary

Chapter 6 presents a combination of the Weight Increasing Method of DPAs

(Method A) from Chapter 4 and the method to increase the size of families (Method

B) from Chapter 5 to produce new families of double periodic constructions with
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increased family size and weight (Method C). When Method C is applied to a dou-

ble periodic array we obtain new families of double periodic arrays with unequal

correlation constrains. More specifically, we obtain new families of double periodic

arrays with cross-correlation much lower than auto-correlation (λc < λa). As ex-

plained by Fuja and Yang with good cross-correlation we are able to deal with both

synchronization and user identification. Table 6.4 is a summary of the new DPAs

with correlation value more than one (λ > 1) that we obtain by applying Method

C to well known DPA families. Table 6.4 is a summary of the new DPAs that we

obtain after applying Method C with unequal correlation constrains (λc < λa).

These codes have applications in 1-D Optical Orthogonal Codes, 2-D Optical

Orthogonal Codes , and Digital Watermarking. For Digital Watermarking these

families are not optimal because the weight of the families is not balanced with

respect to the length of the array. The codes in section 6.1 and the Welch code

in section 6.2 are 1-D Optical Orthogonal Codes by using the Chinese Remainder

Theorem to arrange them in one dimension. All the codes in this chapter can be

used for application of 2-D Optical Orthogonal Codes.
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Table 6–1: New DPA families Summary with Method C applied to a family of DPA with Φ > 1

Construction Periodicity ω Φ λa λc

Quadratic p2 × p (p2+p)
2

p (p+1)2

4
p + 1

Quadratic
p2 × p (p2+p)

2
p × (p − 1) (p+1)2

4
(p2+3p+2)

4k = 1 . . . p − 1

Hyperbolic p2 × p (p2−1)
2

p (p+1)2

4
p + 1

Hyperbolic
p2 × p (p2−1)

2
p × (p − 1) (p+1)2

4
(p2+p)

4k = 1 . . . p − 1

Welch p2 × (p − 1) (p2−1)
2

p (p2+p)
4

p + 1
Lempel-Golomb

(q − 1)2 × (q − 1) (q − 2)ω′ p λ′(q − 3) + ω′ 2ω′

Mersenne Prime
Lempel-Golomb

(q − 2)(q − 1) × (q − 1) (q − 2)ω′ p λ′(q − 3) + ω′ 2ω′

Twin Primes
Lempel-Golomb

p(p − 1) × (p − 1) (p − 2)ω′ p λ′(p − 3) + ω′ 2ω′

q prime
Lempel-Golomb p(q − 1) × (q − 1) (q − 2)ω′ p λ′(q − 3) + ω′ 2ω′

Moreno-Maric p(q + 1) × (q + 1) (q + 1)ω′ p λ′(q − 1) + 2ω′ 2ω′

Moreno-Maric
p(q + 1) × (q + 1) (q + 1)ω′ p × (p − 1) λ′(q − 1) + 2ω′ λ′(q − 1) + 2ω′

k = 1 . . . p − 1
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Table 6–2: New DPA families Summary λc < λa

Construction Periodicity ω Φ λa λc

Quadratic p2 × p (p2+p)
2

p (p+1)2

4
p + 1

Hyperbolic p2 × p (p2−1)
2

p (p+1)2

4
p + 1

Welch p2 × (p − 1) (p2−1)
2

p (p2+p)
4

p + 1
Lempel-Golomb

(q − 1)2 × (q − 1) (q − 2)ω′ p λ′(q − 3) + ω′ 2ω′

Mersenne Prime
Lempel-Golomb

(q − 2)(q − 1) × (q − 1) (q − 2)ω′ p λ′(q − 3) + ω′ 2ω′

Twin Primes
Lempel-Golomb

p(p − 1) × (p − 1) (p − 2)ω′ p λ′(p − 3) + ω′ 2ω′

q prime
Lempel-Golomb p(q − 1) × (q − 1) (q − 2)ω′ p λ′(q − 3) + ω′ 2ω′

Moreno-Maric p(q + 1) × (q + 1) (q + 1)ω′ p λ′(q − 1) + 2ω′ 2ω′



CHAPTER 7

ETHICS

7.1 Computer Ethics

Computer Ethics started as a field of applied ethics when Walter Maner, a

professor of Medical Ethics course from the Old Dominion University noticed that

the ethical questions and problems considered in his course were more complicated or

altered when computers got involved. [3] He realized that many new ethics problems

arise just because of the use of computers. For such reason he concluded that there

should be a new branch of applied ethics similar to already existing fields like medical

and business ethics, and he named it “computer ethics”. Important to note is that

three decades before Maner, Norbert Wiener combined the concepts of cybernetics

with ideas from digital computing, and foresaw some of today’s computer ethics

issues.

7.2 Computer Sciences Ethics

Wright in [43] said that science and engineering are commonly distinguished as

two different sorts of activities. Science, generally speaking, is the pursuit of theoret-

ical results, while engineering seeks to apply those results through the creation and

refinement of technology. If engineering requires an ethical position beyond profes-

sional codes of conduct, as Bugliarello notes [2], then a discipline such as Computer

Sciences, which spans both theory and application, and that touches so many facets

of life, should be grounded in an equally (or stronger) ethical foundation.

The cite from Wright besides making sense, also invites the computer science

researchers like myself to be aware of ethics in our study field. Many computer
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science researchers believe that ethics in computer science is not a matter of concern

since mathematics, computer codes, and a bunch of bits can not kill or harm a

human being. But ethics involves more than that.

Wright also said in [42]: Computer science and software engineering, and the

technologies the discipline is responsible for, touch nearly every aspect of our world,

and researchers in these disciplines bear a great responsibility to the world to conduct

and report their research in an ethical manner. This is what we, computer science

researchers, should have in mind and is what we did with our research work.

7.3 Ethical Issues raised by our research work

7.3.1 Optical Communications

Our codes can be used to facilitate multiple user capacity in optical commu-

nications. Such property is important to improve the channel capacity of a optical

communication media. If such codes are known, and other security measures are

not taken. The message transmitted using these codes can be obtained by a third

party for illegal use, or simply violating the privacy rights of the users that send the

data. Knowledge of how this codes are generated or how this codes work can also

lead to the damage of the data sent in an optical communication system that uses

them. Finally these codes are used to improve the communication systems that are

essential today in our life.

7.3.2 Multiple Target Recognition

Multiple Target Recognition allows the detection of projectiles, aircrafts and

submarines in noisy environments, such information can be used to improve the

national security and the defense. Sonar and radars are also used for simple things

as for recognizing the presence of fishes, or reefs under the water, and also can be

used to detect enemy submarines under the water or projectiles under the water.

Another good application of codes for multiple target recognition is to map the

ionosphere. Knowing how the ionosphere behaves helps to predict the behavior of
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atmospherics disasters such as: storms and hurricanes. Also the ability to be able

to predict the atmospheric behavior serves as information to know when a nation is

fragile and susceptible to attacks. This information can be used to know how and

when to improve national security under certain atmospheric events, or to know how

or when to attack another enemy nation in war times.

7.3.3 Digital Watermarking

The major ethical issue raised by digital watermarking is that many people be-

lieve that information should be free. However our research helps in the development

of digital watermarking which is used to combat the illegal sharing of copyrighted

digital information. Right now digital content is very easy to share, and copyrighted

content owners see this as a business problem. The idea behind watermarking is to

provide a method to authenticate digital information which is copyrighted, and the

idea behind copyright laws is to grant a reward for the efforts of an information

producer, or owner.

A successfully detected digital watermark can be removed from a copyrighted

digital media and then help to create ways to remove watermarks used similarly in

other digital content, thereby leaving the original digital content available for illegal

reproduction. Inserting watermarks over already watermarked digital medium is a

common attack to digitally watermarked information, therefore the results of this

research work could lead to attacks to other methods of watermarking. A better

explanation of digital watermarking attacks can be found in appendix B.2.

Another important ethical issue raised is that databases storing the information

of the families of arrays used for watermarks in digital information have to be fully

secured. The access to that information could lead to the probability of removing

the watermarks added to a digital media using that stored information.

Digital watermarking also allow users to track their works through the Internet.

This ability could be abused by authoritarian forces. Also the legitimate pursuit
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of rights could infringe the rights of privacy of those whom copyright owners are

pursuing. At the end, owners and systems, would be looking where their work is

not supposed to be, rather than where the work is rightly and lawfully stored.

Addition of watermarks will affect the authenticity and integrity of the digital

information to be protected. Copyright owners could want their product to be

copyrighted as securely as a consumer would like to obtain the original, integral and

authentic product they are consuming.

7.4 Responsible Research Conduct

In computer science, metrics and analysis methods are primary instruments for

measuring, corroborate or disprove research hypothesis. In our research work we

developed computer code to generate preliminary results and to analyze the double

periodicity properties, and correlation properties of the codes that we generated.

Those results served to make the conjectures in the cross-correlation properties of

our new families of DPAs, that later we analyzed and prove using mathematical

reasoning.

7.5 Documenting and reporting research

As researchers we share our results in the form of articles or papers at con-

ferences related to the field of Information Theory. Also the fact that we need to

release this dissertation document proves our will to report and share our results

with the rest of the research community. Every theorem that we present we also

provide a formal mathematical proof or at least provide a reference of where it can

be found; if the theorem comes from previous work.

The ability to duplicate the work of other researchers is perhaps the most funda-

mental principle and responsibility of science. In our methods we modify previous

work by Colbourn and Colbourn in Distinct Different Sets. We replicated their

method and then applied our modifications in order to obtain the results that we

expected, and to be able to apply those results in different areas and fields such
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as optical communications and digital watermarking. We carefully cite the earlier

work done in Distinct Different Sets, Optical Orthogonal Codes, and in algebraic

constructions with good correlation constrains that we use through our work. In this

way we acknowledge the previous work done in the area, we validate their results,

and obtain new results to share to a broad research community.



CHAPTER 8

CONCLUSION

8.1 Summary

In this work we begin by introducing the concept of Group Permutable Constant

Weight Codes, and with the proof that Double Periodic Arrays with full double

periodicity, and correlation value lower than the code weight produce GPCWC.

These constructions have applications in frequency hopping radar and sonar, optical

Code Division Multiple Access, design of experiments, and more recently, in digital

watermarking. We also extend the Johnson Bound, to bound the cardinality of

families of GPCWC, which are used to prove optimality of some of the new Double

Periodic Arrays that we present in this work.

There are only a few constructions of families of double periodic arrays with

perfect correlation properties. In Chapter 5 we presented a new recursive method

to construct families of DPA with perfect correlation properties. The method in-

crease the size of families of DPAs without changing the original correlation value.

We present new constructions of DPAs with perfect correlation properties and new

optimal constructions with respect to our Johnson Bound A modification for Group

Permutable Constant Weight Codes. These codes are useful for applications on 1-D

Optical Orthogonal Codes, 2-D Optical Orthogonal Codes, Multiple Target radar

and sonars, experiment design and Digital Watermarking.

In Chapter 4 we present a method to increase the weight of double periodic

arrays (Weight Increasing Method). This is useful for security reasons in Digital

Watermarking applications. Using this method we obtain an optimal construction
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of Double Periodic Arrays with respect to our Johnson Bound B modification for

GPCWC. These codes are useful for applications on 1-D Optical Orthogonal Codes,

2-D Optical Orthogonal Codes, and Digital Watermarking.

Then we combine the method to increase the size of the families of DPAs

and the Weight Increasing Method in Chapter 6 to obtain new families of DPAs

with unequal correlation constrains. Specifically constructions of DPAs with cross-

correlation lower than the auto-correlation. The auto- and cross-correlation proper-

ties are used for synchronization and user identification respectively. Fuja and Yang

explained that with good cross-correlation we are able to deal with both synchro-

nization and user identification. This is for the case were we can find constructions

with a much better cross-correlation than auto-correlation. In Chapter 6 we present

new constructions of DPAs where the cross-correlation is much better than the

auto-correlation. These codes are useful for applications on 1-D Optical Orthogonal

Codes, 2-D Optical Orthogonal Codes, and Digital Watermarking.

8.2 Future Work

Recently Double Periodic Arrays with good auto- and cross-correlation proper-

ties have been used for applications in Digital Watermarking. Digital Watermarking

requires families of Double Periodic arrays as large as possible to be able to han-

dle multiple users, and also requires the weight of the families to be balanced with

respect to the length of the arrays for security robustness.

Most of our work in this research was originally inspired in finding ways to

increase family size, and increasing the weight of Double Periodic Arrays. More

work has to be done since the families obtained in Chapter 4 are heavy and balanced

but for most of them the size of the family is small. And the size of the families

produced in Chapter 5 are large, but are not balanced with respect to the length.

We aim in finding column sequences suitable to apply Method A to the families
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produced in Chapter 5 and be able obtain large families of Double Periodic Arrays

with balanced weight.

We also plan in further developing the new area of Group Permutable Con-

stant Weight Codes and the area of families of Double Periodic Arrays with unequal

correlation constrains. We will accomplish this by working on finding new alge-

braic constructions of Double Periodic Arrays, and possibly the parallel computing

generation of Double Periodic Arrays.
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APPENDIX A

SPREAD SPECTRUM COMMUNICATIONS

APPLICATIONS

Spread spectrum is a method where modulation is performed according to a

secret code, which spreads the signal across a wider bandwidth. This work con-

centrates in secret codes, that are called sequences, that have good auto and cross

correlation properties. These sequences have been studied by our group for their

applications in frequency hopping radars and sonar, and communications.

A.1 Frequency Hopping Radar and Sonars

In a frequency hopping radar or sonar system, the signal consists of one or more

frequencies chosen from a set {f1, f2, . . . , fm} of available frequencies, for transmis-

sion at each of a set {t1, t2, . . . , tn} of consecutive time intervals. For modeling

purposes, it is reasonable to consider the situation in which m = n, and where

{f1, f2, . . . , fn} = {t1, t2, . . . , tn} = {1, 2, . . . , n}

(we will call this last m = n case, a Costas type, and the general case sonar type).

Such Costas signal is conveniently represented by a n×n permutation matrix A,

where the n rows correspond to the n frequencies, the n columns correspond to the

n time intervals, and the entry aij equals 1 if and only if frequency i is transmitted

in time interval j. (Otherwise, aij = 0)

When this signal is reflected from the target and comes back to the observer,

it is shifted in both time and frequency, and from the amounts of these shifts, both

range and velocity are determined. The observer finds the amounts of these shifts
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by comparing all shifts (in both time and frequency) of a replica of the transmitted

signal with the actual received signal, and finding for which combination of time

shift and frequency shift the coincidence is greater. This may be thought of as

counting the number of coincidences between 1’s in the matrix A = (aij) with 1’s in

a shifted version A∗ of A, in which all entries have been shifted r units to the right

(r is negative if there is a shift to the left), and s units upward (s is negative if the

shift is downward). The number of such coincidences, C(r, s), is the two-dimensional

auto-correlation function between A and A∗, and satisfies the following conditions:

C(0, 0) = n

0 ≤ C(r, s) ≤ n except for r = s = 0

(This conforms to the assumption that the signal is 0 outside the intervals

1 ≤ f ≤ n and 1 ≤ t ≤ n)

If we have another Costas type signal represented by a matrix B = (bij), we

can similarly define the two-dimensional cross-correlation function by substituting

A∗ by B∗ in the above definition.

In the general sonar case, n signals are sent out with frequencies ranging from 1

to m, at times ranging from 1 to n. Once the whole pattern of signals has returned,

the velocity and the distance of the object can be determined as mentioned before.

For sonars you must have exactly a 1 in every column but the rows can have multiple

1’s or they can be empty of 1’s. The problem in sonars (see [23]) is for any n obtain

the largest possible m.

A.2 Channel Data Protection

In spread spectrum communications the data sent in a communication channel

is spread through different frequencies and time to avoid data interception and

channel jamming. As the data to be sent is spread through different frequencies,

the interceptor will need to either break the secret code used to spread the data, or
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to collect all the data sent through all the frequency channels and try to reconstruct

it. The frequency jamming is avoided because the ”enemy” would have to jam all

frequency channels in order to add noise to the data which is very costly. This

method of communication is specially useful in the military during war.

A.3 CDMA

Code Division Multiple Access (CDMA) is used in wireless to allow the access to

multiple users dividing user data through frequencies and time as in spread spectrum

communication. You need to have good cross-correlation to avoid data interference

among the users in the network. The data is also spread through frequencies and

time. In Optical CDMA (OCDMA) the idea is the same but the data is spread

through a set of fiber optics cable and time.

A.4 Watermarking Applications

More recently sequences with good auto and cross-correlation are being used in

Digital Watermarking because they make watermarks more robust. The idea is still

similar to spread spectrum communications where a secret is spread into a digital

medium in order to make it more difficult to be intercepted or removed. Tirkel et

al. [36, 39–41] proposed the application of spread spectrum communications into

digital watermarking, using m-sequences as the arrays for the watermarks. Also I.J.

Cox et al presented a technique of embedding digital watermarking based in inserting

the watermark into the spectral components of the image using techniques analogous

to spread spectrum communication [10, 12]. Later Tirkel et al. [37, 38] presented

a method to generate arrays suitable for digital watermarking from double-periodic

constructions such as constructions for Sonar and Costas using cyclic sequences as

columns.

A watermark is an array or a sum of arrays that can carry information. This

array is added to a medium in order to make it difficult to perceive. The watermark

is recovered by calculating the watermark correlation with the watermarked medium.
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Families of arrays with perfect or near perfect auto and cross-correlation allow the

addition of multiple arrays to increase information capacity and watermark security.



APPENDIX B

DIGITAL WATERMARKING

Watermarking has been used for several years to hide information or to authen-

ticate originality of the content of different objects. A daily example includes the

watermarks inserted in US dollars which asserts the authenticity of the bills.

Watermarking is related to the fields of information hiding and steganography.

Information hiding deals with making information imperceptible or keeping secret

the existence of information. Steganography, which means covered writing, is the art

of communicating in a way which hides a secret message in the main information [17].

Information hiding techniques are used in both steganography and watermarking,

but in watermarking, as opposed to steganography, robustness against attacks plays

a major role. An example often used [33] to describe the origins of watermarking is a

story from Herodotus, where a slave is tattooed with a message in his scalp and held

until new hair grew to hide the message. Later the slave was sent with the secret

message to the Ionian city of Miletus. Another example is paper watermarks, the

first paper watermark appeared nearly 700 years ago in handmade paper-making.

The oldest recognized watermarked paper has origins in Fabriano, Italy in 1292.

Nowadays, techniques for information hiding are used everywhere where sensible or

secret data needs to be communicated through a medium, and the data needs to be

imperceptible for possible attackers or malicious users.

The growth of networks speeds, the Internet, and the digital media sharing have

facilitated the problem of illegal duplication or distribution of copyrighted digital

data. Such problems have created the need for more effective tools for copyright
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protection, and consequently the need for effective research on the field of Digital

Watermarking. Digital Watermarking is the process that embeds imperceptible data

called watermark into a multimedia object such that the watermark, can be detected

or extracted later to make an assertion about the object.

Some authors [17, 22] also describe the embedding of perceptible data into a

multimedia object as digital watermarking. Examples of embedding perceptible

data is the addition of visible marks to the copyrighted image/video media found in

web pages, where the owner of the media embeds a label describing the web address

where the media was originally published, or the addition of audio describing the

author of a sound or video media. These techniques of adding perceptible marks to

digital media is very easy to manipulate or alter to remove the mark. In order to

make a perceptible mark difficult to remove you need to place the mark in a large

or important area of the medium thereby affecting the fidelity.

A good digital watermarking practice involves imperceptibility, robustness (at-

tack resistance), media fidelity, and provides enough information to unambiguously

identify the owner.

B.1 Applications and Properties

Owner Identification is possibly the main application of Digital Watermark-

ing needed today. The owner of a copyrighted digital object would like to be able to

identify his work against others misusing it. For example, in the case that a copy-

righted work is misused, the copyright holders need an effective way to prove the

presence of a copyright notice in the distributed material. The owner would need

an effective and robust method to embed a copyright notice in a digital medium.

The simple addition of a copyright notice at the foot of an image would be easy to

remove.

In the book Digital Watermarking from J. Cox et al. [11] they describe Broad-

cast Monitoring where advertisers pay for commercial to appear in a broadcasting
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media (radio, tv, etc). The problem is that advertisers want to be sure that the

broadcasting media is broadcasting all the commercials space that they paid for.

One solution is to have persons monitoring the broadcast channels and to record

what they hear or see. A better solution would be to use computation to detect

watermarks in the signal of the broadcast channel that identifies the owner of the

commercials.

Transaction Tracking, another application of watermarking is related to the

protection of copyrights. In this case the owner embeds an unique watermark into

each copy of his digital work to keep track of the owner of the copy. Therefore if any

copy is misused, (e.g. found in a P2P program) the copyright owner can identify

who is responsible of that copy being illegally distributed.

There are more applications of watermarking, like content authentication

where the owner embed a digital signature and wants this signature to be difficult

to remove from the digital work. The copy control is when the watermark should

be detected by a copy device and the copy device reacts by not allowing the illegal

copy or making a bad copy of the original work. More detailed information about

watermarking applications can be found in [11, 17, 19, 22, 33].

Watermarking systems are composed of defining properties that differentiate

watermarking from other information hiding fields like steganography and cryp-

tography. Some of these properties interpretations and importance depend on the

requirements of the application of the watermark. Here we describe some of the most

important properties like embedding effectiveness, fidelity, robustness, security and

detection effectiveness.

Embedding effectiveness is obtained if an embedded watermark can later

be detected with a high probability. It is desirable to obtain 100% of effective-

ness but this will mean higher cost of other properties like fidelity. The fidelity

in watermarking means how perceptually similar is the original work compared to
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different watermarked versions of itself. In some cases, like in art works, fidelity is

very important and providing the best fidelity may result in non perfect embedding

effectiveness. When detecting a watermark, besides wanting to have a high proba-

bility of detection, you also need to have a low rate of false positive detection. This

is the Detection Effectiveness. A false positive detection of a watermark is when

the detector detects the watermark, but the work was not watermarked or it was

not watermarked specifically with the watermark it was searching.

Watermarking systems also provide the capacity of encode data payload into

the original works. A watermark that encodes N bits is called an N-bits watermark,

and that system can be used to encode 2N messages, like for example 2N different

owner IDs.

Two important properties of watermarking, that also help to differentiate wa-

termarking from other information hiding fields are robustness and security. Wa-

termarking robustness is the ability to detect the watermark after the watermarked

work has been exposed to common different signal processing operations, and se-

curity is similar to robustness but with the difference that the signal processing

operations are used to attack the watermarked work. Example of attacks are unau-

thorized removal of the watermark, unauthorized embedding of watermarks, and

unauthorized watermark detection. An example of watermark removal is called col-

lusion attack. The attacker uses different copies of a given watermarked work, each

with a different watermark, and then combines them to obtain an original unwa-

termarked copy. In the next section we are going to describe different watermark

attacks.

B.2 Attacks

In the previous section we described watermarking robustness and security. We

call attack a signal processing operation that can affect the robustness and the

security of a watermarking system. The following attacks can be intentional or
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unintentional and some of them refer only to image or video attacks. Some of them

are used to eliminate the possibility of detecting a watermark, others to generate an

unwatermarked copy of the original. [11, 17, 19, 22, 33].

1. Lossy compression: commonly used compression schemes like JPEG, MPEG and

MP3 can degrade the data quality and also result in irretrievable loss of data,

therefore losing data required to detect a watermark.

2. Geometric distortions: cropping and translation for audio, video or images. Rota-

tion and scaling.

3. Gaussian noise addition

4. Spatial filtering: used to obtain enhanced images, video, or audio by applying filter

function or filter operator of the media space.

5. Common signal processing operations: (D/A, A/D conversion, resampling, re-

quantization, dithering distortion, re-compression, color reduction (video, image)

6. Printing and rescanning

7. Adding a watermark to a watermarked work.

8. Collusion: Combining different copies of a given watermarked work with different

watermarks to obtain the original unwatermarked copy

9. Forgery: authorized recipients of watermarked copies of a work, collude to form

another copy with a valid watermark with the intention o framing a 3rd party.

10. Use of tools like Unzing and Stirmark to remove data embedded by commercially

available programs.

B.3 Watermarking Embedding and Detection

In this research the methods of embedding messages of interest are based on

messages represented as sequences or sum of sequences [11]. The fist method called

Direct Message Coding assigns an unique sequence for each message. The second
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called Multi-symbol Message Coding uses the properties of code division multiplex-

ing to make possible the embedding of messages with fewer codes than in Direct

Message Coding.

In Direct Message Coding, one unique sequence codeword is assigned to rep-

resent each message. Therefore for a set of messages M we need a set of | M |

sequence code. The detector needs to compute correlation for each of the | M |

sequence codewords, and the message that corresponds to the sequence codeword

is the sequence with the best correlation with the watermarked medium. In this

method of embedding if you wanted to encode 16 bits of information you need a

family of codes with 216 = 65, 536 codes. This method works if the amount of

information is relatively small, but in the case of needing to represent 100 bits of

information we will have a computational problem in the detection side. The next

subsection shows how to fix this problem.
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